Picea Rubens Sarg. Red Spruce

Total Page:16

File Type:pdf, Size:1020Kb

Picea Rubens Sarg. Red Spruce Picea rubens Sarg. Red Spruce Pinaceae Pine family Barton M. Blum Red spruce (Picea rubens), also known as yellow balsam, is one of the more important conifers in the spruce, West Virginia spruce, eastern spruce, and he- northeastern United States and adjacent Canada. It The author is Research Forester, Northeastern Forest Experiment Station, Radnor, PA. 250 Picea rubens is a medium-size tree that may grow to be more than spruce is found predominantly on shallow till soils 400 years old. The wood of red spruce is light in color that average about 46 cm (18 in) to a compact layer. and weight, straight grained, and resilient. It is used It will grow on many sites unfavorable for other for making paper, for construction lumber, and for species, such as organic soils overlying rocks in musical stringed instruments. Its many uses rival mountainous locations, steep rocky slopes, thin soils, those of eastern white pine (Pinus strobus) (21). and wet bottomland (26). On poorly drained soils, lack of aeration limits growth (22). Habitat In the northern part of its range, red spruce (fig. 2) grows at elevations from near sea level to about Native Range 1370 m (4,500 ft) (22). In the southern Appalachian Mountains it comes in at elevations as low as 1370 The range of red spruce (fig. 1) extends from the m (4,500 ft) and from there to about 1520 m (5,000 Maritime Provinces of Canada west to Maine, ft) it is mixed with hardwoods and eastern hemlock southern Quebec, and southeastern Ontario, and (Tsugu canadensis). At 1520 m (5,000 ft) balsam fir south into central New York, eastern Pennsylvania, (Abies balsamea) joins with red spruce to form the northern New Jersey, and Massachusetts. It also dominant spruce-fir climax type. In West Virginia, grows south along the Appalachian Mountains in ex- spruce-fir stands are found as low as 980 m (3,200 treme western Maryland, and eastern West Virginia, and north and west in Virginia, western North Carolina, and eastern Tennessee. Discontinuous stands may also be found in Haliburton Township, in Algonquin Provincial Park, and near Sturgeon Falls in Nippising Township, and in the southwestern Parry Sound District in Ontario, Canada. Climate Red spruce grows best in a cool, moist climate. The climate of the northeastern part of its range can be summarized as follows: annual precipitation (total), 910 to 1320 mm (36 to 52 in); annual snowfall, 203 to 406 cm (80 to 160 in); days with snow cover, 100 to 140; January temperature, -7” to -1” C (20” to 30” F) maximum and -18” to -13” C (0’ to 8” F) mini- mum; July temperature, 21” to 27” C (70” to 80” F) maximum, and 11” to 14” C (52” to 58” F) minimum; frost-free days, 90 to 150 (28). Red spruce attains maximum development in the higher parts of the southern Appalachian Mountains where the atmos- phere is more humid and the rainfall heavier during the growing season than in other parts of its range (47). Local extension of the range of red spruce, as along the southern Maine coast, is related to marine exposure, which provides a cool growing season and ample moisture supply (8). Soils and Topography The soils where red spruce and its associates grow are mostly acid Spodosols, Inceptisols, and some- times Histosols with a thick mor humus and a well- defined AZ horizon-characteristics commonly as- sociated with abundant rainfall, cool climates, and softwood cover (11). Commonly, the pH of these soils ranges from 4.0 to 5.5. In northern New England, red Figure Z-A red spruce stand. 251 Picea rubens ft). Above 1890 m (6,200 ft) in the southern Ap- Carolina include Hylocomium I Oxalis on north-facing palachians, red spruce appears less frequently than slopes above 1520 m (5,000 fit), OxczlislDryopteris at Fraser fir (Abies fraseri) (47). In the White Moun- high elevations and all exposures, and the best site tains of New Hampshire, balsam fir is the type for red spruce and Fraser fir, Viburnum IV&c- predominant species above 1220 m (4,000 ft) but red CiniumlDryopteris (47). spruce is well represented from about 790 to 1010 m The Oxalis / Cornus association is considered the (2,600 to 3,300 ft) (27). best for growing conditions in the northern part of the range. On these sites the soil is rich enough for Associated Forest Cover red spruce but not fertile enough for the tolerant hardwoods to offer serious competition (22). Pure stands of red spruce comprise the forest cover type Red Spruce (Society of American Foresters Type Life History 32). Red spruce is also a major component in 5 and a minor component in 13 other forest cover types Reproduction and Early Growth (10): Flowering and Fruiting-Red spruce is monoe- 5 Balsam Fir cious; male and female flower buds open in May in 12 Black Spruce axils of the previous year’s shoots on different 16 Aspen 17 Pin Cherry branches of the same tree. The pendant male flowers 18 Paper Birch are bright red; female flowers are erect and bright 21 Eastern White Pine green tinged with purple (21). Although cone buds 22 White Pine-Hemlock differentiate as early as July preceding flowering in 23 Eastern Hemlock the following spring, they are difficult to distinguish 25 Sugar Maple-Beech-Yellow Birch until September. For experienced workers they pro- 30 Red Spruce-Yellow Birch vide a possible means of identifying seed years at 3 1 Red SpruceGugar Maple-Beech that time. The cones mature from about mid-Septem- 33 Red Spruce-Balsam Fir ber to early October, the autumn following flowering 34 Red Spruce-Fraser Fir 35 Paper Birch-Red Spruce-Balsam Fir (41). Cones are 3 to 4 cm (1.3 to 1.5 in) long, light 37 Northern White-Cedar reddish brown, with rigid, rounded scales often 60 Beech-Sugar Maple slightly toothed on the edges. Cones are receptive to 107 White Spruce pollen when fully open, a condition which lasts for 108 Red Maple only a few days. Some of the shrubs associated with red spruce are: Seed Production and Dissemination-Good blueberry Naccinium spp.), hobblebush (Viburnum seed crops occur every 3 to 8 years, with light crops lantanoides), witherod (v; cassinoides), rhodora during intervening years (22). Red spruce cones (Rhododendron canadense), lambkill (Kalmia angus- number about 140/liter (5,OOO/bu), which yields 454 tifoliu), mountain-holly (Nemopanthus mucronata), to 680 g (1.0 to 1.5 lb) of seeds. The number of speckled alder (Alnus rugosa), red raspberry (Rubus cleaned seeds per kilogram ranges between 220,000 idaeus var. strigosus), creeping snowberry (Gaul- and 637,000 (100,000 and 289,000/1b), with an theria hispidula), wintergreen (G. procumbens), fly average of about 306,000 (139,00O/lb) (41). honeysuckle (Lonicera canadensis), gooseberry (Ribes Red spruce seeds fall about 1.2 m (4 ft) per second spp.), witch-hazel (Hamamelis virginiana), downey in still air; the following formula determines distance serviceberry (Amelanchier arborea), beaked hazel of travel for wind-disseminated spruce seeds at (Corylus cornuta), and Canada yew (Taxus canaden- various heights (47): sis). (1.47~) A number of mosses and herbs are also found D = Sh growing in red spruce forest types. Certain mosses, Where D = distance in feet which seed will travel, S herbs, and shrubs, however, have been shown to be = number of seconds required for seed to fall from a related to site quality of red spruce (22). The three height of h (ft) on a tree, and u = velocity of the main associations, Hylocomium I Oxalis, Oxalis /Car- prevailing wind in miles per hour. nus, and Viburnum/OxaZis, in that order, indicate Randall (37), in a study of seed dispersal into clear- increasing site productivity and increasing hardwood cut areas, stated that at a distance of 100 m (5 chains competition. Similar site types in the higher eleva- or 330 ft) from the timber edge, the number of spruce tions of the Appalachian Mountains of North seeds trapped were more than adequate for regenera- 252 Picea rubens tion in a g00a seed year and adequate in an average in many ways and are controlled by the same factors, year. Most of the spruce in the surrounding stands but as a rule spruce is the weaker, slower growing was red spruce. species during the establishment period (22). Seedlings that have attained a height of about 15 Seedling Development-Most red spruce seeds cm (6 in) can be considered established. Once estab- germinate the spring following dispersal; some, how- lished, their early growth is determined largely by ever, may germinate in the fall soon after dropping the amount and character of overhead competition. from the tree. Germination is epigeal. On favorable Dense growth of bracken (Pteridium aquilinum), seedbeds the usual spring germination period is from raspberry, and hardwood sprouts are the chief com- late May to early July. On duff, which is more subject petition for seedlings on heavily cutover lands; but to surface drying than most other seedbed materials, red spruce survives as much as 145 years of suppres- some seeds may lose viability by midsummer, and sion and still responds to release (11,391. some may show delayed germination well into Compared to its associates, red spruce is one of the August (22). Little if any viable seeds remain in the last species to start height growth in the spring, forest floor beyond 1 year (13). usually beginning the first week in June and ending Adequate moisture is the chief factor controlling 9 to 11 weeks later.
Recommended publications
  • Natural Communities of Michigan: Classification and Description
    Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • EASTERN SPRUCE an American Wood
    pÍ4 .4 . 1j%4 Mk ,m q ' ' 5 -w +*' 1iiL' r4i41. a')' q I Figure 1.-Range of white spruce (Picea glauca). 506612 2 EASTERN SPRUCE an American wood M.D. Ostrander' DISTRIBUTION monly found in cold, poorly-drained bogs throughout its range, and under such conditions forms dense slow- (Moench) Three spruces-white (Picea glauca growing pure stands. Through most of its range black Voss) , black (Picea , mariana (Mill.) B.S.P.) and red spruce occurs at elevations between 500 and 2,500 Picea rubens collectively known east- ( Sarg.)-are as feet, although substantial stands occur at lower eleva- em spruce. The natural range of white spruce ex- tions in eastern Canada. In the Canadian Rockies and tends from Newfoundland and Labrador west across Alaska it grows up the slopes to the limits of tree Canada to northwestern Alaska and southward growth. It usually is found in pure stands and in mix- through northern New England, New York, Mich- tures with other lowland softwoods, aspen, and birch. igan, Wisconsin, and Minnesota (fig. In western i ) . The natural range of red spruce extends from the mountains in Canada it is found east of coastal Nova Scotia and New Brunswick in Canada, southward British Columbia. Outlying stands also occur in the through New England and eastern New York. It con- Black Hills of South Dakota and in Montana and tinues southward at high elevations in the Appala. Wyoming. White spruce grows under a variety of chian Mountains to western North Carolina and east- climatic conditions, ranging from the wet insular cli- em Tennessee (fig.
    [Show full text]
  • Growth Pattern of Picea Rubens Prior to Canopy Recruitment
    pr7 7 AL Plant Ecology 140: 245-253, 1999. 245 rim © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Growth pattern of Picea rubens prior to canopy recruitment Xinyuan Wu l , J. Frank McCormick2 Richard T. Busing3 1 Department of Rangeland Ecology and Management Texas AM University, College Station, TX 77843, USA; 2Department of Ecology and Evolutionary Biology, The University of Tennessee Knoxville, TN 37996, USA; 3Forestry Sciences Laboratory 3200 SW Jefferson Way Corvallis, OR 97331, USA Received 22 July 1997; accepted in revised form 6 October 1998 Key words: Canopy disturbance regime, Great Smoky Mountains, Radial growth, Red spruce, Suppression and release Abstract A majority (72%) of Picea rubens Sarg. (red spruce) trees in an old-growth spruce-fir forest in the Great Smoky Mountains underwent episodes of radial growth suppression and release before they reached the forest canopy. Prior to canopy recruitment, trees experienced an average of 1.43 and a maximum of 7 suppression periods with an average ring width of 0.257 mm. Duration of suppression periods ranged from 4 to 79 years with an average of 19.05 years, which was significantly shorter than the average duration of release periods (29.00 years). Mean ring width in a suppression period was negatively correlated with duration of the suppression period. The opposite was true for release periods. The severity of suppression had no significant effect on mean ring width in subsequent release periods. Greater suppression was observed in the recent growth pattern of current non-canopy trees than in the historical growth pattern reconstructed from current canopy trees.
    [Show full text]
  • Abstract Walker-Lane, Laura Newman
    ABSTRACT WALKER-LANE, LAURA NEWMAN. The Effect of Hemlock Woolly Adelgid Infestation on Water Relations of Carolina and Eastern Hemlock. (Under the direction of John Frampton.) In North America, hemlock woolly adelgid (HWA; Adelges tsugae Annand) is an exotic insect pest from Asia that is causing severe decimation of native eastern hemlock (Tsuga canadensis (L.) Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). Extensive research has been committed to the ecological impacts and potential control measures of HWA, but the exact physiological mechanisms that cause tree decline and mortality are not known. Eastern and Carolina hemlock may be reacting to infestation in a manner similar to the response of Fraser fir (Abies fraseri (Pursh.) Poir.) to infestation by balsam woolly adelgid (BWA; Adelges picea Ratz.). It is known that Fraser fir produces abnormal xylem in response to BWA feeding. This abnormal xylem obstructs water movement within the trees, causing Fraser fir to die of water-stress. In this study, water relations within 15 eastern and Carolina hemlock were evaluated to determine if infestation by HWA was causing water-stress. Water potential, carbon-13 isotope ratio, stem conductivity, and stomatal conductance measurements were conducted on samples derived from those trees. In addition, branch samples were analyzed for possible wood anatomy alterations as a result of infestation. Pre-dawn branch water potential (Ψ) measurements were more negative in infested hemlock than in non-infested trees. Carbon isotope ratios (normalized δ13C vs. VPDB) of the branches were more positive for infested trees, while stomatal conductance (gs) was lower in infested trees. These results indicate that infested eastern and Carolina hemlock are experiencing drought-like symptoms.
    [Show full text]
  • Population Isolation Results in Unexpectedly High Differentiation in Carolina Hemlock (Tsuga Caroliniana), an Imperiled Southern Appalachian Endemic Conifer
    Tree Genetics & Genomes (2017) 13:105 DOI 10.1007/s11295-017-1189-x ORIGINAL ARTICLE Population isolation results in unexpectedly high differentiation in Carolina hemlock (Tsuga caroliniana), an imperiled southern Appalachian endemic conifer Kevin M. Potter1 & Angelia Rose Campbell2 & Sedley A. Josserand3 & C. Dana Nelson3,4 & Robert M. Jetton5 Received: 16 December 2016 /Revised: 14 August 2017 /Accepted: 10 September 2017 # US Government (outside the USA) 2017 Abstract Carolina hemlock (Tsuga caroliniana Engelm.) is a range-wide sampling of the species. Data from 12 polymor- rare conifer species that exists in small, isolated populations phic nuclear microsatellite loci were collected and analyzed within a limited area of the Southern Appalachian Mountains for these samples. The results show that populations of of the USA. As such, it represents an opportunity to assess Carolina hemlock are extremely inbred (FIS =0.713)andsur- whether population size and isolation can affect the genetic prisingly highly differentiated from each other (FST =0.473) diversity and differentiation of a species capable of long- with little gene flow (Nm = 0.740). Additionally, most popu- distance gene flow via wind-dispersed pollen and seed. This lations contained at least one unique allele. This level of dif- information is particularly important in a gene conservation ferentiation is unprecedented for a North American conifer context, given that Carolina hemlock is experiencing mortality species. Numerous genetic clusters were inferred using two throughout
    [Show full text]
  • Identifying and Managing Christmas Tree Diseases, Pests, and Other Problems Luisa Santamaria Chal Landgren
    PNW 659 ∙ April 2014 Identifying and Managing Christmas Tree Diseases, Pests, and Other Problems Luisa Santamaria Chal Landgren A Pacific Northwest Extension Publication Oregon State University ∙ University of Idaho ∙ Washington State University AUTHORS & ACKNOWLEDGMENTS Luisa Santamaria, assistant professor, Extension plant pathologist in nursery crops; and Chal Landgren, professor, Extension Christmas tree specialist; both of Oregon State University. The authors thank the following peers for the review of these diagnostic cards and for their helpful comments and suggestions. In alphabetical order: • Michael Bondi–Oregon State University • Gary Chastagner–Washington State University • Rick Fletcher–Oregon State University • Alina Freire-Fierro–Drexel University • Carla Garzon–Oklahoma State University • Dionisia Morales–Oregon State University • Kathy Riley–Washington State University • Helmuth Rogg–Oregon Department of Agriculture • David Shaw–Oregon State University • Cathy E. Thomas–Pennsylvania Department of Agriculture • Luis Valenzuela–Oregon State University This project was funded by the USDA Specialty Crop Block Grant program (grant numbers ODA-2577-GR and ODA-3557-GR). TABLE OF CONTENTS Diseases Damage (Weather) Annosus Root Rot . .1-2 Frost Damage . 43 Phytophthora Root Rot . .3-4 Winter Injury . 44 Grovesiella Canker . .5-6 Drought . 45 Interior Needle Blight . .7-8 Heat Damage . 46 Rhabdocline Needle Cast . .9-10 Swiss Needle Cast . 11-12 Damage (Chemical) Melampsora Needle Rust . 13-14 2,4-D and triclopyr . 47 Pucciniastrum Needle Rust . 15-16 Fertilizer Burn . 48 Uredinopsis Needle Rust . 17-18 Glyphosate (Roundup) . 49 Triazines . 50 Insects Twig Aphid . 19-20 Damage (Vertebrate) Conifer Root Aphid . 21-22 Deer, Elk, Mice, & Voles . 51 Conifer Aphids . 23-24 Rabbits & Birds . 52 Balsam Woolly Adelgid .
    [Show full text]
  • Biology and Management of Balsam Twig Aphid
    Extension Bulletin E-2813 • New • July 2002 Biology and Management of Balsam Twig Aphid Kirsten Fondren Dr. Deborah G. McCullough Research Assistant Associate Professor Dept. of Entomology Dept. of Entomology and Michigan State University Dept. of Forestry Michigan State University alsam twig aphid (Mindarus abietinus MICHIGAN STATE aphids will also feed on other true firs, Koch) is a common and important UNIVERSITY including white fir (A. concolor) and B insect pest of true fir trees (Fig. 1). Canaan fir (A. balsamea var. phanerolepsis), This bulletin is designed to help you EXTENSION especially if they are growing near balsam recognize and manage balsam twig aphid in or Fraser fir trees. Christmas tree plantations. Knowing the biology of this aphid will help you to plan scouting and Biology control activities, evaluate the extent of damage caused by Balsam twig aphid goes through three generations every aphid feeding and identify the aphid’s natural enemies. year. The aphids overwinter as eggs on needles near the Using an integrated management program will help you to bases of buds. Eggs begin to hatch early in spring, typically control balsam twig aphid efficiently and effectively. around late March to mid-April, depending on temperatures and location within the state. Hatching is completed in one to two weeks. Recent studies in Michigan showed that egg Photo by M. J. Higgins. hatch began at roughly 60 to 70 degree-days base 50 degrees F (DD50) and continued until approximately 100 DD50 (see degree-days discussion under “Timing insecticide sprays” on p. 5). The newly hatched aphids are very small and difficult to see, but by mid- to late April, at approximately 100 to 140 DD50, they have grown enough to be easily visible against a dark background.
    [Show full text]
  • Picea Rubens Sarg. Family: Pinaceae Red Spruce
    Picea rubens Sarg. Family: Pinaceae Red Spruce The genus Picea is composed of about 30 species native to North America [12] and Eurasia [20]. The word picea comes from the ancient Latin name (pix, picis = pitch) of a pitchy pine, probably Scotch pine (Pinus sylvestris L.). The word rubens means reddish, referring to the reddish brown cones. Other Common Names: Abetina rossa, Adirondack spruce, black spruce, blue spruce, Canadese rode spar, Canadian red spruce, Canadian spruce, double spruce, eastern spruce, epicea rouge du Canada, he balsam, he- balsam, Hudson-fichte, kanadensisk rod-gran, North American red spruce, picea roja de Canada, picea rossa del Canada, red spruce, rot-fichte, sapinette rouge du Canada, spruce pine, spruces d'america, West Virginia spruce, yellow spruce. Distribution: Red spruce is native to Cape Breton Islands, Nova Scotia and New Brunswick, west to Maine, southern Quebec and southeastern Ontario and south to central New York, northeastern Pennsylvania, northern New Jersey and Massachusetts. It also grows in the Appalachian Mountains of extreme western Maryland, eastern West Virginia, northern and western Virginia, western North Carolina and eastern Tennessee. The Tree: Red spruce can reach heights of 110 feet, with diameters of 4.5 feet. At the northern limit of its range, red spruce reaches heights of only 80 feet and diameters of 2 feet. General Wood Characteristics: The wood dries easily and is stable after drying, is moderately light in weight and easily worked, has moderate shrinkage, and is moderately strong, stiff, tough, and hard. It is not very resistant to bending or end-wise compression.
    [Show full text]
  • Measuring Restoration Success CASRI Partnership VIRTUAL Conference 2020
    Measuring Restoration Success CASRI Partnership VIRTUAL Conference 2020 November 4 – 5, 2020 CASRI's 2020 "Measuring Restoration Success" conference will focus on quantitative and qualitative measures of success for restoration of the red spruce-northern hardwood ecosystem in Central Appalachia. Decades of boots-on-the-ground restoration actions and associated research and monitoring has resulted in quantifiable success stories and lessons learned, all of which provide important knowledge to inform future actions and approaches. This conference gathers managers, practitioners, scientists, and leaders in the field to discuss the latest research findings, problem-solve common management challenges, and network to advance new and emerging partnerships. Strong partnerships will enable the network to continue to advance landscape resilience and connectivity of red spruce forests across the region. SCHEDULE Wednesday November 4, 2020 --- ZOOM link Day 1 Time Topic Speaker 9:00 – 9:10 Welcome and housekeeping Katy Barlow 9:10 – 9:50 Keynote Presentation: Are We Hitting the Mark Jamie Schuler for Red Spruce Restoration? Session 1: History of CASRI 10:00 – 10:15 The Blister Swamp Conservation and Alton Byers Restoration Project Twenty Years Later 10:15 – 10:30 Red spruce in West Virginia: Early Reports James Rentch from A. D. Hopkins and the W.Va. Agricultural Experiment Station 10:30 – 10:45 Session 1 Discussion Panel Session 2: Soils and Vegetation 11:00 – 11:10 Informed Red Spruce Restoration and James Leonard Conservation Planning using Soil
    [Show full text]
  • Evaluating the Invasive Potential of an Exotic Scale Insect Associated with Annual Christmas Tree Harvest and Distribution in the Southeastern U.S
    Trees, Forests and People 2 (2020) 100013 Contents lists available at ScienceDirect Trees, Forests and People journal homepage: www.elsevier.com/locate/tfp Evaluating the invasive potential of an exotic scale insect associated with annual Christmas tree harvest and distribution in the southeastern U.S. Adam G. Dale a,∗, Travis Birdsell b, Jill Sidebottom c a University of Florida, Entomology and Nematology Department, Gainesville, FL 32611 b North Carolina State University, NC Cooperative Extension, Ashe County, NC c North Carolina State University, College of Natural Resources, Mountain Horticultural Crops Research and Extension Center, Mills River, NC 28759 a r t i c l e i n f o a b s t r a c t Keywords: The movement of invasive species is a global threat to ecosystems and economies. Scale insects (Hemiptera: Forest entomology Coccoidea) are particularly well-suited to avoid detection, invade new habitats, and escape control efforts. In Fiorinia externa countries that celebrate Christmas, the annual movement of Christmas trees has in at least one instance been Elongate hemlock scale associated with the invasion of a scale insect pest and subsequent devastation of indigenous forest species. In the Conifers eastern United States, except for Florida, Fiorinia externa is a well-established exotic scale insect pest of keystone Fraser fir hemlock species and Fraser fir Christmas trees. Annually, several hundred thousand Fraser firs are harvested and shipped into Florida, USA for sale to homeowners and businesses. There is concern that this insect may disperse from Christmas trees and establish on Florida conifers of economic and conservation interest. Here, we investigate the invasive potential of F.
    [Show full text]
  • The Incidence of Dwarf Mistletoe in Minnesota Black Spruce Stands Detected by Operational Inventories
    The Incidence of Dwarf Mistletoe in Minnesota Black Spruce Stands Detected by Operational Inventories Fred Baker, Mark Hansen, John D. Shaw, Manfred Mielke, and Dixon Shelstad We surveyed black spruce stands within 0.5 miles of US Forest Service Forest Inventory and Analysis (FIA) plots and compared dwarf mistletoe status with that of the FIA and Minnesota Department of Natural Resources (DNR) forest inventories. Our results differed from FIA results in 3 of 16 stands with FIA plots, with FIA most often not recording dwarf mistletoe in infested stands. The infestation status of 140 of 202 surrounding stands was the same as recorded for the nearby FIA plot. Minnesota DNR forest inventory identified dwarf mistletoe in only 26 of 112 infested stands. Using only the most recent FIA plot data, 8% of FIA plots were recorded as infested. Considering an FIA plot to be infested if it was infested at any time in its history raises the percentage of infested FIA plots to 11%. Of the stands we surveyed, 112 of 202 (55%) were infested, but spatial autocorrelation may bias our sample. For the infested stands, dwarf ABSTRACT mistletoe is projected to infest 20% of the stand area and reduce timber volume by at least 14% in the current rotation. Keywords: disease survey he eastern spruce dwarf mistletoe (Arceuthobium pusillum) ventory plots are often unreliable (See Muir and Moody 2002 and causes the most important black spruce (Picea mariana) dis- references therein), in at least one case dwarf mistletoe incidence Tease throughout the range of the species. Anderson (1949) collected by inventory crews was reasonably accurate (Drummond estimated that 3–11% of the black spruce type in the Big Falls 1978).
    [Show full text]