Biological Control, of Plants

Total Page:16

File Type:pdf, Size:1020Kb

Biological Control, of Plants SEE ALSO THE FOLLOWING ARTICLES Usually, this is achieved by the introduction of additional Agriculture / Biological Control, of Plants / Integrated Pest natural enemies (either new species or more of the same Management / Ladybugs / Wasps species) or by encouraging an increase in the abundance of local natural enemies by habitat modifi cation. FURTHER READING Bigler, F., D. Babendreier, and U. Kuhlmann, eds. 2006. Environmental BIOLOGICAL CONTROL STRATEGIES Impact of Invertebrates for Biological Control of Arthropods. Wallingford, Weed biological control efforts can be grouped into UK: CABI Publishing. Clausen, C. P. 1978. Introduced Parasitoids and Predators of Arthropod three different strategies: introduction, augmentation, Pests and Weeds: A World Review. Agricultural Handbook No. 480. and conservation. Introduction, or classical biological Washington, DC: USDA. control, is the movement of selected natural enemies of Greathead, D. J., and A. H. Greathead. 1992. Biological control of insect pests by parasitoids and predators: The BIOCAT database. Biocontrol a targeted plant species from its native range into the News and Information 13(4): 61N–68N. new area invaded by the weed. It is common for exotic Gurr, G., and S. Wratten, eds. 2000. Biological Control: Measures of Suc- weeds to lack natural enemies in their new area of inva- cess. Dordrecht: Kluwer. sion. When a plant is imported as an ornamental or crop Gurr, G. M., S. D. Wratten, and M. A. Altieri. 2004. Ecological Engineer- ing for Pest Management: Advances in Habitat Manipulation for Arthro- plant, effort is taken to ensure it is free of insects, mites, pods. Ithaca, NY: Cornell University Press. and disease. Similarly, plants accidentally introduced Heinz, K. M., R. G. Van Driesche, and M. P. Parrella, eds. 2004. Biocontrol are usually transported as seeds or pieces of stem or rhi- in Protected Culture. Batavia, IL: Ball Publishing. Neuenschwander, P., C. Borgemeister, and J. Langewald, eds. 2003. zome, plant parts too small to include or support natural Biological Control in IPM Systems in Africa. Wallingford, UK: CABI enemies that require leaves or larger pieces of the plant Publishing. to survive. If the plant escapes cultivation or is acciden- Van Driesche, R., M. Hoddle, and T. Center, eds. 2008. Control of Pests and Weeds by Natural Enemies: An Introduction to Biological Control. tally introduced and begins to spread, the reason for its Oxford: Blackwell. success as an invader may be due to the difference in the Waage, J. K., and D. J. Greathead. 1988. Biological control: Challenges level of herbivory it receives compared to plants native to and opportunities. Philosophical Transactions of the Royal Society of the area, which are damaged and infected by their own London B 318: 111–128. Wajnberg, E., J. K. Scott, and P. C. Quimby, eds. 2001. Evaluating Indi- group of natural enemies. This difference in the level rect Ecological Effects of Biological Control. Wallingford, UK: CABI of herbivory or disease has been proposed as one of the Publishing. reasons that exotic plants become invasive and is called the “enemy release hypothesis.” Classical biological con- trol involves the discovery of specifi c natural enemies in a plant’s native range, an evaluation of their safety (through host-specifi city testing) and effi cacy, and the BIOLOGICAL CONTROL, study of their release and establishment in the invaded range. The objective is for the exotic natural enemies to OF PLANTS permanently reduce the weed population. It is generally accepted that the weed will not to be eradicated and MICHAEL J. PITCAIRN that both the weed and biological control agents will California Department of Food and Agriculture, Sacramento permanently persist, but at densities below economic or ecological threshold levels where the weed is no lon- Plant populations are limited by many factors, including ger problematic. Classical biological control is the most abiotic conditions, resource limitations, germination safe common biological control method used against plants sites, plant-to-plant competition, predation (herbivory), and should generally be part of an integrated pest man- pollination, and plant disease. The large and various agement program. groups of herbivores and diseases that consume or infect Augmentative biological control is the addition of a particular plant are called its natural enemies, and the natural enemies, either native or exotic, to provide a damage they impart due to their feeding or infection temporary boost to the background level of herbivory. works together with the other limiting forces to main- Natural enemies released in an augmentative program are tain a plant’s population density around some reduced usually not expected to survive past their life spans or the level. Biological control of invasive plants is a pest control growing season and often do not become permanently method where the natural enemies of an organism are established. The released organisms are mass reared in lab- intentionally manipulated to further reduce its abundance. oratory cultures so that thousands are released at a time. BIOLOGICAL CONTROL, OF PLANTS 63 From Daniel Simberloff and Marcel Rejmánek, editors, Encyclopedia of Biological Invasions, Berkeley and Los Angeles: University of California Press, 2011. 02_Simberloff10_B_p43-91.indd 63 9/10/10 4:09:50 PM Augmentative biological control was originally developed An example is Collego, a commercial product consist- against insect pests in greenhouses and fi eld crops, where ing of spores of the fungus Colletoctricum gloeosporioides it is economically feasible to produce thousands of para- f. spp. aeschynomene, for control of northern jointvetch, a sitic or predatory insects on high value crops, especially native leguminous weed in rice and soybean crops in the if the pests are resistant to insecticides. There are very southeastern United States. Most of these products have few examples of augmentative biological control being not been economically viable because they are effective used on plants, probably because it is not cost-effective against a single weed species and must compete in a mar- compared to herbicides, which are able to control broad ketplace with broad-spectrum herbicides effective against classes of weeds. For invasive plants that infest large areas, many weed species. The use of plant pathogens as an aug- augmentative strategies are not likely to be cost-effective. mentative biological control tool has great potential and Some have called the use of sheep or goats an augmenta- needs to be explored further. tive control activity, but the use of grazing is tradition- Recently, a stem-boring wasp and a scale insect have ally considered a cultural control method because the been proposed for use in augmentative control releases animals must be herded. Some plant diseases have been against Arundo donax, a giant reed that has invaded the developed for use as bioherbicides and can be classifi ed riparian community along the Rio Grande, the river that as augmentative control. Unlike insect agents, impacts serves as a border between Mexico and the United States. from a bioherbicide may occur for several generations Both insects are exotic and were obtained from Spain, of the pathogen, but they usually do not extend beyond where A. donax is native. The proposed objective is to rear a single fi eld season. Eight pathogens worldwide have hundreds of thousands of these species in a mass-rearing been registered for use as bioherbicides against weeds. facility and then release them early in the growing season STEPS IN A CLASSICAL WEED BIOLOGICAL must be summarized and submitted for consideration to the regu- CONTROL PROGRAM latory authority before a permit will be issued. The review process can take months to years. 1. Target selection. Identify weed species using morphological and molecular techniques and identify area of origin. Resolve 5. Implementation. Upon approval for introduction, initial release confl icts regarding the commercial or environmental value of the and establishment of the biological control agent will occur in target weed. Perform cost–benefi t analysis. fi eld nursery sites, areas with high densities of the target weed located in climatic areas deemed optimal for the control agent. 2. Foreign exploration in weed’s area of origin. Examine litera- Usually, only a few organisms (usually fewer than 1,000) are ture and explore target weed’s native range to discover and col- available for initial releases. Once they are established and their lect potential biological control agents. When extensive, native numbers increase, collections of surplus agents will be used areas with the most similar climate to the invaded range should to redistribute them throughout the invaded range. Regional be identifi ed as priority. Correct identifi cation of all collected redistribution can be facilitated through outreach events, such material is critical for purposes of safety and project success. as “fi eld days” where local land managers and property owners Plants closely related to the target weed should be examined in are invited to visit the nursery site, learn the biology of the tar- the native range to see if they are damaged by candidate control get weed and control agent, and receive a small quantity of the agents. agent for release on their property. 3. Host specifi city studies. All potential biological control agents 6. Post-release monitoring. Following their initial release, nurs- should be subjected to a series of choice
Recommended publications
  • Biological Control of St John's Wort Using Chrysolina Leaf Beetles (DSE
    June 1999 Biological control of St John's wort LC0152 with the chrysolina leaf beetles ISSN 1329-833X Keith Turnbull Research Institute (Frankston) Common and scientific names Pupae - in globular cells in the soil at up to 5 cm depth. St John’s wort leaf beetles Life cycle Chrysolina hyperici (Förster) Females lay eggs on the undersides of leaves or leaf buds Chrysolina quadrigemina (Suffrian) in autumn. C. quadrigemina larvae emerge after about 3 Background weeks and overwinter as larvae. C. hyperici overwinters in the egg stage. Larvae consume the young leaves and buds St John’s wort, Hypericum perforatum, was introduced in of procumbent autumn and winter growth. Larger larvae the Ovens Valley of Victoria as a medicinal plant in the leave the plant during the day and return to feed at night. 1860s. It spread rapidly and was well established by the When mature, they pupate in the soil at a depth of a few early 1900s. It is a serious weed of improved pastures, centimetres. The pupal stage lasts 2 to 3 weeks and adults roadsides and neglected areas in north east Victoria and is emerge in the spring. Adult beetles defoliate the erect an increasing problem in dry forests and woodlands. In spring plants and enter a resting stage (aestivation or natural areas it is a serious environmental weed which can diapause) under the bark of trees during summer. out-compete other ground storey plants. St John’s wort is a Regionally Prohibited Weed in the Corangamite and Port Phillip West Catchment and Land Protection Regions, and a Regionally Controlled Weed in all other areas of Victoria except Mallee CaLP Region.
    [Show full text]
  • Bioecología De Cactoblastis Cactorum (Berg) (Lep: Pyralidae) En Argentina: Bases Para Su Manejo Integrado
    Tesis Doctoral Bioecología de Cactoblastis cactorum (Berg) (Lep: Pyralidae) en Argentina: bases para su manejo integrado Varone, Laura 2013-11-15 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Varone, Laura. (2013-11-15). Bioecología de Cactoblastis cactorum (Berg) (Lep: Pyralidae) en Argentina: bases para su manejo integrado. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Varone, Laura. "Bioecología de Cactoblastis cactorum (Berg) (Lep: Pyralidae) en Argentina: bases para su manejo integrado". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2013-11-15. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Bioecología de Cactoblastis cactorum (Berg) (Lep: Pyralidae) en Argentina: bases para su manejo integrado Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en
    [Show full text]
  • And Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant
    plants Article Release from Above- and Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant Lotte Korell 1,2,3,4,* , Martin Schädler 3,4, Roland Brandl 5, Susanne Schreiter 6 and Harald Auge 3,4 1 Plant Ecology and Geobotany, Department of Ecology, University of Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany 2 Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany 3 Department of Community Ecology, Helmholtz-Centre for Environmental Research -UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; [email protected] (M.S.); [email protected] (H.A.) 4 German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany 5 Animal Ecology, Department of Ecology, University of Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany; [email protected] 6 Department of Soil System Science, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; [email protected] * Correspondence: [email protected] Received: 28 October 2019; Accepted: 21 November 2019; Published: 26 November 2019 Abstract: The enemy-release hypothesis is one of the most popular but also most discussed hypotheses to explain invasion success. However, there is a lack of explicit, experimental tests of predictions of the enemy-release hypothesis (ERH), particularly regarding the effects of above- and belowground herbivory. Long-term studies investigating the relative effect of herbivores on invasive vs. native plant species within a community are still lacking. Here, we report on a long-term field experiment in an old-field community, invaded by Solidago canadensis s.
    [Show full text]
  • Lepidoptera:Pyralidae) in Florida
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2009 The Ecology of Cactoblastis Cactorum (Berg) (Lepidoptera:pyralidae) in Florida Kristen Erica Sauby Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Sauby, Kristen Erica, "The Ecology of Cactoblastis Cactorum (Berg) (Lepidoptera:pyralidae) in Florida" (2009). Theses and Dissertations. 4323. https://scholarsjunction.msstate.edu/td/4323 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. THE ECOLOGY OF CACTOBLASTIS CACTORUM (BERG) (LEPIDOPTERA: PYRALIDAE) IN FLORIDA By Kristen Erica Sauby A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences in the Department of Biological Sciences Mississippi State, Mississippi August 2009 Copyright by Kristen Erica Sauby 2009 THE ECOLOGY OF CACTOBLASTIS CACTORUM (BERG) (LEPIDOPTERA: PYRALIDAE) IN FLORIDA By Kristen Erica Sauby Approved: Christopher P. Brooks Richard L. Brown Assistant Professor of Biological Sciences Professor of Entomology (Director of Thesis) (Committee Member) Gary N. Ervin Gary N. Ervin Associate Professor of Biological Sciences Graduate Coordinator of the
    [Show full text]
  • 20123104019.Pdf
    Invasive Plant Ecology and Management: Linking Processes to Practice CABI INVASIVE SPECIES SERIES Invasive species are plants, animals or microorganisms not native to an ecosystem, whose introduction has threatened biodiversity, food security, health or economic development. Many ecosystems are aff ected by invasive species and they pose one of the biggest threats to biodiversity worldwide. Globalization through increased trade, transport, travel and tour- ism will inevitably increase the intentional or accidental introduction of organisms to new environments, and it is widely predicted that climate change will further increase the threat posed by invasive species. To help control and mitigate the eff ects of invasive species, scien- tists need access to information that not only provides an overview of and background to the fi eld, but also keeps them up to date with the latest research fi ndings. Th is series addresses all topics relating to invasive species, including biosecurity surveil- lance, mapping and modeling, economics of invasive species and species interactions in plant invasions. Aimed at researchers, upper-level students and policy makers, titles in the series provide international coverage of topics related to invasive species, including both a synthesis of facts and discussions of future research perspectives and possible solutions. Titles Available 1. Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent Edited by J.R. Bhatt, J.S. Singh, R.S. Tripathi, S.P. Singh and R.K. Kohli 2. Invasive Plant Ecology and Management: Linking Processes to Practice Edited by T.A. Monaco and R.L. Sheley Invasive Plant Ecology and Management: Linking Processes to Practice Edited by THOMAS A.
    [Show full text]
  • Biological Control
    KLAMATH WEED (= ST. JOHN'S WORT) Hypericum perforatum L. – Hypericaceae Dr. E. Fred Legner, University of California Retrieved from: http://faculty.ucr.edu/~legneref/biotact/ch-66.htm This weed is of European origin, and was first reported as a pest in northern California near the Klamath River. It increased and spread rapidly and by 1944 had occupied over two million acres of rangeland in thirty counties of California. Not only were food forage plants greatly reduced but cattle and sheep lost weight when eating the weed because of its toxic effect, sensitizing them to sunlight. This resulted in such a great decrease in land values that it became almost impossible for ranchers to borrow money for development (DeBach 1974). Chemical herbicides were available but not practical because of cost and the inaccessibility of most of the infested land. Dr. Harry S. Smith, head of biological control work in California, proposed the importation of insects that attacked the weed as early as 1922, but the thought of deliberately introducing a plant feeding insect was not acceptable at that time. At the same time, in Australia phytophagous insects to control Klamath weed were being introduced from England and Europe beginning in 1929, and Dr. Smith in California followed the progress there with great interest through correspondence with Dr. A. J. Nicholson, Chief Entomologist for the Commonwealth Scientific and Industrial Research Organization (CSIRO). Authorization was finally obtained in 1944 to import three species of beetles that showed promise against the weed in Australia. It was not possible then to consider importations from Europe because of World War II, but rather simple to bring material from Australia through the cooperation of the United States Army Transport Command.
    [Show full text]
  • Flight Phenology of Male Cactoblastis Cactorum (Lepidoptera: Pyralidae) at Different Latitudes in the Southeastern United States
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2009 Flight Phenology of Male Cactoblastis Cactorum (Lepidoptera: Pyralidae) at Different Latitudes in the Southeastern United States Stephen D. Hight USDA-ARS-CMAVE James E. Carpenter USDA-ARS-CPMRU Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Hight, Stephen D. and Carpenter, James E., "Flight Phenology of Male Cactoblastis Cactorum (Lepidoptera: Pyralidae) at Different Latitudes in the Southeastern United States" (2009). Publications from USDA-ARS / UNL Faculty. 353. https://digitalcommons.unl.edu/usdaarsfacpub/353 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 208 Florida Entomologist 92(2) June 2009 FLIGHT PHENOLOGY OF MALE CACTOBLASTIS CACTORUM (LEPIDOPTERA: PYRALIDAE) AT DIFFERENT LATITUDES IN THE SOUTHEASTERN UNITED STATES STEPHEN D. HIGHT1 AND JAMES E. CARPENTER2 1USDA-ARS-CMAVE at Center for Biological Control, FAMU, Tallahassee, FL 32308 2USDA-ARS-CPMRU, Tifton, GA 31794 ABSTRACT Long term trapping studies of the invasive moth Cactoblastis cactorum (Berg) were con- ducted at various latitudes from Puerto Rico to South Carolina. Three flight periods per year were identified at the 5 temperate sites studied, which covered the majority of the infested range on mainland United States. In general, the 3 flight periods across a latitudinal gradi- ent from south Florida to central, coastal South Carolina were a spring flight during Feb- May, a summer flight during Jun-Aug, and a fall flight during Sep-Nov.
    [Show full text]
  • Hemiptera: Coccoidea)
    Journal of Agricultural Science; Vol. 10, No. 4; 2018 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Efficacy of Libidibia ferrea var. ferrea and Agave sisalana Extracts against Dactylopius opuntiae (Hemiptera: Coccoidea) Rosineide S. Lopes1, Luciana G. Oliveira1, Antonio F. Costa1, Maria T. S. Correia2, Elza A. Luna-Alves Lima3 & Vera L. M. Lima2 1 Agronomic Institute of Pernambuco (IPA), Recife, Brazil 2 Department of Biochemistry, Federal University of Pernambuco (UFPE), Recife, Brazil 3 Department of Mycology, Federal University of Pernambuco (UFPE), Recife, Brazil Correspondence: Vera L. M. Lima, Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE, CEP: 50670-420, Brazil. Tel: 55-(81)-2126-8576. E-mail: [email protected] Received: December 18, 2017 Accepted: January 24, 2018 Online Published: March 15, 2018 doi:10.5539/jas.v10n4p255 URL: https://doi.org/10.5539/jas.v10n4p255 The research is financed by “Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco” (FACEPE), National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Level -or Education- Personnel) (CAPES), and “Banco do Nordeste do Brasil” (BNB). Abstract The carmine cochineal (Dactylopius opuntiae) is an insect-plague of Opuntia ficus-indica palm crops, causing losses in the production of the vegetable used as forage for the Brazilian semiarid animals. The objective of this work was to analyze the efficacy of plant extracts, insecticides and their combination in the control of D. opuntiae. Leaf and pod extracts of Libidibia ferrea var.
    [Show full text]
  • Response of Two Chrysolina Species to Different Hypericum Hosts
    Seventeenth Australasian Weeds Conference Response of two Chrysolina species to different Hypericum hosts Ronny Groenteman', Simon V. Fowler' and Jon J. Sullivan2 ' Landcare Research, Gerald Street, PO Box 40, Lincoln, New Zealand 2Bio-Protection Research Centre, PO Box 84, Lincoln University, Lincoln, New Zealand Corresponding author: [email protected] SummaryChrysolina hyperici and C. quadrigemina introduced in 1963 but, for many years was thought (Coleoptera: Chrysomelidae) were introduced to to have failed to establish (reviewed by Hancox et al. New Zealand for biological control of St John's wort 1986). Chrysolina quadrigemina was rediscovered in (SJW), Hypericum perforatum, following successful the late 1980s (Fraser and Emberson 1987). It is now biological control in Australia. In other parts of the abundant in mixed populations with C. hyperici (R. invaded range of SJW worldwide C. quadrigemina is Groenteman personal observations). generally accepted as the more significant contributor St John's wort beetles are not strictly restricted to to SJW successful biocontrol. Their ability to feed and H. perforatum, and are known to be able to develop on develop on indigenous Hypericum species was not other Hypericum species (some examples are reviewed tested. Chrysolina hyperici established well while C. by Harris 1988). New Zealand hosts 10 naturalised quadrigemina was initially thought to have failed to es- (Healy 1972) and four indigenous (Heenan 2008) tablish in New Zealand, although it is now widespread. Hypericum species. Little is known about the suit- Thus, identifying differences between Chrysolina spe- ability and impacts of either Chrysolina species on cies in host preference and performance would have these Hypericum species.
    [Show full text]
  • IT Would Be an Advantage to Be Able to Predict the Conditions
    NOTES AND COMMENTS 151 6. REFERENCES DYER, A. r. 1964. Heterochromatin in American and Japanese species of Trillium. Cyto- logia, 29, 171-190. JOHN, B., AND HEWITT, G.M. 1966. Karyotype stability and DNA variability in the Acrididae. Chromosoma, 20, 165-1 72. JONES, R. NEIL, AND REES, H. 1968. Influence of B-chromosomes in rye upon the nuclear phenotype. In press. KEYL, H. 0. 1964. Verdopplung des DNA Gehalte kiciner Chromosomen Abschnitte als Faktor der Evolution. Xaturwissenschaften, 51, 46-47. KEYL, n. G. 1965. A demonstrable local and geometric increase in the chromosomal DNA of Chironomm. Experienlia, 21, 191. LIMA DE PARIA, A. 1959. Differential uptake of initiated thymidine into hetero- and euchromatin in Melanopus and Secale. 3'.Biophys.Biochem. Cytology, 6, 457-466. MARTIN, P. o. 1966. Variations in the amounts of nucleic acids in the cells of different species of higher plants. Exp.CellRes., 44, 84-94. MCLEISH, j.,ANDSuNDERLAND, N. 1961. Measurements of deoxyribonucleic acid (DNA) in higher plants by Feulgen photometry and chemical methods. Exp. Cell Res., 24, 527-540. MITFWOCH, U. 1968. Scope and limitations of feulgen microdensitometry. Chromosomes today. (In press.) NIRULA, 5., BHASKARAN, S., AND SWAMINATISAN, M. s. 1961. Effect of linear differentiation of chromosomes on the proportionality between chromosome length and DNA content. Exp.CellRes., 24, 160-162. RRES, H., CAMERON, M. F., HAZARIKA, M. H., AND JONES, G. H. 1966. Nuclear variation between diploid angiosperms. Xature, 211, 828-830. ROTI-IFELS, K., SEXSMITH, E., HEIMBURGER, H., AND KRAUSE, M. o. 1966. Chromosome size and DNA content of species of Anemone L.
    [Show full text]
  • Acacia Flat Mite (Brevipalpus Acadiae Ryke & Meyer, Tenuipalpidae, Acarina): Doringboomplatmyt
    Creepie-crawlies and such comprising: Common Names of Insects 1963, indicated as CNI Butterfly List 1959, indicated as BL Some names the sources of which are unknown, and indicated as such Gewone Insekname SKOENLAPPERLYS INSLUITENDE BOSLUISE, MYTE, SAAMGESTEL DEUR DIE AALWURMS EN SPINNEKOPPE LANDBOUTAALKOMITEE Saamgestel deur die MET MEDEWERKING VAN NAVORSINGSINSTITUUT VIR DIE PLANTBESKERMING TAALDIENSBURO Departement van Landbou-tegniese Dienste VAN DIE met medewerking van die DEPARTEMENT VAN ONDERWYS, KUNS EN LANDBOUTAALKOMITEE WETENSKAP van die Taaldiensburo 1959 1963 BUTTERFLY LIST Common Names of Insects COMPILED BY THE INCLUDING TICKS, MITES, EELWORMS AGRICULTURAL TERMINOLOGY AND SPIDERS COMMITTEE Compiled by the IN COLLABORATION WiTH PLANT PROTECTION RESEARCH THE INSTITUTE LANGUAGE SERVICES BUREAU Department of Agricultural Technical Services OF THE in collaboration with the DEPARTMENT OF EDUCATION, ARTS AND AGRICULTURAL TERMINOLOGY SCIENCE COMMITTEE DIE STAATSDRUKKER + PRETORIA + THE of the Language Service Bureau GOVERNMENT PRINTER 1963 1959 Rekenaarmatig en leksikografies herverwerk deur PJ Taljaard e-mail enquiries: [email protected] EXPLANATORY NOTES 1 The list was alphabetised electronically. 2 On the target-language side, ie to the right of the :, synonyms are separated by a comma, e.g.: fission: klowing, splyting The sequence of the translated terms does NOT indicate any preference. Preferred terms are underlined. 3 Where catchwords of similar form are used as different parts of speech and confusion may therefore
    [Show full text]
  • Shell Crushing Resistance of Alien and Native Thiarid Gastropods to Predatory Crabs in South Africa
    Aquatic Invasions (2016) Volume 11, Issue 3: 303–311 DOI: http://dx.doi.org/10.3391/ai.2016.11.3.08 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Shell crushing resistance of alien and native thiarid gastropods to predatory crabs in South Africa 1, 2 1 1 1 Nelson A.F. Miranda *, G. John Measey , Nasreen Peer , Jacqueline L. Raw , Renzo Perissinotto 3 and Christopher C. Appleton 1DST/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa 2Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa 3School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa *Corresponding author E-mail: [email protected] Received: 22 September 2015 / Accepted: 10 March 2016 / Published online: 11 April 2016 Handling editor: Kenneth Hayes Abstract The successful invasion of freshwater and coastal lakes of South Africa by the recently introduced thiarid snail Tarebia granifera may be due in part to release from predatory pressure. This study aimed to determine the comparative vulnerability of T. granifera and the widespread native aquatic thiarid Melanoides tuberculata to predation. These species also account for many thiarid invasions in the Americas, Europe and parts of Africa. We quantified the shell crushing resistance of these snails, as well as the maximal shell crushing capability of native freshwater crab predators, Potamonautes sidneyi and P. perlatus. Using an Instron isometric transducer, we showed that Tarebia granifera shells were significantly stronger than Melanoides shells, and exceeded the crushing strength we documented for both potential predatory crabs.
    [Show full text]