Atmosphere and Climate

Total Page:16

File Type:pdf, Size:1020Kb

Atmosphere and Climate Atmosphere and Climate The atmosphere is a complex hydrodynamical system, driven by radiative, convective, gravitational, and rotational forces, which can cause frequent dynamic fluctuations in temperature and pressure conditions. These can translate into short time local “weather” conditions. Long term, general climate considerations are based on approximate equilibrium assumptions necessary for developing appropriate models for atmosphere simulation. Approximations One dimensional models describing the vertical structure of the atmosphere as a sequence of different atmospheric layers with altitude dependent density, temperature, pressure, composition profile. For more complex global simulations, two-dimensional or even three-dimensional atmosphere models are necessary! Physical structure of atmosphere Temperature at high altitudes Temperature scale in Temperature scale in Temperature scale in terms of Fahrenheit oF terms of Celsius oC terms of Kelvin K C=(F - 32) ·5/9; F=(C · 9/5) + 32; F=(K - 273.15) · 9/5 + 32; K= (F - 32) · 5/9 + 273.15; K=C + 273.15; C= K - 273.15; Composition of atmosphere Atmosphere development From FromHadean Pleistocene period to toCambrian Holocene explosion CarbonArgon Molecule Growth Content in Earth’s of Earth’s Atmosphere Atmosphere Variation with time Composition and altitude Vertical structure of pressure conditions in the atmosphere force F N P Pa Definition of pressure: area A m2 1Pa 105bar 0.01mbar P 1atm 760mmHg 760Torr Atmospheric pressure: surface 1atm 1.013bar dP : density g/cm3 Hydrostatic equation: g g 9.81m / s2 dz g: gravity m m P Ideal gas equation: P V R T R: gas constant V R T R=8.314 J/mole K m P m=0.029 kg/mole dP g dz R T (for dry N2, 02 air) dP m g dz R T dz H H: scale height P R T H m g Isothermal atmosphere T=const. J 8.314 290K dP dz R T mole K H H 8.48km surface kg m P H m g 0.029 9.81 mole s2 Differential equation which is solved by an exponential equation for pressure depending on height (Note: the scale height H is temperature dependent and the temperature T varies with altitude z between 200K and 300K.) Assuming an isothermal atmosphere (T=const) z H P0 P P0 e or z H ln P Barometric Formula The scale height is the increase in altitude for which the atmospheric pressure decreases by a factor of e! For the troposphere – the lowest layer of the atmosphere – a representative average temperature value of T=250K is adopted. J 8.314 250K mole K H 7.31km trop kg m 0.029 9.81 mole s2 10km 7.31km Ptrop(10km) 760 e Torr 194Torr 0.255atm 0.263bar For mapping the altitude dependence of atmospheric pressure, we define layers of atmosphere, limited by pressure conditions P1 and P2, which correspond to a layer thickness z with a mean temperature T (mass/mole m depends also on the humidity and the chemical composition of the atmospheric layer.) R T P1 P1 z ln H ln m g P2 P2 P 1 2 ztroposphere H ln 7.31ln km 10km P1 0.255 Non-isothermal atmosphere T=const Scaled height H depends linearly on temperature T and mass/mole m, which both change with altitude z. To determine pressure at a certain altitude z requires integration over the atmospheric layer. z dz observed isothermal 0 H (z(T )) P(z) P0 e Deviations are negligible (for the purpose of this class) and are mostly associated with temperature variations at certain atmosphere levels above T=240K as observed for the stratopause located at altitudes between stratosphere and mesosphere as well as the altitude range above the mesosphere such as the thermosphere and ionosphere. Density in an isothermal atmosphere Ideal gas law applies over the entire atmosphere: m m P P V R T V R T z m P0 H e 1bar 1.01105 Pa R T Density scales with pressure and follows therefore the same exponential behavior with altitude z. (kg/m3) kg 5 10 0.029 1.0110 Pa mole e 7.31 10km J 8.314 250K mole K kg g kg 0.363 3.63104 0.4 10km m3 cm3 m3 N 1Pa 1 105 bar 9.87106 atm m2 Vertical temperature structure of atmosphere Temperature structure is not homogeneous with altitude because of different energy (heat) transport modes as well as radiation absorption processes at different altitudes. Troposphere: convective heat transport mode T declines with z Stratosphere: radiative heat transport mode Tconst (isothermal) .
Recommended publications
  • The Gas Laws and the Weather
    IMPACT 1 ON ENVIRONMENTAL SCIENCE The gas laws and the weather The biggest sample of gas readily accessible to us is the atmos- 24 phere, a mixture of gases with the composition summarized in Table 1. The composition is maintained moderately constant by diffusion and convection (winds, particularly the local turbu- 18 lence called eddies) but the pressure and temperature vary with /km altitude and with the local conditions, particularly in the tropo- h sphere (the ‘sphere of change’), the layer extending up to about 11 km. 12 In the troposphere the average temperature is 15 °C at sea level, falling to −57 °C at the bottom of the tropopause at 11 km. This Altitude, variation is much less pronounced when expressed on the Kelvin 6 scale, ranging from 288 K to 216 K, an average of 268 K. If we suppose that the temperature has its average value all the way up to the tropopause, then the pressure varies with altitude, h, 0 according to the barometric formula: 0 0.5 1 Pressure, p/p0 −h/H p = p0e Fig. 1 The variation of atmospheric pressure with altitude, as predicted by where p0 is the pressure at sea level and H is a constant approxi- the barometric formula and as suggested by the ‘US Standard Atmosphere’, mately equal to 8 km. More specifically,H = RT/Mg, where M which takes into account the variation of temperature with altitude. is the average molar mass of air and T is the temperature. This formula represents the outcome of the competition between the can therefore be associated with rising air and clear skies are potential energy of the molecules in the gravitational field of the often associated with descending air.
    [Show full text]
  • Atmospheric Chemistry and Dynamics
    Atmospheric Chemistry and Dynamics Condensed Course of the Universities of Cologne and Wuppertal in cooperation with the Institutes Stratosphere (IEK-7) und Troposphere (IEK-8) of the Forschungszentrums Jülich Prüfungsrelevanz Universität zu Köln - "Physik der Erde und der Atmosphäre" Für das Masterprogramm "Physik der Erde und der Atmosphäre" und dem "International Master of Environmental Sciences" der Universität zu Köln können 3 Kreditpunkte erworben werden. Der Leistungsnachweis erfolgt in einem Fachgespräch. Universität Wuppertal Der Kompaktkurs ist Bestandteil des "Schwerpunkts Atmosphärenphysik" im Rahmen des "Master-Studiengangs Physik" an der Bergischen Universität Wuppertal. Mit der Teilnahme können 5 Leistungspunkte erworben werden. Der Leistungsnachweis erfolgt in einem Fachgespräch. Monday, 07.10.2013 09:00am - 10:30am 1. Structure of the Atmosphere Wahner Layering (troposphere, stratosphere, ...) barometric formula, temperature gradient, potential temperature, isentropes water in the atmosphere ozone 11:00am - 12:30pm 2. Atmospheric Chemistry I (part 1) Benter, Kleffmann, Hofzumahaus atmospheric composition photochemically active radiation and its height dependence photochemistry, radicals, gas phase kinetics lifetime of molecules and molecule families 12:30am - 01:30pm lunch break (canteen) 01:30pm - 03:00pm 3. Dynamics of the Atmosphere I (part 1) Shao transport and mixing in the atmosphere diffusion, advection, and turbulence Navier-Stokes equations and Ekman spiral atmospheric scales in time and space global circulation 03:30pm - 04:45pm 4. Atmospheric Chemistry I (part 2) Benter, Kleffmann, Hofzumahaus 05:00pm - 06:00pm 5. Dynamics of the Atmosphere I (part 2) Shao from 06:00pm icebreaker und dinner Tuesday, 08.10.2013 09:00am - 10:30am 6. Tropospheric gas phase chemistry Benter, Kleffmann Loss of organic trace gases by OH, O3 und NO3 (reaction mechanisms) selected trace gas cycles anthropogenic impacts on tropospheric chemistry 11:00am - 12:30pm 7.
    [Show full text]
  • Exoplanet Atmospheres and Interiors Types of Planets
    Exoplanet Atmospheres and Interiors Types of Planets • Hot Jupiters – Most common, because of observaonal biases – Temperatures ~ 1000K • Neptunes – May resemble the gas giants in our solar system • Super-earths – Rocky? – Water planets? • Terrestrial Atmosphere Basics • Ρ(h) = P(0) e-h/h0 • h0=kT/mg – k = Boltzmann constant – T=temperature – m=mass of par?cle – g=gravitaonal acceleraon • Density falls off exponen?ally with height Atmospheric Complicaons Stars have relavely simple atmospheres • A few diatomic molecules Brown Dwarfs and Planets are more complex • Temperature Inversions (external heang) • Clouds – Probably exist in T dwarfs – precipitaon • Molecules • Chemistry Generalized Thermal Atmosphere • Blue regions are convecve = lapse rate Marley, ARAA, fig 1 Atmospheric Chemistry • Ionizaon equilibrium • Chemical equilibrium High T Low T Low P High P Marley, ARAA, Fig 4 Marley, ARAA, Fig 3 • 2 MJ planet, T=600K, g=10 Marley, ARAA, Fig 5 Condensaon Sequence Transit Photometry Transit widths may reveal high al?tude haze 2 2 Excess eclipse depth δ ≃ ((Rp+ nH)/R∗) – (Rp/R∗) H = pressure scale height n = number of scale heights For typical hot Jupiters, δ ≅ 0.1% Observaons: Photometry • Precision photometry of transi?ng planet can give temperature – Comparison with Teq gives albedo (for Rp) • Inference of Na D1,D2 lines in HD 209458: – Eclipse 0.0002 deeper in lines – Charbonneau et al 2002, ApJ, 568, 377 Observaons: Photometry • Precision photometry of transi?ng planet can give temperature 2 2 – fin = (1-A) L* πRp / 4πd 2 4 – fout = 4πRp σTp – Comparison with Teq gives albedo (for Rp) For A=0: TP=T*√(R*/2d) Hot Jupiters • A is generally small: no clouds • Phase curve -> atmospheric dynamics • Flux variaons -> day to night temperature variaons • Hot Jupiters expected to have jet streams Basic Atmospheric Circulaon – no rotaon (Hadley cells) Jupiter HD 189733b • Temperature: 970-1200K • Peak 30o East • Winds up to 8700 km/h • H atm.
    [Show full text]
  • 1 Barometric Formula
    Mathematical Methods for Physicists, FK7048, fall 2019 Exercise sheet 1, due Tuesday september 10th, 15:00 Total amount of points: 12p, and 2 bonus points (2bp). 1 Barometric formula Hydrostatics is governed by the following equation: −! − r P + ρ ~g = ~0 (1) where ~g is the gravitational acceleration, assumed constant, P and ρ are the pressure and density fields. A barotropic fluid is a fluid whose density depends only on pressure viz. ρ = ρ(P ). (a) (1p) The earth's atmosphere can be considered in a first approximation as a barotropic fluid at equilibrium in the gravitational field ~g. Find an integral relation from which the evolution of the pressure as a function of altitude z for any given relation ρ(P ) can be obtained. Consider only the vertical direction and do not forget to set the initial condition. (b) (1p) Find the relation ρ(P ) for an ideal gas, starting from the usual equation of states (that is, the ideal gas las). Any parameter you may need to introduce will be considered constant so far. (c) (1p+1bp) Use the expression ρ(P ) for an ideal gas in your solution of question (a) to find P (z). − z You should obtain the so-called barometric formula P (z) = P0 e h . Give the analytical expression for h. Bonus: obtain a numerical value for h. Use your physical intuition to evaluate the parameters you have introduced in question (b). Is the answer you obtain resonable? (d) (1p) So far we have assumed that Earth's atmosphere is isothermal, however the temperature lapse rate is clearly non-negligible on the kilometer scale.
    [Show full text]
  • A Featureless Transmission Spectrum for the Neptune-Mass Exoplanet GJ 436B
    A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b Heather A. Knutson1, Björn Benneke1,2, Drake Deming3, & Derek Homeier4 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 3Department of Astronomy, University of Maryland, College Park, MD 20742, USA. 4Centre de Recherche Astrophysique de Lyon, 69364 Lyon, France. GJ 436b is a warm (approximately 800 K) extrasolar planet that periodically eclipses its low-mass (0.5 MSun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations1,2,3 have indicated that its atmosphere has a methane-to-CO ratio that is 105 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures4,5. A recent study proposed that this unusual chemistry could be explained if the planet’s atmosphere is significantly enhanced in elements heavier than H and He6. In this study we present complementary observations of GJ 436b’s atmosphere obtained during transit. Our observations indicate that the planet’s transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with a significance of 48σ. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relatively hydrogen-poor (3% H/He mass fraction) atmospheric composition7,8,9. We observed four transits of the Neptune-mass planet GJ 436b on UT Oct 26, Nov 29, and Dec 10 2012, and Jan 2 2013 using the red grism (1.2-1.6 µm) on the Hubble Space Telescope (HST) Wide Field Camera 3 instrument.
    [Show full text]
  • REVIEW Doi:10.1038/Nature13782
    REVIEW doi:10.1038/nature13782 Highlights in the study of exoplanet atmospheres Adam S. Burrows1 Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends. he modern era of exoplanet research started in 1995 with the Earth-like planet requires the ability to measure transit depths 100 times discovery of the planet 51 Pegasi b1, when astronomers detected more precisely. It was not long before many hundreds of gas giants were the periodic radial-velocity Doppler wobble in its star, 51 Peg, detected both in transit and by the radial-velocity method, the former Tinduced by the planet’s nearly circular orbit. With these data, and requiring modest equipment and the latter requiring larger telescopes knowledge of the star, the orbital period (P) and semi-major axis (a) with state-of-the-art spectrometers with which to measure the small could be derived, and the planet’s mass constrained. However, the incli- stellar wobbles. Both techniques favour close-in giants, so for many nation of the planet’s orbit was unknown and, therefore, only a lower years these objects dominated the bestiary of known exoplanets.
    [Show full text]
  • Cold Plasma Diagnostics in the Jovian System
    341 COLD PLASMA DIAGNOSTICS IN THE JOVIAN SYSTEM: BRIEF SCIENTIFIC CASE AND INSTRUMENTATION OVERVIEW J.-E. Wahlund(1), L. G. Blomberg(2), M. Morooka(1), M. André(1), A.I. Eriksson(1), J.A. Cumnock(2,3), G.T. Marklund(2), P.-A. Lindqvist(2) (1)Swedish Institute of Space Physics, SE-751 21 Uppsala, Sweden, E-mail: [email protected], [email protected], mats.andré@irfu.se, [email protected] (2)Alfvén Laboratory, Royal Institute of Technology, SE-100 44 Stockholm, Sweden, E-mail: [email protected], [email protected], [email protected], per- [email protected] (3)also at Center for Space Sciences, University of Texas at Dallas, U.S.A. ABSTRACT times for their atmospheres are of the order of a few The Jovian magnetosphere equatorial region is filled days at most. These atmospheres can therefore rightly with cold dense plasma that in a broad sense co-rotate with its magnetic field. The volcanic moon Io, which be termed exospheres, and their corresponding ionized expels sodium, sulphur and oxygen containing species, parts can be termed exo-ionospheres. dominates as a source for this cold plasma. The three Observations indicate that the exospheres of the three icy Galilean moons (Callisto, Ganymede, and Europa) icy Galilean moons (Europa, Ganymede and Callisto) also contribute with water group and oxygen ions. are oxygen rich [1, 2]. Several authors have also All the Galilean moons have thin atmospheres with modelled these exospheres [3, 4, 5], and the oxygen was residence times of a few days at most.
    [Show full text]
  • 4.4 Atmospheres of Solar System Planets
    4.4. ATMOSPHERES OF SOLAR SYSTEM PLANETS 87 4.4 Atmospheres of solar system planets For spectroscopic studies of planets one needs to understand the net emission of the radiation from the surface or the atmosphere. Radiative transfer in planetary atmosphere is therefore a very important topic for the analysis of solar system objects but also for direct observations of extra-solar planets. In this section we discuss some basic properties of planetary atmospheres. 4.4.1 Hydrostatic structure of atmospheres The planet structure equation from Section 3.2 apply also for planetary atmospheres. One can often make the following simplifications: – the atmosphere can be calculated in a plane-parallel geometry considering only a vertical or height dependence z, – the vertical dependence of the gravitational acceleration can often be neglected for the pressure range 10 bar – 0.01 bar and one can just use g(z)=g(z = 0) = g(R)= 2 g = GMP /RP . – the equation of state can be described by the ideal gas law ⇢kT µP P (⇢)= or ⇢(P )= , µ kT where µ is the mean particle mass (in [kg] or [g]), – a mean particle mass which is constant with height µ(z)=µ can often be used in a first approximation, – a temperature which is constant with height T (z)=T can often be used as first approximation. Pressure structure. The di↵erential equation for the pressure gradient is: dP (z) µ(z)P (z) = g(z)⇢(z)= g(z) dz − − kT(z) which yields the general solution: z 1/H (z)dz kT(z) P (z)=P e− 0 P with H (z)= .
    [Show full text]
  • Lecture.1.Introduction.Pdf
    Lecture 1: Introduction to the Climate System Earth’s Climate System Solar forcing T mass (& radiation) The ultimate driving T & mass relation in vertical mass (& energy, weather..) Atmosphere force to Earth’s climate system is the heating from Energy T vertical stability vertical motion thunderstorm the Sun. Ocean Land The solar energy drives What are included in Earth’s climate system? Solid Earth three major cycles (energy, water, and biogeochemisty) What are the general properties of the Atmosphere? Energy, Water, and in the climate system. How about the ocean, cryosphere, and land surface? Biogeochemistry Cycles ESS200 ESS200 Prof. Jin-Yi Yu Prof. Jin-Yi Yu Thickness of the Atmosphere (from Meteorology Today) The thickness of the atmosphere is only about 2% 90% of Earth’s thickness (Earth’s 70% radius = ~6400km). Most of the atmospheric mass is confined in the lowest 100 km above the sea level. tmosphere Because of the shallowness of the atmosphere, its motions over large A areas are primarily horizontal. Typically, horizontal wind speeds are a thousands time greater than vertical wind speeds. (But the small vertical displacements of air have an important impact on ESS200 the state of the atmosphere.) ESS200 Prof. Jin-Yi Yu Prof. Jin-Yi Yu 1 Vertical Structure of the Atmosphere Composition of the Atmosphere (inside the DRY homosphere) composition temperature electricity Water vapor (0-0.25%) 80km (from Meteorology Today) ESS200 (from The Blue Planet) ESS200 Prof. Jin-Yi Yu Prof. Jin-Yi Yu Origins of the Atmosphere What Happened to H2O? When the Earth was formed 4.6 billion years ago, Earth’s atmosphere was probably mostly hydrogen (H) and helium (He) plus hydrogen The atmosphere can only hold small fraction of the mass of compounds, such as methane (CH4) and ammonia (NH3).
    [Show full text]
  • Constraining Exoplanet Mass from Transmission Spectroscopy Arxiv
    Constraining Exoplanet Mass from Transmission Spectroscopy? Julien de Wit1∗ and Sara Seager1;2 ?This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science (Vol. 342, pp. 1473, 20 December 2013), DOI: 10.1126/science.1245450. 1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. 2Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. ∗To whom correspondence should be addressed; E-mail: [email protected]. Determination of an exoplanet’s mass is a key to understanding its basic prop- erties, including its potential for supporting life. To date, mass constraints for exoplanets are predominantly based on radial velocity (RV) measurements, which are not suited for planets with low masses, large semi-major axes, or those orbiting faint or active stars. Here, we present a method to extract an exoplanet’s mass solely from its transmission spectrum. We find good agree- ment between the mass retrieved for the hot Jupiter HD 189733b from trans- arXiv:1401.6181v1 [astro-ph.EP] 23 Jan 2014 mission spectroscopy with that from RV measurements. Our method will be able to retrieve the masses of Earth-sized and super-Earth planets using data from future space telescopes that were initially designed for atmospheric char- acterization. 1 1 Introduction With over 900 confirmed exoplanets (1) and over 2300 planetary candidates known (2), research priorities are moving from planet detection to planet characterization. In this context, a planet’s mass is a fundamental parameter because it is connected to a planet’s internal and atmospheric structure and it affects basic planetary processes such as the cooling of a planet, its plate tec- tonics (3), magnetic field generation, outgassing, and atmospheric escape.
    [Show full text]
  • Barometric Pressure Activity: Teacher Guide
    Barometric Pressure Activity: Teacher Guide Level: Intermediate Subject: Geography and Mathematics Duration: 1 hour Type: Guided classroom activity Learning Goals: • Use the scientific process to find a relationship between barometric pressure and altitude • Use data from the School2School.net website • Use statistics to verify the relationship between barometric pressure and altitude Materials: • Access to the School2School.net website • Barometric Pressure Powerpoint - https://docs.google.com/presentation/d/1G8R3GJ9aHg2me2-z3OdZV4ke- arQ_ualpZ_AgEE1ycE/edit?usp=sharing • Pressure and Elevation Spreadsheet - https://drive.google.com/file/d/0BxNcyc_sE4pPcnZya1FIb3BaRlE/view?usp=sharing Methods: As a class work though the Barometric Pressure Powerpoint using the scientific process 1. The first step of the scientific process is to ask a question. In this case, the question is: is barometric pressure different between stations? Start making observations by going to School2School.net, and clicking on the “Stations” tab. Navigate to your school’s station if you have your own TAHMO station, or else just choose a close station. Pick the Barometric Pressure icon (third from the left) to display the graph of the recorded pressures (See image below). Note the maximum, minimum, and average pressure values (using estimations is okay- just a rough guess by eye is appropriate). Choose another station and compare your results, do you see a difference in the range of pressures for different stations? [Answer: the maximum pressure recorded is different
    [Show full text]
  • On the Barometric Formula Ma´Rio N
    On the barometric formula Ma´rio N. Berberan-Santosa) Centro de Quı´mica-Fı´sica Molecular, Instituto Superior Te´cnico, P-1096 Lisboa Codex, Portugal Evgeny N. Bodunov Physical Department, Russian State Hydrometeorology Institute, 195196 St. Petersburg, Russia Lionello Poglianib) Centro de Quı´mica-Fı´sica Molecular, Instituto Superior Te´cnico, P-1096 Lisboa Codex, Portugal ~Received 1 March 1996; accepted 30 July 1996! The barometric formula, relating the pressure p(z) of an isothermal, ideal gas of molecular mass m at some height z to its pressure p~0! at height z50, is discussed. After a brief historical review, several derivations are given. Generalizations of the barometric formula for a nonuniform gravitational field and for a vertical temperature gradient are also presented. © 1997 American Association of Physics Teachers. I. INTRODUCTION vacuum’’ ~an expression that is, however, posterior to Aris- totle!. This ‘‘law’’ is adhered to in the cited Commentarii The barometric formula Physicorum ~Fig. 1!. mgz Limited experimental evidence against an almighty horror p~z!5p~0!exp 2 ~1! vacui existed, however, as results from a passage of Galileo S kT D Galilei’s ~1564–1642! Dialogues concerning two new sci- 6 relates the pressure p(z) of an isothermal, ideal gas of mo- ences ~1638!. A pump had been built for raising water from lecular mass m at some height z to its pressure p~0! at height a rainwater underground reservoir. When the reservoir level z50, where g is the acceleration of gravity, k the Boltzmann was high, the pump worked well. But when the level was constant, and T the temperature.
    [Show full text]