<<

Those Fascinating

http://dx.doi.org/10.1090/mbk/064

Those Fascinating Numbers

Jean-Marie De Koninck Translated by Jean-Marie De Koninck

Providence, Rhode Island This work was originally published in French by Ellipses under the title: Ces nombres qui nous fascinent, c 2008 Edition´ Marketing S.A. The present translation was created under license for the American Mathematical Society and is published by permission. Translated by Jean-Marie De Koninck. Cover image by Jean-S´ebastien B´erub´e.

2000 Subject Classification. Primary 11–00, 11A05, 11A25, 11A41, 11A51, 11K65, 11N05, 11N25, 11N37, 11N56.

For additional information and updates on this book, visit www.ams.org/bookpages/mbk-64

Library of Congress Cataloging-in-Publication Data Koninck, J.-M. de, 1948- [Ces nombres qui nous fascinent. English] Those fascinating numbers / Jean-Marie De Koninck ; translated by Jean-Marie De Koninck. p. cm. Includes bibliographical references and index. ISBN 978-0-8218-4807-4 (alk. paper) 1. theory. I. Title. QA241.K686 2009 512.7–dc22 2009012806

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 141312111009 To my mother who showed me the way

Contents

Preface ...... ix

Notations...... xiii

Themainfunctions...... xv

Frequentlyusedtheoremsandconjectures ...... xvii

Thosefascinatingnumbers ...... 1

Appendix: The prime numbers < 10 000 ...... 409

Bibliography ...... 413

Index ...... 425

vii

Preface

One day, in 1918, G.H. Hardy, the great English mathematician, took what he thought was an ordinary cab ride to go visit his young prot´eg´e at the hospital, the Indian mathematician S. Ramanujan. To break the ice, Hardy mentioned that the number 1729 on his taxicab was a rather dull number. Ramanujan immediately replied that, on the contrary, it was a very fascinating number since it was the smallest positive which could be written as the sum of two cubes in two distinct ways: 1729 = 123 +13 =103 +93. This anecdote certainly shows the genius of Ramanujan, but it also stirs our imagination. In some sense, it challenges us to find the remarkable characteristics of other numbers.

This is precisely the task we undertake in this project. The reader will find here “famous” numbers such as 1729, numbers (those prime numbers of the form 2p − 1, where p is itself a ) and perfect numbers (those numbers equal to the sum of their proper ); also “less famous” numbers, but no less fascinating, such as the following ones:

• 37, the median value of the second prime factor of an integer; thus, the prob- ability that the second prime factor of an integer chosen at random is smaller 1 than 37 is approximately 2 ; • 277, the smallest prime number p which allows the sum

1 1 1 1 1 1 + + + + + ...+ 2 3 5 7 11 p

(where the sum is running over all the prime numbers ≤ p) to exceed 2;

• 378, the smallest prime number which is not a , but which can be written as the sum of the cubes of its prime factors: indeed, 378 = 2·33 ·7=23 +33 +73;

• 480, possibly the largest number n such that n(n +1)...(n + 5) has exactly the same distinct prime factors as (n +1)(n +2)...(n + 6); indeed,

480 · 481 · ...· 485 = 28 · 32 · 52 · 7 · 112 · 13 · 23 · 37 · 97 · 241, 481 · 482 · ...· 486 = 24 · 36 · 5 · 7 · 112 · 13 · 23 · 37 · 97 · 241;

ix x Preface

• 736, the only three digit number abc such that abc = a+bc; indeed, 736 = 7+36; • 1 782, possibly the only integer n>1forwhich p = d; p|n d|n

• 548 834, the only number > 1 which can be written as the sum of the sixth powers of its digits: indeed, 548 834 = 56 +46 +86 +86 +36 +46;

• 11 859 210, the smallest number n for which P (n)4|n and P (n +1)4|(n +1), where P (n) stands for the largest prime factor of n (here P (n) = 11 and P (n + 1) = 19); the second smallest known number n satisfying this property is n = 632 127 050 601 113 666 430 (here P (n) = 2131 and P (n + 1) = 3691);

• 89 460 294, the smallest number n (and the only one known) for which β(n)= β(n+1) = β(n+2), where β(n) stands for the sum of the distinct prime factors of n;

• 305 635 357, the smallest n for which σ(n +4)=σ(n)+4, where σ(n) stands for the sum of the divisors of n; √ • 612 220 032, the smallest number n>1 whose sum of digits is equal to 7 n;

• 3 262 811 042, possibly the only number which can be written as the sum of the fourth powers of two prime numbers in two distinct ways: 3 262 811 042 = 74 + 2394 = 1574 + 2274; Ω(n)ω(n) • 3 569 485 920, the number n at which the expression reaches its max- n imum value, namely 2.97088..., where ω(n) stands for the number of distinct prime factors of n and Ω(n) stands for the number of prime factors of n counting their multiplicity.

Various numbers also raise interesting issues. For instance, does there exist a number which is not the square of a prime number but which can be written as the sum of the squares of its prime factors ? Given an arbitrary integer k ≥ 2, does there exist a number n such that P (n)k|n and P (n +1)k|(n + 1) ? For each integer k ≥ 2 which is not a multiple of 3, can one always find a prime number whose sum of digits is equal to k ? These are some of the numerous open problems stated in this book, each of them standing for an enigma that will certainly feed the curiosity of the reader. Actually my hope for this book is to encourage many to explore more thoroughly some of the questions raised all along this book.

There are currently several books whose main purpose is to exhibit interesting properties of numbers. This book is along the lines of these works but offers more features. For instance, one will find – mainly in the footnotes – short proofs of key results as well as statements of many new open problems.

Finally, I would like to acknowledge all those who contributed to this manus- cript. With their precious input, suggestions and ideas, this project was expansive but enjoyable. Thanks to Jean-Lou De Carufel, Charles Cassidy, Zita De Kon- inck, Eric´ Doddridge, Nicolas Doyon, Eric´ Drolet, David Gr´egoire, Bernard Hodgson, Preface xi

Imre K´atai, Patrick Letendre, Claude Levesque, Florian Luca, Michael Murphy, Erik Pronovost and J´erˆome Soucy.

This edition is a translation of my French book Ces nombres qui nous fascinent published by Ellipses in 2008.

Anyone enjoying this book is welcome to send me suggestions and ideas which could improve and enlighten this project.

Jean-Marie De Koninck D´epartement de math´ematiques et de statistique Universit´eLaval Qu´ebec G1V 0A6 CANADA

[email protected]

Notations

• In this book, unless indicated otherwise, by “number” we mean a “positive integer”.

• The sequence p1,p2,p3,... stands for the sequence of prime numbers 2, 3, 5, th ...Thus pk stands for the k prime number. • Unless indicated otherwise, the letters p and q stand for prime numbers. • By a|b,wemeanthata divides b.Bya  |b,wemeanthata does not divide b. Given a positive integer k,bypkn,wemeanthatpk|n but that pk+1  | n. • When we write f(p), we mean the infinite sum f(2) + f(3) + f(5) + f(7) + p ...+ f(p)+.... Similarly we write f(p) to indicate that the p≤x runs over all primes p ≤ x. • The expressions f(p)and f(p) are analogue to the ones mentioned just p p≤x above, except that this time they stand for products and not . • By f(d), we mean that the summation runs on all divisors d of n;by d|n f(p), we mean that the summation runs over all prime factors p of n.We p|n use the corresponding notations for the products, that is f(d)and f(p). d|n p|n

• We denote by γ the Euler constant, which is defined by N 1 γ = lim − log N =0.5772156649 .... N→∞ n n=1

• Given an integer b ≥ 2andanumbern whose digits in base b are d1,d2,...,dr, we sometimes use the notation n =[d1,d2,...,dr]b. If the base is not men- tioned, it should be understood that we are working in base 10.

xiii xiv Notations

• The factorization of a number usually appears in the form α α α 1 · 2 · · r n = q1 q2 ... qr ,

where q1

in this case, the expression P136 stands for a (known) 136 digit prime number which there is no need to write at length, since it can be obtained explicitly by 7 simply dividing 122 + 1 by 257. Another possible situation could occur, as for instance: 28 12 + 1 = 8253953 · 295278642689 · C258;

in this case, the expression C258 stands for a composite 258 digit number for which no non trivial factorization is known. • In order to compare the size of certain expressions in the neighborhood of infin- ity, we use various notations, some of which have been introduced by Landau, namely O(...)ando(...). Hence, given two functions f and g defined on [a, ∞) (where a ≥ 0), we write:

(i) f(x)=O(g(x)) if there exist two constants M>0andx0 for which |f(x)|

(ii) f(x)=o(g(x)) if, for each ε>0, there exists a constant x0 = x0(ε)such that |f(x)| <εg(x) for all x ≥ x0;thuswehave 1 = o(1), sin x = o(x), log x = o(x),x4 = o(ex); x

(iii) f(x)=Ω(g(x)) if there exist two constants M>0andx0 such that |f(x)| >M|g(x)| for all x ≥ x0; instead of writing f(x)=Ω(g(x)), we sometimes write f(x) g(x); thus we have √ √ x =Ω( x), x =Ω(logx),ex =Ω(x4),xex ex;

f(x) (iv) f(x) ∼ g(x) to mean that lim =1;thus,asx →∞,wehave x→∞ g(x) 1 sin 1/x ∼ 0, ∼ 1,x2 + x ∼ x2. x 1/x

(v) f(x) ≈ g(x)tomeanthatwehavebothf(x)  g(x)andg(x)  f(x). The Main Functions

[x], the largest integer ≤ x B(n)= αp, the sum of the prime factors of n with multiplicity pαn α B1(n)= p , the sum of the largest prime powers dividing n pαn P (n)=max{p : p|n}, the largest prime factor of the number n ≥ 2 p(n)=min{p : p|n}, the smallest prime factor of the number n ≥ 2 β(n)= p, the sum of the distinct prime factors of n p|n β∗(n)= p = β(n) − P (n), the sum of the prime factors of n except for the p|n p

xv xvi The Main Functions

σ(n)= d, the sum of the divisors of n d|n σ∗(n)= d, the sum of the unitary divisors of n d|n, (d,n/d)=1 k th σk(n)= d , the sum of the k powers of the divisors of n d|n σI (n)= d, the sum of the odd divisors of n d|n,d odd τ(n)= 1, the number of divisors of n d|n ω(n)= 1, the number of distinct prime factors of n p|n Ω(n)= α, the number of prime factors of n counting their multiplicity α p n πk(x)= 1, the number of numbers n ≤ x such that ω(n)=k n≤x ω(n)=k µ(n), the Moebius function defined by ⎧ ⎨ 1ifn =1, p2|n p, µ(n)=⎩ 0iffor a certain prime (−1)ω(n) otherwise

Ω(n) λ0(n)=(−1) , the Liouville function log n λ(n)= , the index of composition of the number n ≥ 2 log γ(n) ι(n)= min |n − m|, the index of isolation of the number n ≥ 2, that is the dis- 1≤m= n P (m)≤P (n) tance to the nearest integer whose largest prime factor does not exceed that of n

n 1 ξ(n)= gcd(i, n) i=1 Frequently used Theorems and Conjectures

Fermat’s Little Theorem Let p be a prime number. Given any positive integer a co-prime with p, then ap−1 ≡ 1(modp).

The Prime Number Theorem As x →∞, π(x)=(1+o(1))Li(x), with

x x x x x Li(x)= + +2! + ...+(r − 1)! r + O r , log x log2 x log3 x log x log +1 x where r is any given fixed integer.

The Chinese Remainder Theorem

Let m1,m2,...,mr be co-prime integers, and let a1,a2,...,ar be arbi- trary integers. Then the system of congruences ⎧ ⎪ n ≡ a1 (mod m1) ⎨⎪ n ≡ a2 (mod m2) . ⎪ . ⎩⎪ . n ≡ ar (mod mr) has a solution given by r m n0 = biai, mi i=1

where m = m1m2 ...mr and where each bi is the solution of the congru- ence (m/mi)bi ≡ 1(modmi).

xvii xviii Frequently used Theorems and Conjectures

Hypothesis H (or Schinzel Hypothesis)

Let  ≥ 1 and f1(x),...,f(x) be irreducible with integer coefficients and positive leading coefficient. Assume that there are no integers > 1 dividing the product f1(n) ...f(n) for all positive integers n. Then there exist infinitely many positive integers m such that all numbers f1(m),...,f(m) are primes. This conjecture was first stated in 1958 by A. Schinzel and W. Sierpinski [181].

The Let ε>0. There exists a positive constant M = M(ε) such that, given any co-prime integers a, b, c verifying the conditions 0

An equivalent statement is the following: Let ε>0. There exists a positive constant M = M(ε) such that, given any co-prime integers a, b, c satisfying a + b = c,wehave

⎛ ⎞1+ε max{|a|, |b|, |c|}

The abc Conjecture was first stated in 1985 by D.W. Masser and J. Oesterl´e.

Those Fascinating Numbers 413

Bibliography

[1] T. Agoh, K. Dilcher & L. Skula, Fermat quotients for composite moduli,J. 66 (1997), no. 1, 29-50. [2] T. Agoh, K. Dilcher & L. Skula, Wilson quotients for composite moduli,Math. Comp. 67 (1998), no. 222, 843-861. [3] W.R. Alford, A. Granville & C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 140 (1994), 703-722. [4] I.O. Angell & H.J. Godwin, On truncatable primes,Math.Comp.31 (1977), 265-267. [5] W.S. Anglin, The square pyramid puzzle, Amer. Math. Monthly 97 (1990), 120-124. [6] W.S. Anglin, Mathematics: A Concise History and Philosophy, Springer Verlag, 1996. [7] J. Arkin, V.E. Hoggatt & E.G. Strauss, On Euler’s solution of a problem of Diophantus, Fibonacci Quart. 17 (1979), 333-339. [8] E.T. Avanesov, Solution of a problem on figurate numbers,ActaArith.12 (1966), 409-420. [9] A. Bager, Problem E2833∗, Amer. Math. Monthly 87 (1980), 404, Solution in the same journal 88 (1981), 622. [10] R. Baillie, Table of φ(n)=φ(n + 1), Math. Comp. 30 (1976), 189-190. [11] A. Baker & H. Davenport, The equations 3x2 −2=y2 and 8x2 −7=z2,Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. [12] R. Balasubramanian, J.M. Deshouillers & F. Dress, Probl`eme de Waring pour les bicarr´es. I. Sch´ema de la solution, C.R. Acad. Sci. Paris, S´erie I Math. 303 (1986), no. 4, 85-88. [13] W.W. Rouse Ball & H.S.M. Coxeter, Mathematical Recreations and Essays, Dover Publications, 1987. [14] A. Balog & I.Z. Ruzsa, On an additive property of stable sets,Sievemethods, exponential sums and their applications in number theory, Cardiff, 1995, Lon- don Mathematical Society Lecture Notes No. 237 (Cambridge University Press, Cambridge, 1997), 55-63. [15] W.D. Banks, A.M. G¨uloglu, C.W. Nevans & F. Saidak, Descartes numbers, Anatomy of Integers, CRM Proceedings and Lecture Notes, AMS, Vol 46 (2008), 167-173. [16] W.D. Banks & F. Luca, Concatenations with binary recurrent sequences,J. Integer Sequences 8 (2005), no. 1, Article 05.1.3. [17] P.T. Bateman, Problem 10376, Amer. Math. Monthly 104 (1997), 276. 414 Jean-Marie De Koninck

[18] C. Bays & R.H. Hudson, Details of the first region of integers x with π3,2(x) < π3,1(x), Math. Comp. 32 (1978), 571-576. [19] John V. Baxley, Euler’s Constant, Taylor’s Formula and Slowly Converging Series, Math. Mag. 65 (1992), 302-313. [20] N.G.W.H. Berger, On even numbers m dividing 2m − 2, Amer. Math. Monthly 58 (1951), 553-555. [21] B.C. Berndt, Ramanujan’s Notebooks, Part IV, New-York, Springer Verlag, 1994. [22] V. Blomer, Binary quadratic forms with large discriminants and sums of two squarefull numbers,J.ReineAngew.Math.569 (2004), 213-234. [23] D. Borwein, J.M. Borwein, P.B. Borwein & R. Girgensohn, Giuga’s Conjecture on Primality, Amer. Math. Monthly 103 (1996), 40-49. [24] A. Bremner & P. Morton, A new characterization of the integer 5906, Manuscripta Math. 44 (1983), 187-229. [25] J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman & S.S. Wagstaff Jr., Factorisations of bn ± 1, b =2, 3, 5, 6, 7, 10, 11, 12 up to high powers,Con- temporary Mathematics, AMS, Vol. 22, Second Edition, 1988. [26] Y. Bugeaud, M. Mignotte & Y. Roy, On the (xn −1)/(x− 1) = yq,PacificJ.Math.193 (2000), 257-268. [27] Y. Bugeaud, M. Mignotte & S. Siksek, Classical and modular approaches to ex- ponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969-1018. [28] J.P. Bulher, R.E. Crandall & R.W. Sompolski, Irregular primes to one million, Math. Comp. 59 (1992), 717-722. [29] C. Caldwell, On the primality of n! ± 1 and 2 · 3 · 5 ...p± 1, Math. Comp. 64 (1995), 889-890. [30] C. Carter & R.H. Hudson, A new bound for the smallest x with π(x) > Li(x), Math. Comp. 69 (2000), no. 231, 1285-1296. [31] E. Catalan, Note extraite d’une lettre adress´ee `al’´editeur,J.ReineAngew. Math. 27 (1844), 192. [32] S. Cavior, The subgroups of dihedral groups, Math. Mag. 48 (1975), 107. [33] S. Chowla, An extension of Heilbronn’s Class Number Theorem,QuarterlyJ. Math. (Oxford) 5 (1934), 304-307. [34] J.H.E. Cohn, On square Fibonacci numbers, Proc. London Math. Soc. 39 (1964), 537-540. [35] J.H.E. Cohn, The diophantine equation x2 +19=yn,ActaArith.39 (1964), 1537-1540. Those Fascinating Numbers 415

[36] J.H. Conway & R.K. Guy, The Book of Numbers, Copernicus, 1995. [37] R. Crandall, K. Dilcher & C.Pomerance, A search for Wieferich and Wilson primes,Math.Comp.66 (1997), 433-449. [38] R. Crandall & C. Pomerance, Prime Numbers: A Computational Perspective, Springer, 2000. [39] Michel Criton, Les jeux math´ematiques, Collection “Que sais-je ?”, no. 3220, Les presses universitaires de France, 1997. [40] L. Cseh, Generalized integers and Bonse’s theorem, Studia Univ. Babes-Bolyai Math. 34 (1989), 3-6. [41] W.L. Daniel, Representations of every integer as the difference of powerful numbers,Fib.Quart.20 (1982), no.1, 85-87. [42] H. Darmon & A. Granville, On the equations zm = F (x, y) and Axp + Byq = Czr, Bull. London Math. Soc. 27 (1995), 513-543. [43] N.G. de Bruijn, On the number of integers n ≤ x whose prime factors divide n, Illinois J. Math. 6 (1962), 137-141. [44] J.M. De Koninck, On the largest prime divisors of an integer,Extremevalue theory and applications, Kluwer Academic Publishers, 1994, 447-462.

[45] J.M. De Koninck, On the solutions of σ2(n)=σ2(n + ), Ann. Univ. Sci. Bu- dapest Sect. Comput. 21 (2002), 127-133. [46] J.M. De Koninck, Computational problems and queries in number theory,An- nales Rolando E¨otv¨os Nominatae 23 (2004), 149-161. [47] J.M. De Koninck & N. Doyon, On a very thin set of integers, Annales Rolando E¨otv¨os Nominatae 20 (2001), 157-177. [48] J.M. De Koninck & N. Doyon, Sur l’indice de composition des nombres, Monat- shefte f¨ur Mathematik 139 (2003), 151-167. [49] J.M. De Koninck, J. Friedlander & F. Luca, On strings of consecutive integers with a distinct number of prime factors, Proc. Amer. Math. Soc. 137 (2009), 1585-1592. [50] J.M. De Koninck, N. Doyon & I. K´atai, On the counting function for the Niven numbers,ActaArith.106 (2003), 265-275. [51] J.M. De Koninck, N. Doyon & I. K´atai, Counting the number of twin Niven numbers, Ramanujan J. 17 (2008), no. 1, 89-105. [52] J.M. De Koninck & A. Ivi´c, On a sum of divisors problem, Publ. Inst. Math. Belgrade 64(78) (1998), 9-20. [53] J.M. De Koninck & F. Luca, On the difference of values of the kernel function at consecutive integers, International Journal of Mathematics and Mathematical Sciences 67 (2003), 4249-4262. 416 Jean-Marie De Koninck

[54] J.M. De Koninck & F. Luca, Integers representable as the sum of powers of their prime factors, Functiones et Approximatio 23 (2005), 57-72.

[55] J.M. De Koninck & F. Luca, On the composition of the Euler function and the sum of divisors function, Colloquium Mathematicum 107 (2007), 317-326.

[56] J.M. De Koninck & F. Luca, Integers divisible by sums of powers of their prime factors, J. Number Theory 128, no.3, (2008), 557-563.

[57] J.M. De Koninck & F. Luca, Positive integers n such that σ(φ(n)) = σ(n), J. of Integer Sequences 11 (2008), Article 08.1.5, 14 pp.

[58] J.M. De Koninck & F. Luca, On the product of exponents in the factorization of consecutive integers, Mathematika (to appear).

[59] J.M. De Koninck & F. Luca, On sums of powers of prime factors of an integer, Annales Univ. Sci. Budapestinensis (to appear).

[60] J.M. De Koninck & A. Mercier, Introductionalath´ ` eorie des nombres, Modulo, 2e ´edition, 1997.

[61] J.M. De Koninck & A. Mercier, 1001 probl`emes en th´eorie classique des nom- bres, Ellipses, Paris, 2004.

[62] J.M. De Koninck & A. Mercier, 1001 Problems in Classical Number Theory, AMS, Providence, 2008.

[63] J.M. De Koninck & G. Tenenbaum, Sur la loi de r´epartition du k-i`eme facteur premier d’un entier, Math. Proc. Cambridge Philo. Soc. 133 (2002), no. 2, 191- 204.

[64] J.M. Deshouillers, A. Granville, W. Narkiewicz & C. Pomerance, Goldbach’s problem,Math.Comp.61 (1993), 209-243.

[65] L.E. Dickson, Solution of Waring’s problem,Amer.J.Math.58 (1936), 530-535.

[66] L.E. Dickson, All integers except 23 and 239 are sums of 8 cubes, Bull. Amer. Math. Soc. 45 (1939), 588-591.

[67] L.E. Dickson, History of the Theory of Numbers, Volume 1, Chelsea Publishing Co., 1971.

[68] K. Dilcher & C. Pomerance, A search for Wieferich and Wilson primes,Math. Comp. 66 (1997), 433-449.

[69] R.E. Dressler & S.T. Packer, Primes with a prime subscript, J. Assoc. Comput. Mach. 22 (1975), 380-381.

[70] R.E. Dressler, L. Pigno & R. Young, Sums of squares of primes, Nordisk. Mat. Tidskeift 24 (1976), 39-40.

[71] H. Dubner, Generalized primes,Math.Comp.61 (1993), 927-930.

[72] U. Dudley, Smith Numbers, Math. Mag. 67 (1994), 62-65. Those Fascinating Numbers 417

[73] A. Dujella, There are only finitely many Diophantine quintuples,J.Reine Angew. Math. 566 (2004), 183-214.

[74] E.F. Ecklund, R.B. Eggleton, P. Erd˝os & J.L. Selfridge, On the prime factoriza- tion of binomial coefficients, J. Austr. Math. Soc. A 26 (1978), no. 3, 257-269.

[75] W.J. Ellison, F. Ellison, J. Pesek, C.E. Stahl & D.S. Stall, The diophantine equa- tion y2 + k = x3, J. Number Theory 4 (1972), 107-117.

[76] P. Erd˝os, Some problems in number theory, Graph Theory and Computing, 17th Boca Raton Conference on Combinatorics, Boca Raton, 1986. 2n [77] P. Erd˝os, R.L. Graham, I.Z. Ruzsa & E.G. Straus, On the prime factors of n , Math. Comp. 29 (1975), 83-92.

[78] P. Erd˝os & J.L. Nicolas, R´epartition des nombres superabondants, Bull. Soc. Math. France 103 (1975), 65-90.

[79] P. Erd˝os, C. Pomerance & A. S´ark¨ozy, On locally repeated values of certain functions II, Acta Math. Hungar. 49 (1987), 251-259.

[80] D. Fendel & R.A. Mollin, Prime producing polynomials and principal domains, Math. Mag. 58 (1985), 204-210.

[81] R. Finkelstein & H. London, On triangular numbers which are sums of consec- utive squares,J.NumberTheory4 (1972), 455-462.

[82] K. Ford & S. Konyagin, On two conjectures of Sierpinski concerning the arith- metic functions σ and ϕ, Number Theory in Progress, Vol. 2 (Zakopane- Ko´scielisko, 1997), 795-803, de Gruyter, Berlin, 1999.

[83] K. Ford, The number of solutions of ϕ(x)=m, Ann. of Math. (2) 150 (1999), no. 1, 283-311.

[84] L.L. Foster, Solution to Problem E3361, Amer. Math. Monthly 98 (1991), 443.

[85] J. Friedlander & H. Iwaniec, The X2 +Y 4 captures its primes, Ann. of Math. 148 (1998), 945-1040.

[86] D. Gale, Mathematical Entertainement, Math. Intelligencer 18 (1996), 23-27.

[87] M. Gardner, The Magic Numbers of Dr. Matrix, Promotheus Books, Buffalo, New York, 1985.

[88] M. Gardner, Lucky Numbers and 2187, Math. Intelligencer 19, no. 2, (1997), 26-29.

[89] P. Giblin, Primes and Programming, Cambridge University Press, 1994.

[90] J. Glanz, Mathematical logic flushes out the bugs in chip designs, Science 267 (20 January 1995), 332-333.

[91] S.W. Golomb, On the ratio of N to π(N), Amer. Math. Monthly 69 (1962), 36-37. 418 Jean-Marie De Koninck

[92] S.W.Golomb, Powerful numbers, Amer. Math. Monthly 77 (1970), 848-852.

[93] S.W. Golomb, Equality among number-theoretic functions, Abstracts AMS 14 (1993), 415-416.

[94] R.L. Goodstein, On the restricted ordinal theorem, J. Symbolic Logic 9 (1944), 33-41.

[95] R.L. Graham, A theorem on partitions, J. Aust. Math. Soc. 3 (1963), 435-441.

[96] A. Granville, Primality testing and Carmichael numbers, Notices AMS 39 (1992), 696-700.

[97] B. Green & T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481-547.

[98] E. Grosswald, Oscillation theorems of arithmetical functions,Trans.AMS126 (1967), 1-28.

[99] E. Grosswald, Representation of Integers as Sums of Squares, Springer-Verlag, 1985.

[100] H.G. Gupta, Ramanujan’s ternary-quadratic form x2 + y2 +10z2, Res. Bull. Panjab Univ. 24 (1973), 57 (1977).

[101] R.K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, Third Edi- tion, 2004.

[102] R.K. Guy, Divisors and Desires, Amer. Math. Monthly 104 (1997), 359-360.

[103] R.K. Guy & R.J. Nowakowski, Unsolved problems, 1969-1997,Amer.Math. Monthly 104 (1997), 967-973.

[104] R.K. Guy, Nothing’s new in number theory, Amer. Math. Monthly 105 (1998), 951-954. n  [105] K. Gy¨ory, On the diophantine equation k = x ,ActaArith.80 (1997), 289- 295.

[106] D. Hanson, On a theorem of Sylvester and Schur, Can. Math. Bull. 16 (2) (1973), 195-199.

[107] G.H. Hardy & E.M. Wright, An Introduction to the Theory of Numbers,Oxford University Press, Fifth Edition, 1979.

[108] G. Harman, On the number of Carmichael numbers up to x, Bull. London Math. Soc. 37 (2005), no. 5, 641-650.

[109] D.R. Heath-Brown, The function at consecutive integers,Mathematika 31 (1984), 141-149.

[110] D.R. Heath-Brown, Primes represented by x3 +2y3,ActaMath.186 (2001), no. 1, 1-84. Those Fascinating Numbers 419

[111] L. Hodges, A Lesser-Known Goldbach Conjecture, Math. Mag. 66 (1993), 45- 47.

[112] A. Ivi´c & C. Pomerance, On the distribution of champs, Number Theory (Ot- tawa, ON, 1996), 133-139, CRM Proc. Lecture Notes, 19, AMS, Providence, RI, 1999.

[113] L. Jones, A polynomial approach to a diophantine problem, Math. Mag. 72 (1999), 52-55.

[114] D.R. Kaprekar, An interesting property of the number 6174, Scripta Math. 15 (1955), 244-245.

[115] C. Karanikolov, On some properties of function π(x), Univ. Beograd, Publ. Elektroteh. Fak. Ser. Mat. Fiz., 1971, No. 357-380, 29-30.

[116] M. Keith, Repfigit numbers, J. Rec. Math. 19 (1987), 41-42.

[117] M. Keith, All Repfigit numbers less than 100 billion, J. Rec. Math. 26 (1994), 181-184.

[118] W. Keller, New Cullen primes,Math.Comp.64 (1995), 1733-1741.

[119] L. Kirby & J. Paris, Accessible independence results for Peano arithmetic, Bull. London Math. Soc. 14 (1982), 285–293.

[120] J.C. Lagarias & A. Weiss, The 3x +1 problem: two stochastic models, Ann. Appl. Prob. 2 (1992), 229-261.

[121] M. Lal, Primes of the form n4 +1,Math.Comp.21 (1967), 245-247.

[122] L. Lander & T.R. Parkin,Equal sums of biquadrates,Math.Comp.20 (1966), 450-451.

[123] R.S. Lehman, On Liouville’s function,Math.Comp.14 (1960), 311-320.

[124] C. Levesque, On a few diophantine equations, in particular, Fermat’s Last Theorem, International J. of Mathematics and Mathematical Sciences, 2003 (2003), Issue 71, 4473-4500.

[125] F. Le Lionnais, Les nombres remarquables, Hermann, 1983.

[126] F. Luca, On a problem of K.R.S. Sastry, Mathematics and Computer Education 35 (2001), 125-135.

[127] F. Luca, Primitive divisors of Lucas sequences and prime factors of x2 +1and x4 + 1, Acta Acad. Paedagog. Agriensis Sect. Mat. (N.S.) 31 (2004), 19-24.

[128] F. Luca, On the sum of the first n primes being a square, Liet. Mat. Rink. 47 (2007), no. 3, 301-306.

[129] F. Luca & J. Sandor, On a problem of Nicol and Zhang, J. Number Theory 128 (2008), no. 4, 1044-1059. 420 Jean-Marie De Koninck

[130] M. Mabkhout, Minoration de P (x4 + 1), Rend. Sem. Fac. Sci. Univ. Cagliari 63 (1993), no. 2, 135-148.

[131] J.P. Massias, Majorations explicites de l’ordre d’un ´el´ement de groupe sym´etrique, Annales Fac. Sci. Toulouse 6 (1984), 269-281.

[132] L.E. Mattics, Problem 10376, Amer. Math. Monthly 104 (1997), p. 276.

[133] C. Mauduit, C. Pomerance & A. S´ark¨ozy, On the distribution in residue classes of integers with a fixed sum of digits, Ramanujan J. 9 (2005), no. 1-2, 45-62.

[134] R.J. McIntosh, On the converse of Wolstenholme theorem,ActaArith.71 (1995), no. 4, 381-389.

[135] P. Mihailescu, Primary cyclotomic units and a proof of Catalan’s conjecture,J. Reine Angew. Math. 572 (2004), 167-195.

[136] W.H. Mills, A prime-representing function, Bull. AMS 53 (1947), 604.

[137] L. Ming, On triangular Fibonacci numbers, Fibonacci Quartely 27 (1989), 98- 108.

[138] M. Misiurewicz, Ungel¨oste Probleme,Elem.Math.21 (1966), 90.

[139] D.S. Mitrinovi´c & M.S. Popadi´c, Inequalities in Number Theory,Universityof Ni´s, 1978.

[140] R.A. Mollin, Prime-Producing Quadratics, Amer. Math. Monthly 104 (1997), 529-544.

[141] R.A. Mollin & P.G. Walsh, Proper differences of nonsquare powerful numbers, C.R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 2, 71-76.

[142] H.L. Montgomery, Primes in arithmetic progressions,Mich.Math.J.17 (1970), 33-39.

[143] P.L. Montgomery, New solutions of ap−1 ≡ 1(modp2), Math. Comp. 61 (1993), 361-363.

[144] L.J. Mordell, Diophantine Equations, Academic Press, N.Y., 1969.

[145] A.A. Mullin, Recursive function theory, Bull. AMS 69 (1983), p. 737.

[146] G. Myerson & J.W. Sander, What the least common multiple divides,J.Num- ber Theory 48 (1994), 80-87.

[147] T. Nagel, Einige Gleichungen von der Form ay2 + by + c = dx3,NorskeVid. Akad. Skrifter, Oslo I (1930), no. 7.

[148] W. Narkiewicz, The development of Prime Number Theory, Springer, 2000.

[149] D.J. Newman, Euler’s φ function on arithmetic progressions,Amer.Math. Monthly 104 (1997), 256-257. Those Fascinating Numbers 421

[150] J.L. Nicolas, Nombres hautement compos´es,ActaArith.49 (1988), no. 4, 395- 412.

[151] J.L. Nicolas, Bornes effectives pour certaines fonctions arithm´etiques, Publ. Math. Orsay, 88-02, Univ. Paris XI, Orsay, 1988.

[152] J.L. Nicolas & G. Robin, Majorations explicites pour le nombre de diviseurs de n, Bull. Can. Math. 26 (1983), 485-492.

[153] A. Nitaj, On a conjecture of Erd˝os on 3-powerful numbers, Bull. London Math. Soc. 27 (1995), no. 4, 317-318.

[154] B. Nyman & T.R. Nicely, New prime gaps between 1015 and 5 × 1016,J.of Integer Sequences 6 (2003), Article 03.3.1.

[155] C.S. Ogilvy & J.T. Anderson, Excursions in Number Theory,OxfordUniversity Press, New York, 1966.

[156] O. Ore, Number Theory and its History, McGraw-Hill, 1948.

[157] N. Ozeki, On the problem 1, 2, 3,...,[n1/k]|n, J. Coll. Arts. Sci. Chiba Univ. 3 (1961/62), 427-431.

[158] G. Pall, On sums of squares, Amer. Math. Monthly 40 (1933), 10-18.

[159] L. Panaitopol, Genaralizations of Landau’s Theorem, Analele Universitatii Bu- curesti Matematica, Anul 51 (2002), 71-76.

[160] C.A. Pickover, Keys to Infinity, Wiley, New York, 1995.

[161] S. Pillai, On Waring’s problem, J. Indian Math. Soc. 2 (1936), 16-44.

[162] R.G.E. Pinch, The Carmichael numbers up to 1015,Math.Comp.61 (1993), 381-391.

[163] C. Pomerance, A tale of two sieves, Notices AMS 43 (1996), 1473-1485.

[164] C. Pomerance, Ruth-Aaron numbers revisited,PaulErd˝os and his Mathemat- ics, Budapest, 1999; Bolyai Soc. Math. Stud. 11, J´anos Bolyai Math. Soc., Budapest, 2002, 567-579.

[165] B. Poonen, E. Schaefer & M. Stoll, Twists of X(7) and primitive solutions of x2 + y3 = z7, Duke Math. J. 137 (2007), no. 1, 103-158.

[166] S. Rabinowitz, The Factorisation of x5 ±x+n, Math. Mag. 61 (1988), 191-193.

[167] S. Ratering, An interesting of the highly composite numbers, Math. Mag. 64 (1991), 343-346.

[168] P. Ribenboim, Nombres premiers: myst`eres et records, Les Presses Universi- taires de France, 1994.

[169] P. Ribenboim, The New Book of Prime Number Records, Springer, 1996. 422 Jean-Marie De Koninck

[170] P. Ribenboim, The (ABC) conjecture and the radical index of integers,Acta Arith. 96 (2001), no.4, 389-404.

[171] J. Richstein, Verifying the Goldbach Conjecture up to 4 × 1014,Math.Comp. 70 (2001), 1745-1749.

[172] H. Riesel, Nagra stora printal,Elementa39 (1956), 258-260.

[173] H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkh¨auser, Second Edition, 1994.

[174] J. Roberts, Lure of the Integers, MAA, 1992.

[175] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-i`eme nombre premier et grandes valeurs de la fonction ω(n), nombre de diviseurs premiers de n,ActaArith.42 (1983), 367-389.

[176] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypoth`ese de Riemann, J. Math. pures et appliqu´ees 63 (1984), 187-213.

[177] E. Rosenstiel, J.A. Dardis & C.R. Rosenstiel, The four least solutions in distinct integers of the Diophantine equation s = x3 +y3 = z3 +w3 = u3 +v3 = m3 +n3, Bull. Inst. Math. Appl. 27 (1991), 155-157.

[178] J.B. Rosser & L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.

[179] J.W. Sander, On the value distribution of arithmetic functions, J. Number The- ory 66 (1997), 51-69.

[180] A. Schinzel, Sur l’´equation φ(x + k)=φ(x), Acta Arith. 4 (1958), 181-184.

[181] A. Schinzel & W. Sierpinski, Sur certaines hypoth`eses concernant les nombres premiers,ActaArith.4 (1958), 185-208; Corrigendum: ibid. 5 (1959), p. 259.

[182] L. Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x) II, Math. Comp. 30 (1976), 337-360.

[183] W. Schwarz, Einige Anwendungen Tauberscher S¨atze in der Zahlentheorie,J. Reine Angew. Math. 219 (1965), 157-179.

[184] W. Sierpinski, 250 Problems in Elementary Number Theory, American Elsevier Publishing Company, New York, 1970.

[185] W. Sierpinski, Elementary Theory of Numbers, Editor: A. Schinzel, Polish Sci- entific Publishers, Warszawa, North-Holland, 1987.

[186] J.H. Silverman, Wieferich’s criterion and the abc-conjecture, J. Number Theory 30 (1988), 226-237.

[187] T.N. Sinha, Note on perfect numbers, Math. Student 42 (1974), 336.

[188] N.J.A. Sloane & S. Plouffe, The Encyclopedia of Integer Sequences,Academic Press, 1995. Those Fascinating Numbers 423

[189] K. Soundararajan, Primes in a sparse sequence,J.NumberTheory43 (1993), 220-227.

[190] J. Stiller, The diophantine equation x2 + 119 = 15 · 2n has exactly six solutions, Rocky Mountain J. Math. 26 (1996), no. 1, 295-298.

[191] J. Stillwell, Mathematics and its History, Undergraduate Texts in Mathematics, Springer-Verlag, Second Edition, 2001.

[192] M. Tanaka, A numerical investigation on cumulative sums of the Liouville func- tion,TokyoJ.Math.3 (1980), 187-189.

[193] G. Tenenbaum, Introductionalath´ ` eorie analytique des nombres, Collection Echelles,´ Belin, 2008.

[194] G. Tenenbaum & M. Mend`es France, Les nombres premiers, Presses Universi- taires de France, Collection “Que sais-je?”, 1997.

[195] Sz. Tengely, On the Diophantine equation x2 + q2m =2yp,ActaArith.127 (2007), no. 1, 71-86.

[196] E.C. Turner & K.F. Gold, Rubik’s Groups, Amer. Math. Monthly 92 (1985), 617-629.

[197] N. Tzanahis & B.M.M. de Weger, On the practical solutions of the Thue Equa- tion, J. Number Theory 31 (1989), 99-132.

[198] C.R. Wall, The fifth unitary , Can. Math. Bull. 18 (1975), 115- 122.

[199] L.C. Washington, Elliptic Curves, Number Theory and Cryptography,CRC Press, 2003.

[200] B.B.M. de Weger, A curious property of the eleventh ,Rocky Mountain J. Math. 25 (1995), no. 3, 977-994.

[201] E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 1999.

[202] D. Wells, The Penguin Dictionary of Curious and Interesting Numbers,Penguin Books, 1987.

[203] H.C. Williams, Some primes with interesting digit patterns,Math.Comp.32 (1978), 1306-1310.

[204] H.C. Williams, Edouard´ Lucas and Primality Testing, Canadian Mathematical Society, Wiley, 1998.

[205] H.C. Williams, Daniel Shanks (1917-1996),Math.Comp.66 (1997), 929-934.

[206] H.C. Williams & H. Dubner, The primality of R1031,Math.Comp.47 (1986), 703-712.

[207] B. Wilson, Construction of 2n consecutive n-Niven numbers, Fibonacci Quart. 35 (1997), 122-128. 424 Jean-Marie De Koninck

[208] D.W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. of Integer Sequences 2 (1999), Article 99.1.99. n − n−i 68 [209] M. Zivkovi´c, The number of primes i=1( 1) i!, Math. Comp. (1999), 403-409. Index (Unless indicated otherwise, the number champion, 77 at the end of each line is the one where colossally abundant, 55 440 the definition can be found in the text.) convenient, 37 Cullen, 141 deficient, 90 196-algorithm, 196 dihedral-perfect, 130 dihedral 3-perfect, 5472 abc Conjecture, page xvii Erd˝os-Nicolas, 2016 Bachet Equation, 225 , 211 , 122 Euler, 272 Fermat, 17 Catalan Conjecture, 9 Fibonacci, 55 Chain Giuga, 30 402 653 211 Cunningham, 1 122 659 Goodstein, 3 · 2 − 3 p2 + 1, 271 Granville, 126 Chinese Remainder Theorem, page xvii Hamilton, 923 happy, 1880 harmonic, 140 Euler Constant, page xiii Heegner, 163 Euler , 1 905 highly composite, 180 horse, 13 Fermat’s Last Theorem, page 55 ideal, 390 Fermat’s Little Theorem, page xvii insolite, 111 Keith, 197 Height of a prime number, 283 k-composite, 1428 Hypothesis H, page xvii k-hyperperfect, 21 k-perfect, 6 Index of composition, 629 693 k-powerful, 841 Index of isolation, 2737 Lucas, 613 Kaprechar Constant, 495 Lucas-Carmichael, 399 Markoff, 433 Median value, 37 multi-perfect, 140 Mirimanoff Congruence, 1 006 003 narcissistic, 88 Niven, 110 Number non deficient primitive, 945 abundant, 348 palindrome, 26 Amicable, 220 pentagonal, 210 Ap´ery, 1445 perfect, 6 automorphic, 76 perfect Canada, 125 Bell, 52 Perrin, 271 441 Bernoulli, 30 persistence k, 679 bizarre, 70 Phibonacci, 1 037 Canada perfect, 125 powerful, 23 Carmichael, 561 prime, 2 Catalan, 14 pseudo-perfect, 12

425 426 Jean-Marie De Koninck

Ramanujan, 1 729 , 2047 Ruth-Aaron, 714 Sub-factorial function, 148 349 Sastry, 183 Syracuse Conjecture, 41 self contained, 293 self described, 6 210 001 000 von Sterneck Conjecture, 7 725 038 629 self replicating, 954 Sierpinski, 78 557 Waring Problem, 4 Smith, 22 pair, 2903 S-perfect, 126 squarefull, 23 square pyramidal, 208 335 star, 121 Stern, 137 sublime, 12 superabundant, 110 880 super-prime, 73 939 133 symmetric, 35853 tetrahedral, 10 triangular, 3 trimorphic, 491 tri-perfect, 120 vampire, 1260 voracious, 1807 unitary hyperperfect, 288 unitary perfect, 6 Wieferich, 16 547 533 489 305 Wilson, 5 971 Woodall, 115

Palindrome (see palindrome number) Prime , 1905 Fermat, 17 Fibonacci pseudoprime, 323 irregular, 59 Lucas, 613 Mersenne, 3 regular (see irregular prime) twin, 35 Wieferich, 1093 Wilson, 5 Wolstenholme, 16 843 Prime Number Theorem, page xvii Pseudoprime in base a,91

Riemann Hypothesis, 5041 , 177

Schinzel Hypothesis (see Hypothesis H)