(12) Patent Application Publication (10) Pub. No.: US 2004/0175439 A1 Cyr (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2004/0175439 A1 Cyr (43) Pub US 2004O175439A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0175439 A1 Cyr (43) Pub. Date: Sep. 9, 2004 (54) PLANT EXTRACTS AND COMPOSITIONS (52) U.S. Cl. ............................................. 424/725; 435/7.1 COMPRISING EXTRACELLULAR PROTEASE INHIBITORS (57) ABSTRACT (76) Inventor: Benoit Cyr, Desmaures (CA) Correspondence Address: The present invention provides a plant derived extract Nath & Associates comprising inhibitory activity against one or more extracel Sixth Floor 1030 15th Street NW lular proteases which degrade human tissue matrix. More Washington, DC 20005 (US) over, the amount of inhibitory activity in an extract can be increased by Stressing the plant prior to forming an extract. (21) Appl. No.: 10/469,402 These extracts are each prepared by a Standard process and demonstrate the ability to inhibit one or more extracellular (22) PCT Filed: Mar. 4, 2002 proteases which degrade human tissue matrix. Libraries of (86) PCT No.: PCT/CA02/00285 extracts can be prepared from Stressed and non-stressed plants, wherein each of the extracts demonstrate inhibitory (30) Foreign Application Priority Data activity against one or more extracellular protease inhibitors. Alternatively, Semi-purified and purified inhibitory com Mar. 2, 2001 (CA).......................................... 2,339,081 pounds can be isolated from the extracts following Standard Publication Classification procedures. In one aspect, these extracts with inhibitory activity can be used during protein purification to minimize (51) Int. Cl." .......................... A61K 35/78; G01N 33/53 the degradation due to extracellular proteases. Patent Application Publication Sep. 9, 2004 Sheet 1 of 3 US 2004/0175439 A1 Potential Plant Pre-Harvest Treatment Harvest Solid S1 Optional Storage Treatment Contact Solid S1 with Solvent A Extraction Process I Separate Pre-Extract A from Solid Matter S2 Potential Pre-Extract.A Contact Solid S2 with Solvent B Extraction Process II Separate Pre-Extract B a. from Solid Matter S3 Potential Pre-Extract B Contact Solid S3 with Solvent C Extraction Process III Separate Pre-Extract C w from Solid Matter S4 Potential Pre-Extract C FIGURE 1 Patent Application Publication Sep. 9, 2004 Sheet 2 of 3 US 2004/0175439 A1 Potential Pre-Extract Separation Procedure(s) Test Aliquots against panel of 2 or more Extracellular Proteases Does Extract Inconclusive demonstrate inhibitory Potential Extract is an activity against one or Extract of the more extracellular Invention proteases? Potential Extract is not an Extract of the Invention Plant remains a Potential Plant Entire Procedure may be repeated on Potential Plant under varied conditions FIGURE 2 Patent Application Publication Sep. 9, 2004 Sheet 3 of 3 US 2004/0175439 A1 One or More Plants of - the Invention Pre-Harvest Treatment Harvest Solid S1 Optional Storage Treatment Extraction Process I, II Process may be or II sequentially repeated Purification Procedure(s) Quality Control Extract Demonstrating Inhibitory Activity Against One or More Extracellular Proteases Prepare Formulation for Use FIGURE3 US 2004/0175439 A1 Sep. 9, 2004 PLANT EXTRACTS AND COMPOSITIONS normal tissues, the activity of extracellular proteases is COMPRISING EXTRACELLULAR PROTEASE tightly regulated and the breakdown/production of connec INHIBITORS tive tissue is in dynamic equilibrium, Such that there is a Slow and continual turnover due to degradation and resyn FIELD OF INVENTION thesis in the extracellular matrix of adult animals. 0001. The invention pertains to the field of protease 0007. In each of these cases, matrix components are inhibitors, Specifically inhibitors of extracellular proteases. degraded by extracellular proteolytic enzymes that are Secreted locally by cells. These proteases belong to one of four general classes: many are metalloproteinases, which BACKGROUND OF THE INVENTION depend on bound Ca" or Zn" for activity, while the others 0002 The cells of tissues are generally in contact with a are Serine, aspartic and cysteine proteases, which have a network of large extracellular macromolecules that occupies highly reactive Serine, aspartate or cysteine residue in their the Spaces in a tissue between the component cells and also respective active site (Vincenti et al., (1994) Arthritis and occupies the Space between adjacent tissues. This extracel Rheumatism, 37: 1115-1126). Together, metalloproteinases, lular matrix functions as a Scaffolding on which the cells and Serine, aspartate and cysteine proteases cooperate to degrade tissue are Supported and is involved actively in regulating matrix proteins Such as collagen, laminin, and fibronectin. interaction of the cells that contact it. The principal macro 0008. Several mechanisms operate to ensure that the molecules of the extracellular matrix include the collagens degradation of matrix components is tightly controlled. (the most abundant proteins in the body) and glycosami First, many proteases are Secreted as inactive precursors that noglycans (complex polysaccharides which are usually can be activated locally. Second, the action of proteases is bonded also to protein and then termed proteoglycans). The confined to specific areas by various Secreted protease macromolecules that comprise the extracellular matrix are inhibitors, Such as the tissue inhibitors of metaloproteases produced typically by the cells in contact there with, for and the Serine protease inhibitors known as Serpins. These example, epithelial cells in contact with a basement mem inhibitors are specific for particular proteases and bind brane and fibroblasts embedded in connective tissue. tightly to the activated enzyme to block its activity. Third, 0003) The glycosaminoglycan (proteoglycan) molecules many cells have receptors on their Surface that bind pro form a highly hydrated matrix (a gel) in which elastic or teases, thereby confining the enzyme to where it is needed. fibrous proteins (such as collagen fibers) are embedded. The 0009. Many pathogenic bacteria produce extracellular aqueous nature of the gel permits diffusion of metabolically metalloproteases, of which many are Zinc containing pro required Substances between the cells of a tissue and teases that can be classified into two families, the thermol between tissues. Additional proteins that may be found in ysin (neutral) proteases and the Serralysin (alkaline) pro extracellular matrix include elastin, fibronectin and laminin. teaSeS. 0004. The term “connective tissue' refers to extracellular 0010) A number of patents and publications report the matrix plus specialised cells Such as, for example, fibro inhibition of one or more extraceliular proteases by com blasts, chondrocytes, osteoblasts, macrophages and mast pounds extracted from plants. For example, Sun et al., cells found therein. The term “interstitial tissue’ is best (1996) Phytotherapy Res., 10: 194-197, reports the inhibi reserved for an extracellular matrix that Stabilizes a tissue tion in vitro of stromelysin (MMP-3) and collagenase by internally, filling the gaps between the cells thereof. There betulinic acid extracted from Doliocarpus venuculosis. are also specialized forms of extracellular matrix (connec Sazuka et al., (1997) BioSci. Biotechnol. Biochem., 6.1: tive tissue) that have additional functional roles-cornea, 1504-1506, reports the inhibition of gelatinases (MMP-2 cartilage and tendon, and when calcified, the bones and and MMP-9) and metastasis by compounds isolated from teeth. green and black teas. Kumagai et at JP 08104628 A2, Apr. 0005. A structural form of extracellular matrix is the 1, 1996 (CA 125: 67741) reports the use of flavones and basal lamina (basement membrane). Basal laminae are thin anthocyanines isolated from Scutellaris baican lensis roots Zones of extracellular matrix that are found under epithelium to inhibit collagenase. Gervasi et al., (1996) Biochem. Bio or Surrounding, for example, muscle cells or the cells that phys. Res. Comm., 228: 530-538, reports the regulation of electrically insulate nerve fibres. Generally Speaking, basal MMP-2 by some plant lectins and other saccharides. Dubois laminae Separate cell layers from underlying Zones of con et al., (1998) FEBS Lett., 427: 275-278, reports the increased nective tissue or Serve as a boundary between two cell layers secretion of deleterious gelatinase-B (MMP-9) by some wherein a basal lamina can Serve as a pathway for invading plant lectins. Nagase et al.(1998) Planta Med., 64: 216-219, cells associated with pathologic processes, or for Structural reports the weak inhibition of collagenase (MMPs) by organisation associated with tissue repair (i.e. as a blueprint delphinidin, a flavonoid isolated from Solanum melongena. from which to regenerate original tissue architecture and 0011. Other reports discuss the use of extracts to inhibit morphology). extracellular proteases. For example, Asano et al., (1998) 0006 The regulated turnover of extracellular matrix mac Immunopharmacology, 39: 117-126, reports the inhibition romolecules is critical to a variety of important biological of TNF-C. production using Tripterygium wilfordii Hook F. processes. Localised degradation of matrix components is extracts. Maheu et al., (1998) Arthritis Rheumatol., 41: required when cells migrate through a basal lamina, as when 81-91, reports the use of avocado/Soybean non-Saponifiable white blood cells migrate across the vascular basal lamina extracts in the treatment of arthritis. Makirnura etal., (1993) into tissues in response to infection or
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Tomo Kahni State Historic Park Tour Notes – Flora
    Tomo Kahni State Historic Park Tour Notes – Flora Version 3.0 April 2019 Compiled by: Georgette Theotig Cynthia Waldman Tech Support: Jeanne Hamrick Plant List by Color - 1 Page Common Name Genus/Species Family Kawaisuu Name White Flowers 6 White Fiesta Flower Pholistoma membranaceum Borage (Boraginaceae) kaawanavi 6 Seaside Heliotrope Heliotropium curassavicum Borage (Boraginaceae) 6 California Manroot Marah fabacea Cucumber (Cucurbitaceae) parivibi 7 Stinging Nettles Urtica dioica Goosefoot (Urticaceae) kwichizi ataa (Bad Plate) 7 White Whorl Lupine Lupinus microcarpus var. densiflorus Legume/Pea (Fabaceae) 7 Mariposa Lily (white) Calochortus venustus Lily (Liliaceae) 7 Mariposa Lily (pinkish-white) Calochortus invenustus Lily (Liliaceae) 8 Wild Tobacco Nicotiana quadrivalvis Nightshade (Solanaceae) Soo n di 8 Wild Celery Apium graveolens Parsley (Umbelliferae) n/a Bigelow’s Linanthus Linanthus bigelovii Phlox (Polemoniaceae) 8 Linanthus Phlox Phlox (Polemoniaceae) 8 Evening Snow Linanthus dichotomus Phlox (Polemoniaceae) tutuvinivi 9 Miner’s Lettuce Claytonia perfoliata Miner’s Lettuce (Montiaceae) Uutuk a ribi 9 Thyme-leaf Spurge (aka Thyme-leaf Sandmat) Euphorbia serpyllifolia Spurge (Euphorbiaceae) tivi kagivi 9 Pale Yellow Layia Layia heterotricha Sunflower (Asteraceae) 9 Tidy Tips Layia glandulosa Sunflower (Asteraceae) April 8, 2019 Tomo Kahni Flora – Tour Notes Page 1 Plant List by Color – 2 Page Common Name Genus/Species Family Kawaisuu Name Yellow Flowers 10 Fiddleneck Amsinckia tessellata Borage (Boraginaceae) tiva nibi 10
    [Show full text]
  • View Plant List Here
    11th annual Theodore Payne Native Plant Garden Tour planT list garden 2 in mid-city provided by homeowner Botanical Name Common Name Acalypha californica California Copperleaf Achillea millefolium Yarrow Achillea millefolium var rosea ‘Island Pink’ Island Pink Yarrow Adiantum jordanii California Maidenhair Fern Agave deserti Desert Agave Allium crispum Wild Onion Allium falcifolium Scythe Leaf Onion Allium haematochiton Red Skinned Onion Allium howellii var. clokeyi Mt. Pinos Onion Allium unifolium Single Leaf Onion Anemopsis californica Yerba Mansa Aquilegia formosa Western Columbine Arabis blepharophylla ‘Spring Charm’ Spring Charm Coast Rock Cress Arbutus menziesii Madrone Arctostaphylos ‘Baby Bear’ Baby Bear Manzanita Arctostaphylos ‘Emerald Carpet’ Emerald Carpet Manzanita Arctostaphylos ‘Howard McMinn’ Howard McMinn Manzanita Arctostaphylos bakeri ‘Louis Edmunds’ Louis Edmunds Manzanita Arctostaphylos densiflora ‘Sentinel’ Sentinel Manzanita Arctostaphylos glauca Big Berry Manzanita Arctostaphylos hookeri ‘Monterey Carpet’ Monterey Carpet Manzanita Arctostaphylos hookeri ‘Wayside’ Wayside Manzanita Arctostaphylos manzanita ‘Byrd Hill’ Byrd Hill Manzanita Arctostaphylos manzanita ‘Dr. Hurd’ Dr. Hurd Manzanita Arctostaphylos viscida Whiteleaf Manzanita Aristida purpurea Purple Three Awn Armeria maritima ‘Rubrifolia’ Rubrifolia Sea Thrift Artemisia californica California Sagebrush Artemisia californica ‘Canyon Grey’ Canyon Grey California Sagebrush Artemisia ludoviciana Silver Wormwood Artemisia pycnocephala ‘David’s Choice’ David’s
    [Show full text]
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Alplains 2013 Seed Catalog P.O
    ALPLAINS 2013 SEED CATALOG P.O. BOX 489, KIOWA, CO 80117-0489, U.S.A. Three ways to contact us: FAX: (303) 621-2864 (24 HRS.) email: [email protected] website: www.alplains.com Dear Growing Friends: Welcome to our 23rd annual seed catalog! The summer of 2012 was long, hot and brutal, with drought afflicting most of the U.S. Most of my botanical explorations were restricted to Idaho, Wash- ington, Oregon and northern California but even there moisture was below average. In a year like this, seeps, swales, springs, vestigial snowbanks and localized rainstorms became much more important in my search for seeding plants. On the Snake River Plains of southern Idaho and the scab- lands of eastern Washington, early bloomers such as Viola beckwithii, V. trinervata, Ranunculus glaberrimus, Ranunculus andersonii, Fritillaria pudica and Primula cusickiana put on quite a show in mid-April but many populations could not set seed. In northern Idaho, Erythronium idahoense flowered extensively, whole meadows were covered with thousands of the creamy, pendant blossoms. One of my most satisfying finds in the Hells Canyon area had to be Sedum valens. The tiny glaucous rosettes, surround- ed by a ring of red leaves, are a succulent connoisseur’s dream. Higher up, the brilliant blue spikes of Synthyris missurica punctuated the canyon walls. In southern Oregon, the brilliant red spikes of Pedicularis densiflora lit up the Siskiyou forest floor. Further north in Oregon, large populations of Erythronium elegans, Erythronium oregonum ssp. leucandrum, Erythro- nium revolutum, trilliums and sedums provided wonderful picture-taking opportunities. Eriogonum species did well despite the drought, many of them true xerics.
    [Show full text]
  • USOS Y POSIBILIDAD DE CULTIVO DE LA SAYA (Amoreuxia Spp.) EN
    USOS Y POSIBILIDAD DE CULTIVO DE LA SAYA (Amoreuxia spp.) EN EL NOROESTE DE MÉXICO USES AND POSSIBILITY OF CULTIVATION OF SAYA (Amoreuxia spp.) IN THE NORTHWEST OF MEXICO Celaya-Michel, H.1*; Valdez-Domínguez, R.D.1; Sosa-Castañeda, J.1; Morales-Munguía, J.C.1; Barrera-Silva, M.A.1; Rueda-Puente, E.O.1 1Universidad de Sonora. Departamento de Agricultura y Ganadería. Carretera Bahía de Kino km 18.5, Hermosillo, Sonora, México. *Autor de correspondencia: [email protected] ABSTRACT Saya (Amoreuxia spp.) was a plant consumed by ethnic groups in the past and by the first colonizers, but even today, in regions of the northwest of Mexico it is still consumed. Two species of the genus Amoreuxia are listed in NOM-O59- SEMARNAT-2010: A. palmatifida and A. wrightii. Despite the recognition for several decades of its potential as a food, as fodder for fauna or domestic livestock, its importance in the functioning of the ecosystem, its medicinal use and possible ornamental use; Many aspects of propagation, growth and productivity under the agronomic management of the saya are unknown. In this work the results of growth and productivity of A. palmatifida are shown under experimental botanical garden soil with drip irrigation. Extrapolating our results to agricultural conditions, we estimate a productivity of 20,000 tuberous saya roots per hectare and 3,100,000 seeds per hectare. With these results we can think that it is viable germination and production strategies in agricultural plots with drip irrigation, previous obtaining of the corresponding permits on the SEMARNAT, which could allow obtaining propagules, both from tuberous roots and saya seeds, to be used in the ecological restoration of degraded lands or for harvesting programs as a new crop.
    [Show full text]
  • Differential Regulation of Symmetry Genes and the Evolution of Floral Morphologies
    Differential regulation of symmetry genes and the evolution of floral morphologies Lena C. Hileman†, Elena M. Kramer, and David A. Baum‡ Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 Communicated by John F. Doebley, University of Wisconsin, Madison, WI, September 5, 2003 (received for review July 16, 2003) Shifts in flower symmetry have occurred frequently during the patterns of growth occurring on either side of the midline (Fig. diversification of angiosperms, and it is thought that such shifts 1h). The two species of Mohavea have a floral morphology that play important roles in plant–pollinator interactions. In the model is highly divergent from Antirrhinum (3), resulting in its tradi- developmental system Antirrhinum majus (snapdragon), the tional segregation as a distinct genus. Mohavea corollas, espe- closely related genes CYCLOIDEA (CYC) and DICHOTOMA (DICH) cially those of M. confertiflora, are superficially radially symmet- are needed for the development of zygomorphic flowers and the rical (actinomorphic), mainly due to distal expansion of the determination of adaxial (dorsal) identity of floral organs, includ- corolla lobes (Fig. 1a) and a higher degree of internal petal ing adaxial stamen abortion and asymmetry of adaxial petals. symmetry relative to Antirrhinum (Fig. 1 a and g). During However, it is not known whether these genes played a role in the Mohavea flower development, the lateral stamens, in addition to divergence of species differing in flower morphology and pollina- the adaxial stamen, are aborted, resulting in just two stamens at tion mode. We compared A. majus with a close relative, Mohavea flower maturity (Fig.
    [Show full text]
  • Caliwomenbotany00hollrich.Pdf
    88/51 Regional Oral History Office University of California The Bancroft Library Berkeley, California CALIFORNIA WOMEN IN BOTANY Annetta Carter UC Herbarium Botanist, Collector and Interpreter of Baja California Plants Mary DeDecker Botanist and Conservationist of the Inyo Region Elizabeth McClintock California Academy of Sciences Curator, Ornamental Plant Specialist With Interview Introductions by Lincoln Constance, Betty Gilchrist, Peter Rowlands, John Hunter Thomas Interviews Conducted by Carol Holleuffer 1985 Copyright (c) 1987 by The Regents of the University of California This manuscript is made available for research purposes. No part of the manuscript may be quoted for publication without the written permission of the Director of The Bancroft Library of the University of California at Berkeley. Requests for permission to quote for publication should be addressed to the Regional Oral History Office, 486 Library, and should include identification of the specific passages to be quoted, anticipated use of the passages, and identification of the user. It is recommended that this oral history be cited as follows: To cite the volume: California Women in Botany, an oral history conducted in 1985, Regional Oral History Office, The Bancroft Library, University of California, Berkeley, 1987. To cite individual interview: Annetta Carter, "UC Herbarium Botanist, Collector and Interpreter of Baja California Plants," an oral history conducted 1985 by Carol Holleuffer, in California Women in Botany, Regional Oral History Office, The Bancroft Library, University of California, Berkeley, 1987. Copy No. /| OAKLAND THE DAILY CALIFORNIAN TRIBUNE 1991 May 17, 1991 May 16, I ' . .-,<. TVjW'-wiKjs Annetta Carter, ^UC'Berkeleyl 'botanist dies UC botanist ' I" W-! f . -: ^.,.v X **\; -':.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site
    Powell, Schmidt, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2005-1167 Southwest Biological Science Center Open-File Report 2005-1167 February 2007 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site By Brian F. Powell, Cecilia A. Schmidt , and William L. Halvorson Open-File Report 2005-1167 December 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B. F, C. A. Schmidt, and W. L. Halvorson. 2006. Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub
    US 20090263516A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub. Date: Oct. 22, 2009 (54) PLANT EXTRACT COMPOSITION AND Publication Classification THEIR USE TO MODULATE CELLULAR (51) Int. Cl. ACTIVITY A636/8962 (2006.01) A636/00 (2006.01) (75) Inventor: Benoit CYR, St. Augustin de A6IP35/00 (2006.01) Desmaures (CA) CI2N 5/06 (2006.01) Correspondence Address: A6IR 36/3 (2006.01) SHEPPARD, MULLIN, RICHTER & HAMPTON A 6LX 36/899 (2006.01) LLP (52) U.S. Cl. ......... 424/754; 424/725; 435/375; 424/774; 990 Marsh Road 424/779; 424/755; 424/750; 424/777 Menlo Park, CA 94025 (US) (57) ABSTRACT (73) Assignee: Biopharmacopae Design Extracts from plant material, or semi-purified/purified mol International Inc., Saint-Foy (CA) ecules or compounds prepared from the extracts that demon strate the ability to modulate one or more cellular activities (21) Appl. No.: 12/263,114 are provided. The extracts are capable of slowing down, inhibiting or preventing cell migration, for example, the (22) Filed: Oct. 31, 2008 migration of endothelial cells or neoplastic cells and thus, the use of the extracts to slow down, inhibit or prevent abnormal Related U.S. Application Data cell migration in an animal is also provided. Methods of selecting and preparing the plant extracts and methods of (63) Continuation of application No. 10/526,387, filed on screening the extracts to determine their ability to modulate Oct. 6, 2005, now abandoned, filed as application No. one or more cellular activity are described. The purification or PCT/CA03/01284 on Sep.
    [Show full text]
  • Pala Park Habitat Assessment
    Pala Park Bank Stabilization Project: Geotechnical Exploration TABLE OF CONTENTS SECTION 1.0 COUNTY OF RIVERSIDE ATTACHMENTS Biological Report Summary Report (Attachment E-3) Level of Significance Checklist (Attachment E-4) Biological Resources Map (Attachment E-5) Site Photographs (Attachment E-6) SECTION 2.0 HABITAT ASSESSMENT General Site Information ............................................................................................................... 1 Methods ........................................................................................................................................ 2 Existing Conditions ....................................................................................................................... 4 Special Status Resources ............................................................................................................. 8 Other Issues ................................................................................................................................ 14 Recommendations ...................................................................................................................... 14 References .................................................................................................................................. 16 LIST OF TABLES Page 1 Special Status Plant Species Known to Occur in the Vicinity of the Survey Area ........... 10 2 Chaparral Sand-Verbena Populations Observed in the Survey Area ............................. 12 3 Paniculate Tarplant
    [Show full text]
  • Picea Schrenkiana Tree-Ring Chronologies Development and Vegetation Index Reconstruction for the Alatau Mountains, Central Asia
    GEOCHRONOMETRIA 45 (2018): 107–118 DOI 10.1515/geochr-2015-0091 Available online at http://www.degruyter.com/view/j/geochr PICEA SCHRENKIANA TREE-RING CHRONOLOGIES DEVELOPMENT AND VEGETATION INDEX RECONSTRUCTION FOR THE ALATAU MOUNTAINS, CENTRAL ASIA TONGWEN ZHANG1, 2, 3, RUIBO ZHANG1, 2, 3, BO LU4, BULKAJYR T. MAMBETOV5, NURZHAN KELGENBAYEV5, DANIYAR DOSMANBETOV5, BAGILA MAISUPOVA5, FENG CHEN1, 2, 3, SHULONG YU1, 2, 3, HUAMING SHANG1, 2, 3 and LIPING HUANG6 1Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China 2Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Urumqi 830002, China 3Key Laboratory of Tree-ring Ecology of Uigur Autonomous Region, Urumqi 830002, China 4Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081 China 5Almaty Branch of Kazakh Scientific Research Institute of Forestry, Ministries of Agriculture, Almaty, 050010 Kazakhstan 6Institute of Modern Forestry, Xinjiang Academy of Forestry Science, Urumqi 830000, China Received 8 January 2018 Accepted 16 April 2018 Abstract: In this study, a total of 176 tree cores from Schrenk spruce (Picea schrenkiana) were used to establish a tree-ring chronology and a 167-year July–October normalized differential vegetation in- dex (NDVI) for the Alatau Mountains in Central Asia was reconstructed using this newly developed chronology. The tree-ring based NDVI reconstruction tracks the observed data well (r=0.577, p<0.01, n=25) and precisely captures the drought events recorded in historical documents that occurred over a large area in 1917 and 1938. After applying a 21-year moving average, three dense (1860–1870, 1891–1907, and 1950–1974) and three sparse (1871–1890, 1908–1949, and 1975–2006) vegetation coverage periods were found in this reconstruction.
    [Show full text]