Norepinephrine Bitartrate

Total Page:16

File Type:pdf, Size:1020Kb

Norepinephrine Bitartrate Norepinephrine Bitartrate Brand names Levophed, generic Medication error ISMP high-alert medication that has an increased risk of causing significant patient harm potential if it is used in error.(1) Look-alike, sound-alike drug names USP reports that norepinephrine has been confused with EPINEPHrine and nitroprusside. Norepinephrine has been confused with Neo-Synephrine and phenylephrine and patient harm occurred. Levophed has been confused with Lopressor, and patient harm did not occur.(2) Contraindications U.S. boxed warning: Extravasation may cause local ischemia and tissue necrosis. Ali- and warnings quots of phentolamine mesylate (0.1–0.2 mg/kg(7) up to 10 mg in 10–15 mL NS) should be injected using a fine hypodermic needle into the ischemic area. This should be done as soon as possible and within the first 12 hours of noting the extravasation.(3,4) (See the Infusion-Related Cautions section.) Contraindications: Norepinephrine should only be used in emergency situations prior to volume resuscitation. If used in hypotensive and volume-depleted patients prior to volume replacement, peripheral and visceral vasoconstriction, decreased renal perfusion and urine output, decreased systemic blood flow, tissue hypoxia, and lactic acidosis may occur.(3,4) Do not use in patients with mesenteric or peripheral vascular thrombosis or in patients receiving cyclopropane and halothane anesthetics.(3,4) Ventricular arrhythmias may result in patients with severe hypoxia or hypercarbia.(3,4) Warnings: Use with caution in patients receiving monoamine oxidase (MAO) inhibitors or triptyline or imipramine antidepressants.(3,4) (See the Comments section.) Infusion-related If possible, infuse via a central,(5,6) large vein, particularly antecubital or femoral vein, cautions using a plastic catheter inserted deep into the vein, to decrease the risk of necrosis of overlying skin. Gangrene has been reported after infusion via ankle vein.(3,4) See U.S. Boxed Warning in the Contraindications and Warnings section for extravasation antidote information. See Appendix E for additional information regarding extravasation treatment. Dosage Correct intravascular volume depletion prior to starting norepinephrine.(3,4) Shock/hypotension: 0.05–0.1 mcg/kg/min titrated to the desired blood pressure up to usual maximum dose of 2 mcg/kg/min.(5-9,24) Starting doses of 0.5 mcg/kg/min have been used.(24,22) 2 mcg/m2/min has also been reported.(10) Continue norepinephrine dosing until adequate blood pressure and tissue perfusion are maintained.(9,10) Avoid abrupt withdrawal by gradually reducing the dose.(3,4) In adults, manufacturers recommend an initial dose of 8–12 mcg/min, which is then titrated to the desired blood pressure,(3,4) up to 30 mcg/min.(10) Norepinephrine is preferred as a first line agent in fluid-refractory vasodilated septic shock in adults.(20,23) Additionally, norepinephrine is recommended in adults immediately after cardiac arrest at a dose of 0.1–0.5 mcg/kg/min.(26) Persistent pulmonary hypertension of the newborn: A single observational prospec- tive study (n = 18) demonstrated a decrease in the oxygen requirement with norepineph- rine (initial dose 0.5 mcg/kg/min; titrated up to 3.3 mcg/kg/min based on mean systemic arterial pressure goal).(25) Dosage adjustment No dosage adjustment is required in renal dysfunction.(11) in organ dysfunction 656 Norepinephrine Bitartrate Maximum dosage 10.5 mcg/kg/min has been reported in a child.(22) 20.8 mcg/kg/min (for 11 hours) has been reported in a case report of an adult with meningococcemia.(27) Large doses up to 68 mg/day have been used in adults.(3,4) Additives Some products contain sodium metabisulfite,(3) whereas others are preservative free.(4) (See Appendix C for more specific information about potential adverse effects of sulfites.) Sodium chloride is used to adjust to isotonicity.(3,4) Suitable diluents D5W, D5NS, other D5-containing solutions,(3,4) LR.(12) Dilution with dextrose-containing solutions protects against significant loss of potency from oxidation.(3,4) Manufacturers do not suggest dilution with NS(3,4); however, tests suggest norepinephrine is stable in NS for 7 days (4 and 16 mcg/mL).(12) Maximum Manufacturer does not give an absolute maximum concentration.(3,4) Concentrations up to concentration 64 mcg/mL have been shown to be stable in D5W.(12) 100 mcg/mL(18,24) and 128 mcg/mL(9) have also been reported. Preparation and Parenteral products should be visually inspected for particulate matter and discoloration delivery before use. Refer to appropriate references for more information on compatibility with other drugs and solutions, compatibility following Y-site delivery, and suggested storage and extended stability.(12) Delivery: May be filtered through a 0.2-micron filter without significant norepinephrine loss.(12) Stability: Norepinephrine is easily destroyed by iron salts, oxidants, and in alkaline solu- tions(3) (i.e., sodium bicarbonate).(6) Protect from light. Do not infuse if solution is pink in color, darker than slightly yellow, or if a precipitate exists.(3,4) IV push Not indicated Intermittent infusion Not indicated Continuous infusion 4–16 mcg/mL. Concentrations outside this range may be used dependent on the drug and fluid requirements of the individual patient.(3,4,13) The Joint Commission recommends the use of standardized concentrations of vasoactive medications.(15) The ISMP and Vermont Oxford Network recommend a standard concentration of 16 mcg/ mL for neonates.(16) Other routes of IO(7,8,17) administration Comments Norepinephrine may be considered in epinephrine-refractory cardiac arrest due to anaphylaxis.(21) Monitoring: Blood pressure,(3,4) ECG,(6) and central venous pressure monitoring. When possible, monitoring should occur continuously throughout therapy.(3,4) Drug interactions: Several drugs (e.g., tricyclic antidepressants, MAO inhibitors) may potentiate the pressor effects of norepinephrine.(3,4) Atropine may block the reflex brady- cardia and enhance the pressor response caused by norepinephrine.(10) Consult appropri- ate resources before combining any drug with norepinephrine. For hypotension due to tricyclic antidepressant and other sodium channel blocker toxicity, norepinephrine and epinephrine have been shown to be superior to dopamine in elevating blood pressure. (See the Contraindications and Warnings section.)(8) 657.
Recommended publications
  • Neurotransmitter Resource Guide
    NEUROTRANSMITTER RESOURCE GUIDE Science + Insight doctorsdata.com Doctor’s Data, Inc. Neurotransmitter RESOURCE GUIDE Table of Contents Sample Report Sample Report ........................................................................................................................................................................... 1 Analyte Considerations Phenylethylamine (B-phenylethylamine or PEA) ................................................................................................. 1 Tyrosine .......................................................................................................................................................................................... 3 Tyramine ........................................................................................................................................................................................4 Dopamine .....................................................................................................................................................................................6 3, 4-Dihydroxyphenylacetic Acid (DOPAC) ............................................................................................................... 7 3-Methoxytyramine (3-MT) ............................................................................................................................................... 9 Norepinephrine ........................................................................................................................................................................
    [Show full text]
  • DART-MS/MS Screening for the Determination of 1,3- Dimethylamylamine and Undeclared Stimulants in Seized Dietary Supplements from Brazil
    Forensic Chemistry 8 (2018) 134–145 Contents lists available at ScienceDirect Forensic Chemistry journal homepage: www.elsevier.com/locate/forc DART-MS/MS screening for the determination of 1,3- dimethylamylamine and undeclared stimulants in seized dietary supplements from Brazil Maíra Kerpel dos Santos a, Emily Gleco b, J. Tyler Davidson b, Glen P. Jackson b, Renata Pereira Limberger a, ⇑ Luis E. Arroyo b, a Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil b Department of Forensic & Investigative Science, West Virginia University, USA article info abstract Article history: 1,3-dimethylamylamine (DMAA) is an alkylamine with stimulating properties that has been used pre- Received 15 December 2017 dominantly as an additive in dietary supplements. DMAA is mostly consumed by professional athletes, Received in revised form 14 March 2018 and several doping cases reported since 2008 led to its prohibition by the World Anti-Doping Agency Accepted 18 March 2018 (WADA) in 2010. Adverse effects have indicated DMAA toxicity, and there is few data regarding its safety, Available online 22 March 2018 so it was banned by regulatory agencies from Brazil and the United States. Ambient ionization methods such as Direct Analysis in Real Time Tandem Mass Spectrometry (DART-MS/MS) are an alternative for Keywords: dietary supplements analysis, because they enable the analysis of samples at atmospheric pressure in 1,3-dimethylamylamine a very short time and with only minimal sample preparation. Therefore, the aim of this work was to DART-MS/MS Dietary supplements develop a methodology by DART-MS/MS to detect the presence of DMAA, ephedrine, synephrine, caffeine, Stimulants sibutramine, and methylphenidate in 108 dietary supplements seized by the Brazilian Federal Police Adulterants (BFP).
    [Show full text]
  • Multi-Class Determination of 64 Illicit Compounds in Dietary Supplements Using Liquid Chromatography–Tandem Mass Spectrometry
    molecules Article Multi-Class Determination of 64 Illicit Compounds in Dietary Supplements Using Liquid Chromatography–Tandem Mass Spectrometry Dasom Shin, Hui-Seung Kang *, Hyungsoo Kim and Guiim Moon New Hazardous Substances Division, Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea; [email protected] (D.S.); [email protected] (H.K.); [email protected] (G.M.) * Correspondence: [email protected] Received: 11 August 2020; Accepted: 17 September 2020; Published: 24 September 2020 Abstract: In this work, liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was developed and validated for screening and confirmation of 64 illicit compounds in dietary supplements. The target compounds were illegally used pharmaceutical drugs, prohibited compounds, and not authorized ingredients for different therapeutics (sexual enhancement, weight loss, muscular strengthening, and relaxing products). The validation procedure was performed to evaluate selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision according to the Association of Official Analytical Chemists guidelines. The linearity was >0.98 in the range of 1 1 0.5–200 µg L− . The LOQs were in the range 1–10 µg kg− for all target compounds. The accuracy (expressed as recovery) was 78.5–114%. The precision (expressed as the relative standard deviation) was below 9.15%. The developed method was applied for the determination of illicit compounds in dietary supplements collected from websites. As a result, the total detection rate was 13.5% (27 samples detected in 200 samples). The concentrations of detected samples ranged from 0.51 1 to 226 mg g− .
    [Show full text]
  • NORPRAMIN® (Desipramine Hydrochloride Tablets USP)
    NORPRAMIN® (desipramine hydrochloride tablets USP) Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of NORPRAMIN or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. NORPRAMIN is not approved for use in pediatric patients. (See WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients, and PRECAUTIONS: Pediatric Use.) DESCRIPTION NORPRAMIN® (desipramine hydrochloride USP) is an antidepressant drug of the tricyclic type, and is chemically: 5H-Dibenz[bƒ]azepine-5-propanamine,10,11-dihydro-N-methyl-, monohydrochloride. 1 Reference ID: 3536021 Inactive Ingredients The following inactive ingredients are contained in all dosage strengths: acacia, calcium carbonate, corn starch, D&C Red No. 30 and D&C Yellow No. 10 (except 10 mg and 150 mg), FD&C Blue No. 1 (except 25 mg, 75 mg, and 100 mg), hydrogenated soy oil, iron oxide, light mineral oil, magnesium stearate, mannitol, polyethylene glycol 8000, pregelatinized corn starch, sodium benzoate (except 150 mg), sucrose, talc, titanium dioxide, and other ingredients.
    [Show full text]
  • Stimulant Medications and Supplements: Clinical Implications for the Sports Medicine Provider Collaborative Solutions for Safety in Sport
    Stimulant Medications and Supplements: Clinical Implications for the Sports Medicine Provider Collaborative Solutions for Safety in Sport Francis G. O’Connor, MD, MPH, COL, MC, USA Professor and Chair, Military and Emergency Medicine Uniformed Services University of the Health Sciences DISCLOSURE . I have no relevant financial disclosures in reference to this lecture. That being said, I am a physician in the US Army, and work for the DoD. My opinions and assertions contained herein are private views and are not to be construed as official or as reflecting the views of the U.S. Army Medical Department , Uniformed Services University or the Department of Defense at large. Case Presentation 1 . 25 y/o soldier presents to the sports medicine clinic for heat tolerance testing and a return to duty assessment; . He sustained an exertional heat stroke (EHS) during Special Forces accession. Soldier was acclimatized with no history of EHS; he had been using a pre- workout stimulant. Case Presentation 2 . 25 y/o soldier presents to the medical aid station complaining of palpitations, agitation and insomnia. He has sinus tachycardia on the monitor and reports regular use of Red Bull and caffeine gum. Unit is requesting guidance on strategies for sleep. Case Presentation 3 . A warfighter contacts the Human Performance Resource Center looking for help. Recently using a new pre- workout supplement to enhance training. Unfortunately the soldier “popped positive” on a recent urine drug screen. Case Presentation 4 . Alison is a 19 y/o transfer female basketball player. She states she has a personal history of ADHD and would like to renew her prescription for Ritalin.
    [Show full text]
  • Chiral Separation for Enantiomeric Determination in the Pharmaceutical Industry
    Chapter CHIRAL SEPARATION FOR ENANTIOMERIC DETERMINATION IN THE PHARMACEUTICAL INDUSTRY Nelu Grinberg, Su Pan Contents 6.1. INTRODUCTION ...................................................................................................................................... 235 6.2. ENANTIOMERS, DIASTEREOMERS, RACEMATES ................................................................... 236 6.3. REQUIREMENTS FOR CHIRAL SEPARATION ............................................................................ 237 6.4. THE TYPES OF MOLECULAR INTERACTIONS ........................................................................... 237 6.4.1. Chiral separation through hydrogen bonding ............................................................. 237 6.4.2. Chiral separation through inclusion compounds ....................................................... 243 6.4.2.1. Cyclodextrins ............................................................................................................ 243 6.4.2.2. Crown ethers ............................................................................................................. 245 6.4.3. Charge transfer .......................................................................................................................... 259 6.4.4. Chiral separation through a combination of charge transfer, hydrogen bonding and electrostatic interactions ........................................................................... 260 233 Chapter 6 6.4.5. Ligand exchange ......................................................................................................................
    [Show full text]
  • Co-Ingestion of Tricyclic Antidepressants with Selective Norepinephrine Reuptake Inhibitors Overdose in the Emergency Department
    Case Report Co-ingestion of tricyclic antidepressants with selective norepinephrine reuptake inhibitors Overdose in the emergency department Jatin Kaicker MD Joanna Bostwick MD CCFP(EM) Case description An 18-year-old female student presents to the emergency department (ED) with a decreased level of consciousness. She was last seen awake the night before, and her parents could not rouse her from sleep that morning. She has a known history of depression, which is treated with an oral 100-mg dose of desvenlafaxine daily and an oral 100-mg dose of amitriptyline once daily at bedtime. There is no history of recent travel, trauma, or ill- EDITor’s kEY POINTS ness. Her parents do not believe she drinks • Having a clinical approach to patients with unknown toxic ingestion is alcohol or uses illicit drugs. Empty bottles imperative. Family physicians must be able to identify and manage patients of desvenlafaxine and amitriptyline were who overdose on multiple antidepressant agents, especially as these found in the patient’s room (each bottle pharmacologic agents are commonly prescribed. held approximately 60 tablets). The patient’s examination findings • Identification of patients with tricyclic antidepressant overdose is reveal a temperature of 36°C, heart rate based on high clinical suspicion and electrocardiogram findings of of 160 beats/min, respiratory rate of QRS widening. Early management should involve sodium bicarbonate. 12 breaths/min, blood pressure of 105/70 mm Hg, and oxygen saturation of • There is a risk of QT prolongation and torsades de pointes for patients 100% on room air. There is no evidence of who overdose on tricyclic antidepressants and have concomitantly ingested selective norepinephrine reuptake inhibitors.
    [Show full text]
  • Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss
    Supplemental Material can be found at: /content/suppl/2020/12/18/73.1.202.DC1.html 1521-0081/73/1/202–277$35.00 https://doi.org/10.1124/pharmrev.120.000056 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:202–277, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: MICHAEL NADER Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Antonio Inserra, Danilo De Gregorio, and Gabriella Gobbi Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada Abstract ...................................................................................205 Significance Statement. ..................................................................205 I. Introduction . ..............................................................................205 A. Review Outline ........................................................................205 B. Psychiatric Disorders and the Need for Novel Pharmacotherapies .......................206 C. Psychedelic Compounds as Novel Therapeutics in Psychiatry: Overview and Comparison with Current Available Treatments . .....................................206 D. Classical or Serotonergic Psychedelics versus Nonclassical Psychedelics: Definition ......208 Downloaded from E. Dissociative Anesthetics................................................................209 F. Empathogens-Entactogens . ............................................................209
    [Show full text]
  • Methedrine, Neo-Synephrine, Paredrine, and Pholedrine
    Br Heart J: first published as 10.1136/hrt.6.4.214 on 1 October 1944. Downloaded from CLINICAL EVALUATION OF THE PRESSOR ACTIVITY OF METHEDRINE, NEO-SYNEPHRINE, PAREDRINE, AND PHOLEDRINE BY FREDERICK PRESCOTT From the Wellcome Research Institution, London Received October 10, 1944 Recently a number of pressor drugs of the adrenaline type have come into clinical use for the treatment of low blood pressure following surgical procedures, spinal anxsthesia, circu- latory collapse, and surgical and traumatic shock. For therapeutic purposes the ideal pressor drug should be effective by the intramuscular or intravenous route; it should act rapidly; it should produce a sustained elevation of blood pressure, so that frequent injections of the drug are not necessary; and it should have no undesirable effects on the cardiovascular system and no untoward side effects. Adrenaline and ephedrine were the first drugs to be used clinically to raise the blood pressure in cases of operative shock. Their limitations, however, are nowv well known. Adrenaline may do more harm than good beca4se in thera- peutic doses intrayenously it causes a considerable rise of blood pressure, e.g. 200 mm. to 300 mm. of mercury, with a precipitous fall after a few minutes to a level lower than before. Similarly ephedrine, which for dependable results must be given intravenously, produces a http://heart.bmj.com/ sharp rise of blood pressure that lasts only for ten to twenty minutes. Other pressor drugs have been introduced with a more sustained action. In most of the studies reported on these, however, no definite criteria seem to have been employed in their evaluation, nor have the conditions of administration been standardized.
    [Show full text]
  • Written Witness Statement for U.S. Sentencing Commission's Public
    STATEMENT OF TERRENCE L. BOOS, PH.D. SECTION CHIEF DRUG AND CHEMICAL EVALUATION SECTION DIVERSION CONTROL DIVISION DRUG ENFORCEMENT ADMINISTRATION and CASSANDRA PRIOLEAU, PH.D. DRUG SCIENCE SPECIALIST DRUG AND CHEMICAL EVALUATION SECTION DIVERSION CONTROL DIVISION DRUG ENFORCEMENT ADMINISTRATION - - - BEFORE THE UNITED STATES SENTENCING COMMISSION - - - HEARING ON SENTENCING POLICY FOR SYNTHETIC DRUGS - - - OCTOBER 4, 2017 WASHINGTON, D.C. 1 Introduction New Psychoactive Substances (NPS) are substances trafficked as alternatives to well- studied controlled substances of abuse. NPS have demonstrated adverse health effects such as paranoia, psychosis, and seizures to name a few. Cathinones, cannabinoids, and fentanyl-related substances are the most common NPS drug classes encountered on the illicit drug market, all with negative consequences for the user to include serious injury and death. Our early experience saw substances being introduced from past research efforts in an attempt to evade controls. This has evolved to NPS manufacturers structurally altering substances at a rapid pace with unknown outcomes to targeting specific user populations. These substances represent an unprecedented level of diversity and consequences. Due to clandestine manufacture and unscrupulous trafficking, the user is at great risk. A misconception exists that these substances carry a lower risk of harm In reality, published reports from law enforcement, emergency room physicians and scientists, accompanied with autopsies from medical examiners, have clearly demonstrated the harmful and potentially deadly consequences of using synthetic cathinones. These substances are introduced in an attempt to circumvent drug controls and the recent flood of NPS remains a challenge for law enforcement and public health. The United Nations Office on Drugs and Crime reported over 700 NPS encountered.1 The manufacturers and traffickers make minor changes in the chemical structure of known substances of abuse and maintain the pharmacological effect.
    [Show full text]
  • Catecholamines and the Hydroxylation of Tyrosine in Synaptosomes Isolated from Rat Brain (DOPA/Tyramine/Dopamine/Norepinephrine/Octopamine) M
    Proc. Nat. Acad. Sci. USA Vol. 68, No. 10, pp. 2370-2373, October 1971 Catecholamines and the Hydroxylation of Tyrosine in Synaptosomes Isolated from Rat Brain (DOPA/tyramine/dopamine/norepinephrine/octopamine) M. KAROBATH Psychiatric Research Laboratories, Massachusetts General Hospital, Boston, Mass. 02114 Communicated by Seymour S. Kety, July 16, 1971 ABSTRACT Tyrosine hydroxylase activity of synapto- removing transmitters from an extraneuronal location at the somes isolated from rat brain was examined. A modified synapse, then incubation of synaptosomes with catechol- tritium-displacement assay was used, which allowed the measurement of tyrosine hydroxylase activity without the amines should inhibit the formation of DOPA from tyrosine. addition of either inhibitors of the metabolism of the The experiments demonstrate that tyrosine hydroxylase hydroxylated products or added exogenous cofactor. The activity is affected by catecholamine uptake. The concentra- enzyme activity was strongly inhibited by the addition of tions required to inhibit the synthesis of catechols are in the exogenous catecholamines and 3,4-dihydroxy-L-phenyl- M. alanine. Aromatic amines other than catechols did not range of 10-7 markedly influence tyrosine hydroxylase activity. These MATERIALS AND METHODS in vitro findings support the hypothesis that synthesis of catecholamines is regulated by a mechanism of end- [3,5-H]HifTyrosine (Tracerlab) was purified by column chro- product inhibition at the tyrosine hydroxylase step. matography. Catechol impurities were absorbed on alumina and tritiated water and anions were removed by Synaptosomes are pinched-off nerve endings with relatively columns (8), by non-neuronal elements (1, 2). They absorption on Dowex-50 resin. Tyrosine was eluted from little contamination Dowex-50 with 25 ml of 4 N HCl; after distillation of the eluate contain the enzymes necessary for the synthesis of dopamine (v/v) from tyrosine (3, 4).
    [Show full text]
  • Ep 3311667 A1
    (19) TZZ¥¥___T (11) EP 3 311 667 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 25.04.2018 Bulletin 2018/17 A01N 43/42 (2006.01) A61K 31/44 (2006.01) (21) Application number: 17194444.0 (22) Date of filing: 08.07.2010 (84) Designated Contracting States: • SCHACHTEL, Bernard AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Jupiter, FL Florida 33477 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • TAKIGIKU, Ray PL PT RO SE SI SK SM TR Loveland, OH Ohio 45140 (US) (30) Priority: 08.07.2009 US 223999 P (74) Representative: Avidity IP 09.07.2009 US 224424 P Broers Building Hauser Forum (62) Document number(s) of the earlier application(s) in 21 JJ Thomson Avenue accordance with Art. 76 EPC: Cambridge CB3 0FA (GB) 10797879.3 / 2 451 274 Remarks: (71) Applicant: Charleston Laboratories, Inc. •This application was filed on 02-10-2017 as a Jupiter, FL 33477 (US) divisional application to the application mentioned under INID code 62. (72) Inventors: •Claims f iled aft er the date of fil ing of the • BOSSE, Paul application/after the date of receipt of the divisional Jupiter, FL Florida 33469 (US) application (Rule 68(4) EPC) • AMELING, John Cincinnati, OH 45252-1051 (US) (54) PHARMACEUTICAL COMPOSITIONS (57) Methods and compositions are provided which comprise effective amounts of analgesic to treat a subject, including reducing or eliminating an adverse effect associated with the analgesic. EP 3 311 667 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 311 667 A1 Description CROSS-REFERENCE 5 [0001] This application claims the benefit of U.S.
    [Show full text]