Planar Point Location Algorithm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Triangulating a Simple Polygon in Linear Time*
Discrete Comput Geom 6:485-524 (1991) GeometryDiscrete & Computational ~) 1991 Springer-Verlag New York Inc. Triangulating a Simple Polygon in Linear Time* Bernard Chazelle Department of Computer Science, Princeton University, Princeton, NJ 08544, USA Abstract. We give a deterministic algorithm for triangulating a simple polygon in linear time. The basic strategy is to build a coarse approximation of a triangulation in a bottom-up phase and then use the information computed along the way to refine the triangulation in a top-down phase. The main tools used are the polygon-cutting theorem, which provides us with a balancing scheme, and the planar separator theorem, whose role is essential in the discovery of new diagonals. Only elementary data structures are required by the algorithm. In particular, no dynamic search trees, finger trees, or point-location structures are needed. We mention a few applications of our algorithm. 1. Introduction Triangulating a simple polygon has been one of the most outstanding open problems in two-dimensional computational geometry. It is a basic primitive in computer graphics and, generally, seems the natural preprocessing step for most nontrivial operations on simple polygons [5], [14]. Recall that to triangulate a polygon is to subdivide it into triangles without adding any new vertices. Despite its apparent simplicity, however, the triangulation problem has remained elusive. In 1978 Garey et al. [12] gave an O(n log n)-time algorithm for triangulating a simple n-gon. While it was widely believed that triangulating should be easier than sorting, no proof was to be found until 1986, when Tarjan and Van Wyk [27] discovered an O(n log log n)-time algorithm. -
Computational Geometry: Proximity and Location
63 Computational Geometry: Proximity and Location 63.1 Introduction Proximity and location are fundamental concepts in geometric computation. The term proximity refers informally to the quality of being close to some point or object. Typical problems in this area involve computing geometric structures based on proximity, such as the Voronoi diagram, Delaunay triangulation and related graph structures such as the relative neighborhood graph. Another class of problems are retrieval problems based on proximity. These include nearest neighbor searching and the related concept of range searching. (See Chapter 18 for a discussion of data structures for range searching.) Instances of proximity structures and proximity searching arise in many fields of applications and in many di- mensions. These applications include object classification in pattern recognition, document analysis, data compression, and data mining. The term location refers to the position of a point relative to a geometric subdivision or a given set of disjoint geometric objects. The best known example is the point location problem, in which a subdivision of space into disjoint regions is given, and the problem is to identify which region contains a given query point. This problem is widely used in areas such as computer graphics, geographic information systems, and robotics. Point location is also used as a method for proximity searching, when applied in conjunction with Voronoi diagrams. In this chapter we will present a number of geometric data structures that arise in the context of proximity and location. The area is so vast that our presentation will be limited to a relatively few relevant results. We will discuss data structures for answering point location queries first. -
Triangulations
TRIANGULATIONS PETR FELKEL FEL CTU PRAGUE [email protected] https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 20.11.2014 Talk overview Polygon triangulation – Monotone polygon triangulation – Monotonization of non-monotone polygon Delaunay triangulation (DT) of points – Input: set of 2D points – Properties – Incremental Algorithm – Relation of DT in 2D and lower envelope (CH) in 3D and relation of VD in 2D to upper envelope in 3D Felkel: Computational geometry (2 / 67) Polygon triangulation problem Triangulation (in general) = subdividing a spatial domain into simplices Application – decomposition of complex shapes into simpler shapes – art gallery problem (how many cameras and where) We will discuss – Triangulation of a simple polygon – without demand on triangle shapes Complexity of polygon triangulation – O(n) alg. exists [Chazelle91], but it is too complicated – practical algorithms run in O(n log n) Felkel: Computational geometry (3 / 67) Terminology Simple polygon = region enclosed by a closed polygonal chain that does not intersect itself Visible points ! = two points on the boundary are visible if the interior of the line segment joining them lies entirely in the interior of the polygon Diagonal = line segment joining any pair of visible vertices Felkel: Computational geometry (4 / 67) Terminology A polygonal chain C is strictly monotone with respect to line L, if any line orthogonal to L intersects C in at most one point A chain C is monotone with respect to line L, if any -
Triangulations
TRIANGULATIONS PETR FELKEL FEL CTU PRAGUE [email protected] https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 30.11.2017 Talk overview Polygon triangulation – Monotone polygon triangulation – Monotonization of non-monotone polygon Delaunay triangulation (DT) of points – Input: set of 2D points – Properties – Incremental Algorithm – Relation of DT in 2D and lower envelope (CH) in 3D and relation of VD in 2D to upper envelope in 3D Felkel: Computational geometry (2 / 79) Polygon triangulation problem Triangulation (in general) = subdividing a spatial domain into simplices Application – decomposition of complex shapes into simpler shapes – art gallery problem (how many cameras and where) We will discuss – Triangulation of a simple polygon – without demand on triangle shapes Complexity of polygon triangulation – O(n) alg. exists [Chazelle91], but it is too complicated – practical algorithms run in O(n log n) Felkel: Computational geometry (3 / 79) Terminology Simple polygon = region enclosed by a closed polygonal chain that does not intersect itself Visible points ! = two points on the boundary are visible if the interior of the line segment joining them lies entirely in the interior of the polygon Diagonal = line segment joining any pair of visible vertices Felkel: Computational geometry (4 / 79) Terminology A polygonal chain C is strictly monotone with respect to line L, if any line orthogonal to L intersects C in at most one point A chain C is monotone with respect to line L, if any -
38 POINT LOCATION Jack Snoeyink
38 POINT LOCATION Jack Snoeyink INTRODUCTION “Where am I?” is a basic question for many computer applications that employ geometric structures (e.g., in computer graphics, geographic information systems, robotics, and databases). Given a set of disjoint geometric objects, the point- location problem asks for the object containing a query point that is specified by its coordinates. Instances of the problem vary in the dimension and type of objects and whether the set is static or dynamic. Classical solutions vary in preprocessing time, space used, and query time. Recent solutions also consider entropy of the query distribution, or exploit randomness, external memory, or capabilities of the word RAM machine model. Point location has inspired several techniques for structuring geometric data, which we survey in this chapter. We begin with point location in one dimension (Section 38.1) or in one polygon (Section 38.2). In two dimensions, we look at how techniques of persistence, fractional cascading, trapezoid graphs, or hierarchi- cal triangulations can lead to optimal comparison-based methods for point location in static subdivisions (Section 38.3), the current best methods for dynamic subdi- visions (Section 38.4), and at methods not restricted to comparison-based models (Section 38.5). There are fewer results on point location in higher dimensions; these we mention in (Section 38.6). The vision/robotics term localization refers to the opposite problem of de- termining (approximate) coordinates from the surrounding local geometry. This chapter deals exclusively with point location. 38.1 ONE-DIMENSIONAL POINT LOCATION The simplest nontrivial instance of point location is list searching. -
An Experimental Study of Point Location in Planar Arrangements in Cgal
An Experimental Study of Point Location in Planar Arrangements in Cgal IDIT HARAN Tel-Aviv University and DAN HALPERIN Tel-Aviv University We study the performance in practice of various point-location algorithms implemented in Cgal (the Computational Geometry Algorithms Library), including a newly devised Landmarks algo- rithm. Among the other algorithms studied are: a na¨ıve approach, a \walk along a line" strategy and a trapezoidal-decomposition based search structure. The current implementation addresses general arrangements of planar curves, including arrangements of non-linear segments (e.g., conic arcs) and allows for degenerate input (for example, more than two curves intersecting in a single point, or overlapping curves). The algorithms use exact geometric computation and thus result with the correct point location. In our Landmarks algorithm (a.k.a. Jump & Walk), special points, \landmarks", are chosen in a preprocessing stage, their place in the arrangement is found, and they are inserted into a data-structure that enables efficient nearest-neighbor search. Given a query point, the nearest landmark is located and a \walk" strategy is applied from the landmark to the query point. We report on various experiments with arrangements composed of line segments or conic arcs. The results indicate that comparing to the other algorithms tested, the Landmarks approach is the most efficient, when the overall (amortized) cost of a query is taken into account, combining both preprocessing and query time. The simplicity of the algorithm enables an al- most straightforward implementation and rather easy maintenance. The generic programming implementation allows versatility both in the selected type of landmarks, and in the choice of the nearest-neighbor search structure.