Calcisponges Have a Parahox Gene and Dynamic Expression of 2 Dispersed NK Homeobox Genes 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constraints on Genes Shape Long-Term Conservation of Macro-Synteny in Metazoan Genomes
Lv et al. BMC Bioinformatics 2011, 12(Suppl 9):S11 http://www.biomedcentral.com/1471-2105/12/S9/S11 PROCEEDINGS Open Access Constraints on genes shape long-term conservation of macro-synteny in metazoan genomes Jie Lv, Paul Havlak, Nicholas H Putnam* From Ninth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com- parative Genomics Galway, Ireland. 8-10 October 2011 Abstract Background: Many metazoan genomes conserve chromosome-scale gene linkage relationships (“macro-synteny”) from the common ancestor of multicellular animal life [1-4], but the biological explanation for this conservation is still unknown. Double cut and join (DCJ) is a simple, well-studied model of neutral genome evolution amenable to both simulation and mathematical analysis [5], but as we show here, it is not sufficent to explain long-term macro- synteny conservation. Results: We examine a family of simple (one-parameter) extensions of DCJ to identify models and choices of parameters consistent with the levels of macro- and micro-synteny conservation observed among animal genomes. Our software implements a flexible strategy for incorporating genomic context into the DCJ model to incorporate various types of genomic context (“DCJ-[C]”), and is available as open source software from http://github.com/ putnamlab/dcj-c. Conclusions: A simple model of genome evolution, in which DCJ moves are allowed only if they maintain chromosomal linkage among a set of constrained genes, can simultaneously account for the level of macro- synteny conservation and for correlated conservation among multiple pairs of species. Simulations under this model indicate that a constraint on approximately 7% of metazoan genes is sufficient to constrain genome rearrangement to an average rate of 25 inversions and 1.7 translocations per million years. -
University of Copenhagen, Zoological Museum, Review Universitetsparken 15, DK-2100 Copenhagen, Denmark CN, 0000-0001-6898-7655 Cite This Article: Nielsen C
Early animal evolution a morphologist's view Nielsen, Claus Published in: Royal Society Open Science DOI: 10.1098/rsos.190638 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Nielsen, C. (2019). Early animal evolution: a morphologist's view. Royal Society Open Science, 6(7), 1-10. [190638]. https://doi.org/10.1098/rsos.190638 Download date: 30. sep.. 2021 Early animal evolution: a morphologist’s view royalsocietypublishing.org/journal/rsos Claus Nielsen The Natural History Museum of Denmark, University of Copenhagen, Zoological Museum, Review Universitetsparken 15, DK-2100 Copenhagen, Denmark CN, 0000-0001-6898-7655 Cite this article: Nielsen C. 2019 Early animal evolution: a morphologist’s view. R. Soc. open sci. Two hypotheses for the early radiation of the metazoans are vividly discussed in recent phylogenomic studies, the ‘Porifera- 6: 190638. first’ hypothesis, which places the poriferans as the sister group http://dx.doi.org/10.1098/rsos.190638 of all other metazoans, and the ‘Ctenophora-first’ hypothesis, which places the ctenophores as the sister group to all other metazoans. It has been suggested that an analysis of morphological characters (including specific molecules) could Received: 5 April 2019 throw additional light on the controversy, and this is the aim of Accepted: 4 July 2019 this paper. Both hypotheses imply independent evolution of nervous systems in Planulozoa and Ctenophora. The Porifera- first hypothesis implies no homoplasies or losses of major characters. The Ctenophora-first hypothesis shows no important synapomorphies of Porifera, Planulozoa and Placozoa. It implies Subject Category: either independent evolution, in Planulozoa and Ctenophora, of Biology (whole organism) a new digestive system with a gut with extracellular digestion, which enables feeding on larger organisms, or the subsequent Subject Areas: loss of this new gut in the Poriferans (and the re-evolution of the evolution collar complex). -
About Synteny Analysis
Chris Shaffer Last update: 08/11/2021 About Synteny Analysis In eukaryotes, synteny analysis is really the investigation of how chromosomes, or large sections of chromosomes evolve over time. To investigate this, scientists compare the order and orientation of either genes or DNA sequences between homologous chromosomes from two or more species (syntenic blocks). Genes within a syntenic region may have similar functional constraints or regulatory regimes that function best when they are kept together. In the lab, flies exhibit chromosomal changes such as duplications, deletions, and inversions, particularly when exposed to mutagens such as x-rays; the question is what kinds of changes happen in the wild, and at what rate? Analysis of such changes gives us information about what changes can be tolerated and provides insights into speciation. To search for chromosome changes that occurred over the course of fruit fly evolution, you can compare the order and orientation of the genes in your project with the order and orientation of the orthologous genes in Drosophila melanogaster. There are three basic steps to the process: 1. Determine orthologs If you are going to decide how genes change order/orientation you first need to make sure you are looking at orthologous genes in each species. If you have assigned orthology during annotation you can use that assignment. If not, you will need to do cross-species BLAST searches. 2. Assess position Once you have the orthology assigned, use your favorite genome browser (e.g. GBrowse or JBrowse on FlyBase) to find the position and orientation of each gene in your project. -
“Parent-Daughter” Relationships Among Vertebrate Paralogs
Reconstruction of the deep history of “Parent-Daughter” relationships among vertebrate paralogs Haiming Tang*, Angela Wilkins Mercury Data Science, Houston, TX, 77098 * Corresponding author Abstract: Gene duplication is a major mechanism through which new genetic material is generated. Although numerous methods have been developed to differentiate the ortholog and paralogs, very few differentiate the “Parent-Daughter” relationship among paralogous pairs. As coined by the Mira et al, we refer the “Parent” copy as the paralogous copy that stays at the original genomic position of the “original copy” before the duplication event, while the “Daughter” copy occupies a new genomic locus. Here we present a novel method which combines the phylogenetic reconstruction of duplications at different evolutionary periods and the synteny evidence collected from the preserved homologous gene orders. We reconstructed for the first time a deep evolutionary history of “Parent-Daughter” relationships among genes that were descendants from 2 rounds of whole genome duplications (2R WGDs) at early vertebrates and were further duplicated in later ceancestors like early Mammalia and early Primates. Our analysis reveals that the “Parent” copy has significantly fewer accumulated mutations compared with the “Daughter” copy since their divergence after the duplication event. More strikingly, we found that the “Parent” copy in a duplication event continues to be the “Parent” of the younger successive duplication events which lead to “grand-daughters”. Data availability: we have made the “Parent-Daughter” relationships publicly available at https://github.com/haimingt/Parent-Daughter-In-Paralogs/ Introduction Gene duplication has been widely accepted as a shaping force in evolution (Zhang, et al. -
Breakup of a Homeobox Cluster After Genome Duplication in Teleosts
Breakup of a homeobox cluster after genome duplication in teleosts John F. Mulley*, Chi-hua Chiu†, and Peter W. H. Holland*‡ *Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom; and †Rutgers University, Department of Genetics, Life Sciences Building, Piscataway, NJ 08854 Edited by Eric H. Davidson, California Institute of Technology, Pasadena, CA, and approved May 11, 2006 (received for review January 13, 2006) Several families of homeobox genes are arranged in genomic been active throughout vertebrate history, we show that in the clusters in metazoan genomes, including the Hox, ParaHox, NK, ray-finned fish clade, the ParaHox gene cluster was lost in the Rhox, and Iroquois gene clusters. The selective pressures respon- evolution of teleosts after divergence from more basal ray- sible for maintenance of these gene clusters are poorly under- finned fish. stood. The ParaHox gene cluster is evolutionarily conserved be- tween amphioxus and human but is fragmented in teleost fishes. Results We show that two basal ray-finned fish, Polypterus and Amia, each We searched the emerging genome sequences of zebrafish possess an intact ParaHox cluster; this implies that the selective (Danio rerio; www.sanger.ac.uk͞Projects͞Drerio) and two pressure maintaining clustering was lost after whole-genome pufferfish [Tetraodon nigroviridis (10) and Takifugu rubripes duplication in teleosts. Cluster breakup is because of gene loss, not (11)] for DNA sequences assignable to the Gsx, Xlox, and Cdx transposition or inversion, and the total number of ParaHox genes gene families. Comparison between species gave a consistent is the same in teleosts, human, mouse, and frog. -
Inferring Synteny Between Genome Assemblies: a Systematic Evaluation Dang Liu1,2, Martin Hunt3,4 and Isheng J Tsai1,2*
Liu et al. BMC Bioinformatics (2018) 19:26 DOI 10.1186/s12859-018-2026-4 RESEARCH ARTICLE Open Access Inferring synteny between genome assemblies: a systematic evaluation Dang Liu1,2, Martin Hunt3,4 and Isheng J Tsai1,2* Abstract Background: Genome assemblies across all domains of life are being produced routinely. Initial analysis of a new genome usually includes annotation and comparative genomics. Synteny provides a framework in which conservation of homologous genes and gene order is identified between genomes of different species. The availability of human and mouse genomes paved the way for algorithm development in large-scale synteny mapping, which eventually became an integral part of comparative genomics. Synteny analysis is regularly performed on assembled sequences that are fragmented, neglecting the fact that most methods were developed using complete genomes. It is unknown to what extent draft assemblies lead to errors in such analysis. Results: We fragmented genome assemblies of model nematodes to various extents and conducted synteny identification and downstream analysis. We first show that synteny between species can be underestimated up to 40% and find disagreements between popular tools that infer synteny blocks. This inconsistency and further demonstration of erroneous gene ontology enrichment tests raise questions about the robustness of previous synteny analysis when gold standard genome sequences remain limited. In addition, assembly scaffolding using a reference guided approach with a closely related species may result in chimeric scaffolds with inflated assembly metrics if a true evolutionary relationship was overlooked. Annotation quality, however, has minimal effect on synteny if the assembled genome is highly contiguous. Conclusions: Our results show that a minimum N50 of 1 Mb is required for robust downstream synteny analysis, which emphasizes the importance of gold standard genomes to the science community, and should be achieved given the current progress in sequencing technology. -
New Genomic Data and Analyses Challenge the Traditional Vision of Animal Epithelium Evolution
New genomic data and analyses challenge the traditional vision of animal epithelium evolution Hassiba Belahbib, Emmanuelle Renard, Sébastien Santini, Cyril Jourda, Jean-Michel Claverie, Carole Borchiellini, André Le Bivic To cite this version: Hassiba Belahbib, Emmanuelle Renard, Sébastien Santini, Cyril Jourda, Jean-Michel Claverie, et al.. New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genomics, BioMed Central, 2018, 19 (1), pp.393. 10.1186/s12864-018-4715-9. hal-01951941 HAL Id: hal-01951941 https://hal-amu.archives-ouvertes.fr/hal-01951941 Submitted on 11 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Belahbib et al. BMC Genomics (2018) 19:393 https://doi.org/10.1186/s12864-018-4715-9 RESEARCHARTICLE Open Access New genomic data and analyses challenge the traditional vision of animal epithelium evolution Hassiba Belahbib1, Emmanuelle Renard2, Sébastien Santini1, Cyril Jourda1, Jean-Michel Claverie1*, Carole Borchiellini2* and André Le Bivic3* Abstract Background: The emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. -
A Fast, General Synteny Detection Engine
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446950; this version posted June 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Discovery, Article A fast, general synteny detection engine Joseph B. Ahrens1*, Kristen J. Wade1 and David D. Pollock1* 1Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado, USA * Corresponding authors Joseph B. Ahrens E-mail: [email protected] David D. Pollock E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446950; this version posted June 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The increasingly widespread availability of genomic data has created a growing need for fast, sensitive and scalable comparative analysis methods. A key aspect of comparative genomic analysis is the study of synteny, co-localized gene clusters shared among genomes due to descent from common ancestors. Synteny can provide unique insight into the origin, function, and evolution of genome architectures, but methods to identify syntenic patterns in genomic datasets are often inflexible and slow, and use diverse definitions of what counts as likely synteny. Moreover, the reliable identification of putatively syntenic regions (i.e., whether they are truly indicative of homology) with different lengths and signal to noise ratios can be difficult to quantify. -
Identifying Regions of Conserved Synteny Between
IDENTIFYING REGIONS OF CONSERVED SYNTENY BETWEEN PEA (PISUM SPP.), LENTIL (LENS SPP.), AND BEAN (PHASEOLUS SPP.) by Matthew Durwin Moffet A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Plant Sciences MONTANA STATE UNIVERSITY Bozeman, Montana August 2006 © COPYRIGHT by Matthew Durwin Moffet 2006 All Rights Reserved ii APPROVAL of a thesis submitted by Matthew Durwin Moffet This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Norman Weeden Approved for the Department of Plant Sciences and Plant Pathology Dr. John Sherwood Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Matthew Durwin Moffet August 2006 iv ACKNOWLEDGEMENTS I would like to acknowledge and thank the following individuals: my past and present academic advisors Dr. Dan Bergey, Dr. -
Cellular and Molecular Processes Leading to Embryo Formation In
Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini To cite this version: Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes through- out animal evolution. Development Genes and Evolution, Springer Verlag, 2013, 223, pp.5 - 22. 10.1007/s00427-012-0399-3. hal-01456624 HAL Id: hal-01456624 https://hal.archives-ouvertes.fr/hal-01456624 Submitted on 5 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author's personal copy Dev Genes Evol (2013) 223:5–22 DOI 10.1007/s00427-012-0399-3 REVIEW Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander V. Ereskovsky & Emmanuelle Renard & Carole Borchiellini Received: 20 December 2011 /Accepted: 26 March 2012 /Published online: 29 April 2012 # Springer-Verlag 2012 Abstract The emergence of multicellularity is regarded as metamorphosis. Thus, sponges can provide information en- one of the major evolutionary events of life. This transition abling us to better understand early animal evolution at the unicellularity/pluricellularity was acquired independently molecular level but also at the cell/cell layer level. -
The Evolution of Animal Genomes
Available online at www.sciencedirect.com ScienceDirect The evolution of animal genomes 1 2,3 Casey W Dunn and Joseph F Ryan Genome sequences are now available for hundreds of species We are still at a very early stage of the genomic revolution, sampled across the animal phylogeny, bringing key features of not unlike the state of computing in the late nineties [1]. animal genome evolution into sharper focus. The field of animal Genome sequences of various levels of quality are now evolutionary genomics has focused on identifying and available for a few hundred animal species thanks to the classifying the diversity genomic features, reconstructing the concerted efforts of large collaborative projects [2–4], more history of evolutionary changes in animal genomes, and testing recent efforts by smaller groups [5–7], and even genome hypotheses about the evolutionary relationships of animals. projects undertaken largely by independent laboratories The grand challenges moving forward are to connect [8,9]. At least 212 animal genomes have been published evolutionary changes in genomes with particular evolutionary (Figure 1) and many others are publicly available in various changes in phenotypes, and to determine which changes are stages of assembly and annotation. This sampling is still driven by selection. This will require far greater genome very biased towards animals with small genomes that can sampling both across and within species, extensive phenotype be bred in the laboratory and those from a small set of data, a well resolved animal phylogeny, and advances in phylogenetic clades. 83% of published genomes belong to comparative methods. vertebrates and arthropods (Figure 1). -
Comparative Physical Mapping Links Conservation of Microsynteny to Chromosome Structure and Recombination in Grasses
Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses John E. Bowers*, Miguel A. Arias*, Rochelle Asher*, Jennifer A. Avise*, Robert T. Ball*, Gene A. Brewer*, Ryan W. Buss*, Amy H. Chen*, Thomas M. Edwards*, James C. Estill*, Heather E. Exum*, Valorie H. Goff*, Kristen L. Herrick*, Cassie L. James Steele*, Santhosh Karunakaran*, Gmerice K. Lafayette*, Cornelia Lemke*, Barry S. Marler*, Shelley L. Masters*, Joana M. McMillan*, Lisa K. Nelson*, Graham A. Newsome*, Chike C. Nwakanma*, Rosana N. Odeh*, Cynthia A. Phelps*, Elizabeth A. Rarick*, Carl J. Rogers*, Sean P. Ryan*, Keimun A. Slaughter*, Carol A. Soderlund†, Haibao Tang*, Rod A. Wing‡, and Andrew H. Paterson*§ *Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602; and †Arizona Genomics Computational Laboratory and ‡Arizona Genomics Institute, University of Arizona, Tucson, AZ 95721 Edited by Ronald L. Phillips, University of Minnesota, St. Paul, MN, and approved July 28, 2005 (received for review March 22, 2005) Nearly finished sequences for model organisms provide a founda- duplication in sorghum appears to be Ϸ70 mya (1) vs. Ϸ12 mya in tion from which to explore genomic diversity among other taxo- maize (4) and Ͻ5 mya in sugarcane (5), promising a higher success nomic groups. We explore genome-wide microsynteny patterns rate in relating sorghum genes to phenotypes by knockouts than between the rice sequence and two sorghum physical maps that either maize or sugarcane genes. Comparison of SB and closely integrate genetic markers, bacterial artificial chromosome (BAC) related Sorghum propinquum (SP) promises to shed new light on fingerprints, and BAC hybridization data.