Vaibhav Saxena Profile Education Technical Expertise Professional
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stardust: Accessible and Transparent GPU Support for Information Visualization Rendering
Eurographics Conference on Visualization (EuroVis) 2017 Volume 36 (2017), Number 3 J. Heer, T. Ropinski and J. van Wijk (Guest Editors) Stardust: Accessible and Transparent GPU Support for Information Visualization Rendering Donghao Ren1, Bongshin Lee2, and Tobias Höllerer1 1University of California, Santa Barbara, United States 2Microsoft Research, Redmond, United States Abstract Web-based visualization libraries are in wide use, but performance bottlenecks occur when rendering, and especially animating, a large number of graphical marks. While GPU-based rendering can drastically improve performance, that paradigm has a steep learning curve, usually requiring expertise in the computer graphics pipeline and shader programming. In addition, the recent growth of virtual and augmented reality poses a challenge for supporting multiple display environments beyond regular canvases, such as a Head Mounted Display (HMD) and Cave Automatic Virtual Environment (CAVE). In this paper, we introduce a new web-based visualization library called Stardust, which provides a familiar API while leveraging GPU’s processing power. Stardust also enables developers to create both 2D and 3D visualizations for diverse display environments using a uniform API. To demonstrate Stardust’s expressiveness and portability, we present five example visualizations and a coding playground for four display environments. We also evaluate its performance by comparing it against the standard HTML5 Canvas, D3, and Vega. Categories and Subject Descriptors (according to ACM CCS): -
Tessellation and Rendering of Trimmed NURBS Models in Scene Graph Systems
Tessellation and rendering of trimmed NURBS models in scene graph systems Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultat¨ der Rheinischen Friedrich-Wilhelms-Universitat¨ Bonn vorgelegt von Dipl.-Inform. Akos´ Balazs´ aus Budapest/Ungarn Munchen,¨ April 2008 Universitat¨ Bonn, Institut fur¨ Informatik II Romerstraße¨ 164, 53117 Bonn Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat¨ der Rheinischen Friedrich-Wilhelms Universitat¨ Bonn. Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert. Dekan: Prof. Dr. Armin B. Cremers 1. Referent: Prof. Dr. Reinhard Klein 2. Referent: Prof. Dr. Andreas Weber Tag der Promotion: 25.09.2008 Erscheinungsjahr: 2008 I To the memory of my father To my parents, for making all of this possible. II III Acknowledgements “Standing on the shoulders of giants” - Isaac Newton once wrote, and this sentence describes how I feel about the support many people have given me during the writing of this thesis. Acknowledging their support here is beyond doubt not enough to express my sincere appreciation for their help, yet, I hope they know what their backing has meant to me. First and foremost, I must thank my advisor Prof. Dr. Reinhard Klein, whose inspi- ration, patience and guidance made writing this thesis possible. His occasional nudges were also necessary to keep me on the right track and for this I cannot be grateful enough. I would like to thank -
Opengl Shading Languag 2Nd Edition (Orange Book)
OpenGL® Shading Language, Second Edition By Randi J. Rost ............................................... Publisher: Addison Wesley Professional Pub Date: January 25, 2006 Print ISBN-10: 0-321-33489-2 Print ISBN-13: 978-0-321-33489-3 Pages: 800 Table of Contents | Index "As the 'Red Book' is known to be the gold standard for OpenGL, the 'Orange Book' is considered to be the gold standard for the OpenGL Shading Language. With Randi's extensive knowledge of OpenGL and GLSL, you can be assured you will be learning from a graphics industry veteran. Within the pages of the second edition you can find topics from beginning shader development to advanced topics such as the spherical harmonic lighting model and more." David Tommeraasen, CEO/Programmer, Plasma Software "This will be the definitive guide for OpenGL shaders; no other book goes into this detail. Rost has done an excellent job at setting the stage for shader development, what the purpose is, how to do it, and how it all fits together. The book includes great examples and details, and good additional coverage of 2.0 changes!" Jeffery Galinovsky, Director of Emerging Market Platform Development, Intel Corporation "The coverage in this new edition of the book is pitched just right to help many new shader- writers get started, but with enough deep information for the 'old hands.'" Marc Olano, Assistant Professor, University of Maryland "This is a really great book on GLSLwell written and organized, very accessible, and with good real-world examples and sample code. The topics flow naturally and easily, explanatory code fragments are inserted in very logical places to illustrate concepts, and all in all, this book makes an excellent tutorial as well as a reference." John Carey, Chief Technology Officer, C.O.R.E. -
Rapid Prototyping for Virtual Environments
Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Dissertations Electrical & Computer Engineering Winter 2008 Rapid Prototyping for Virtual Environments Emre Baydogan Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons Recommended Citation Baydogan, Emre. "Rapid Prototyping for Virtual Environments" (2008). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/pb9g-mv96 https://digitalcommons.odu.edu/ece_etds/45 This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. RAPID PROTOTYPING FOR VIRTUAL ENVIRONMENTS by Emre Baydogan B.S. June 1999, Marmara University, Turkey M.S. June 2001, Marmara University, Turkey A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY ELECTRICAL AND COMPUTER ENGINEERING OLD DOMINION UNIVERSITY December 2008 Lee A. Belfore, H (Director) K. Vijayan Asari Jesmca R. Crouch ABSTRACT RAPID PROTOTYPING FOR VIRTUAL ENVIRONMENTS Emre Baydogan Old Dominion University, 2008 Director: Dr. Lee A. Belfore, II Development of Virtual Environment (VE) applications is challenging where appli cation developers are required to have expertise in the target VE technologies along with the problem domain expertise. New VE technologies impose a significant learn ing curve to even the most experienced VE developer. The proposed solution relies on synthesis to automate the migration of a VE application to a new unfamiliar VE platform/technology. -
Data Management for Augmented Reality Applications
Technische Universitat¨ Munchen¨ c c c c Fakultat¨ fur¨ Informatik c c c c c c c c c c c c Diplomarbeit Data Management for Augmented Reality Applications ARCHIE: Augmented Reality Collaborative Home Improvement Environment Marcus Tonnis¨ Technische Universitat¨ Munchen¨ c c c c Fakultat¨ fur¨ Informatik c c c c c c c c c c c c Diplomarbeit Data Management for Augmented Reality Applications ARCHIE: Augmented Reality Collaborative Home Improvement Environment Marcus Tonnis¨ Aufgabenstellerin: Prof. Gudrun Klinker, Ph.D. Betreuer: Dipl.-Inf. Martin Bauer Abgabedatum: 15. Juli 2003 Ich versichere, daß ich diese Diplomarbeit selbstandig¨ verfaßt und nur die angegebenen Quellen und Hilfsmittel verwendet habe. Munchen,¨ den 15. Juli 2003 Marcus Tonnis¨ Zusammenfassung Erweiterte Realitat¨ (Augmented Reality, AR) ist eine neue Technologie, die versucht, reale und virtuelle Umgebungen zu kombinieren. Gemeinhin werden Brillen mit eingebauten Computerdisplays benutzt um eine visuelle Er- weiterung der Umgebung des Benutzers zu erreichen. In das Display der Brillen, die Head Mounted Displays genannt werden, konnen¨ virtuelle Objekte projiziert werden, die fur¨ den Benutzer ortsfest erscheinen. Das am Lehrstuhl fur¨ Angewandte Softwaretechnik der Technischen Universitat¨ Munchen¨ angesiedelte Projekt DWARF versucht, Methoden des Software Engineering zu benutzen, um durch wiederverwendbare Komponenten die prototypische Implementierung neuer Komponenten zu beschleunigen. DWARF besteht aus einer Sammlung von Softwarediensten, die auf mobiler verteilter Hardware agieren und uber¨ drahtlose oder fest verbundene Netzwerke miteinander kom- munizieren konnen.¨ Diese Kommunikation erlaubt, personalisierte Komponenten mit einge- betteten Diensten am Korper¨ mit sich zu fuhren,¨ wahrend¨ Dienste des Umfeldes intelligente Umgebungen bereitstellen konnen.¨ Die Dienste erkennen sich gegenseitig und konnen¨ dy- namisch kooperieren, um gewunschte¨ Funktionalitat¨ zu erreichen, die fur¨ Augmented Rea- lity Anwendungen gewunscht¨ ist. -
Opensg Starter Guide 1.2.0
OpenSG Starter Guide 1.2.0 Generated by Doxygen 1.3-rc2 Wed Mar 19 06:23:28 2003 Contents 1 Introduction 3 1.1 What is OpenSG? . 3 1.2 What is OpenSG not? . 4 1.3 Compilation . 4 1.4 System Structure . 5 1.5 Installation . 6 1.6 Making and executing the test programs . 6 1.7 Making and executing the tutorials . 6 1.8 Extending OpenSG . 6 1.9 Where to get it . 7 1.10 Scene Graphs . 7 2 Base 9 2.1 Base Types . 9 2.2 Log . 9 2.3 Time & Date . 10 2.4 Math . 10 2.5 System . 11 2.6 Fields . 11 2.7 Creating New Field Types . 12 2.8 Base Functors . 13 2.9 Socket . 13 2.10 StringConversion . 16 3 Fields & Field Containers 17 3.1 Creating a FieldContainer instance . 17 3.2 Reference counting . 17 3.3 Manipulation . 18 3.4 FieldContainer attachments . 18 ii CONTENTS 3.5 Data separation & Thread safety . 18 4 Image 19 5 Nodes & NodeCores 21 6 Groups 23 6.1 Group . 23 6.2 Switch . 23 6.3 Transform . 23 6.4 ComponentTransform . 23 6.5 DistanceLOD . 24 6.6 Lights . 24 7 Drawables 27 7.1 Base Drawables . 27 7.2 Geometry . 27 7.3 Slices . 35 7.4 Particles . 35 8 State Handling 37 8.1 BlendChunk . 39 8.2 ClipPlaneChunk . 39 8.3 CubeTextureChunk . 39 8.4 LightChunk . 39 8.5 LineChunk . 39 8.6 PointChunk . 39 8.7 MaterialChunk . 40 8.8 PolygonChunk . 40 8.9 RegisterCombinersChunk . -
A Survey of Technologies for Building Collaborative Virtual Environments
The International Journal of Virtual Reality, 2009, 8(1):53-66 53 A Survey of Technologies for Building Collaborative Virtual Environments Timothy E. Wright and Greg Madey Department of Computer Science & Engineering, University of Notre Dame, United States Whereas desktop virtual reality (desktop-VR) typically uses Abstract—What viable technologies exist to enable the nothing more than a keyboard, mouse, and monitor, a Cave development of so-called desktop virtual reality (desktop-VR) Automated Virtual Environment (CAVE) might include several applications? Specifically, which of these are active and capable display walls, video projectors, a haptic input device (e.g., a of helping us to engineer a collaborative, virtual environment “wand” to provide touch capabilities), and multidimensional (CVE)? A review of the literature and numerous project websites indicates an array of both overlapping and disparate approaches sound. The computing platforms to drive these systems also to this problem. In this paper, we review and perform a risk differ: desktop-VR requires a workstation-class computer, assessment of 16 prominent desktop-VR technologies (some mainstream OS, and VR libraries, while a CAVE often runs on building-blocks, some entire platforms) in an effort to determine a multi-node cluster of servers with specialized VR libraries the most efficacious tool or tools for constructing a CVE. and drivers. At first, this may seem reasonable: different levels of immersion require different hardware and software. Index Terms—Collaborative Virtual Environment, Desktop However, the same problems are being solved by both the Virtual Reality, VRML, X3D. desktop-VR and CAVE systems, with specific issues including the management and display of a three dimensional I. -
High-Performance Computing at SGI and the Status of Climate and Weather Codes on the SGI Altix Gerardo Cisneros, Ph.D
High-Performance Computing at SGI and the Status of Climate and Weather Codes on the SGI Altix Gerardo Cisneros, Ph.D. Scientist C2004 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, IRIX, Origin, Onyx, Onyx2, IRIS, Altix, InfiniteReality, Challenge, Reality Center, Geometry Engine, ImageVision Library, OpenGL, XFS, the SGI logo and the SGI cube are registered trademarks and CXFS, Onyx4, InfinitePerformance, IRIS GL, Power Series, Personal IRIS, Power Challenge, NUMAflex, REACT, Open Inventor, OpenGL Performer, OpenGL, Optimizer, OpenGL Volumizer, OpenGL Shader, OpenGL Multipipe, OpenGL Vizserver, SkyWriter, RealityEngine, SGI ProPack, Performance Co- Pilot, SGI Advanced Linux, UltimateVision and The Source of Innovation and Discovery are trademarks of Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. Linux is a registered trademark of Linus Torvalds in several countries, used with permission by Silicon Graphics, Inc. MIPS is a registered trademark of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc. Intel and Itanium are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. in the United States and other countries. Linux penguin logo created by Larry Ewing. All other trademarks mentioned herein are the property of their respective owners. (04/04) 9/9/2004 Slide 2 AA Overview • Company focus • SGI Altix: present and future • Performance -
Chapterr 3 Thee Uva-DRIVE Virtual Reality System* *
UvA-DARE (Digital Academic Repository) Interactive Exploration in Virtual Environments Belleman, R.G. Publication date 2003 Link to publication Citation for published version (APA): Belleman, R. G. (2003). Interactive Exploration in Virtual Environments. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 Chapterr 3 Thee UvA-DRIVE virtual reality system* * "The"The ultimate display would, of course, be a room within whichwhich the computer can control the existence of matter. AA chair displayed in such a room would be good enough toto sit in. Handcuffs displayed in such a room would be confining,confining, a bullet displayed in such a room will be fatal. WithWith the appropriate programming, such a display could literallyliterally be the Wonderland into which Alice walked." IvanIvan Sutherland, The Ultimate Display, Proceedings of thee IFIP Congress, 2, pages 506-508, 1965. -
First 6-Monthly EPOCH Pipeline Description
IST-2002- 507382 EPOCH Excellence in Processing Open Cultural Heritage Network of Excellence Information Society Technologies D3.3.2: 2nd 6-monthly EPOCH Pipeline Description Due date of deliverable: 29 April 2005 Actual submission date: 27 April 2005 Start date of project: 15 March 2004 Duration: 4 Years University of Leuven Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) D3.3.2: SECOND 6-MONTHLY EPOCH PIPELINE DESCRIPTION Table of Contents Work package 3, activity 3.3: Common infrastructure .......................................... 3 Objectives.............................................................................................................................. 3 Description of work............................................................................................................... 3 Input from other EPOCH teams............................................................................... 5 Input from the Stakeholder Needs team ................................................................................ 5 Input from the Standards team .............................................................................................. 5 From the Pipeline to a Common Infrastructure .................................................... -
Distributed Openscenegraph
Distributed OpenSceneGraph Master Thesis Thomas Samuelsen Supervisors: Professor Otto J. Anshus And Associative Professor John Markus Bjørndalen. Department of computer Science Faculty of Science University of Tromsø 9037 Tromsø 2007 1 Abstract This thesis presents the design and implementation of Distributed OpenSceneGraph. Distributed OpenSceneGraph is a graphics visualization toolkit for distributed applications, in particular for tiled display wall systems. Distributed OpenSceneGraph allows for flexible and reasonably transparent development of distributed graphics applications by introducing the notion of distributed nodes into the well know OpenSceneGraph graphics toolkit. By letting the Distributed OpenSceneGraph only concern itself with the state of individual scene graph nodes we achieve a great degree of flexibility. It is not in any way enforced that the local scene graph copies in any of the processes that make up the distributed system must be identical, nor is it necessary that all or any of the distributed nodes in the total distributed application be present in a processes scene graph copy. This enables an application developer to create applications with radically different scenes while still distributing what needs to be. An important focus when implementing Distributed OpenSceneGraph was transparency. Therefore a lot of effort has been laid into enabling application developers to use Distributed OpenSceneGraph with only a few extra function calls beyond what they would have encountered when creating undistributed OpenSceneGraph applications. The flexibility and transparency introduced to visualization of application data makes Distributed OpenSceneGraph suitable for use in the development of distributed graphics applications. At time of writing the Distributed OpenSceneGraph library is unfortunately not quite finished. However a number of measurements and possible solutions are presented to show the path onwards. -
A Scalable Spatial Sound Library for Opensg
OpenSG Symposium (2003) D. Reiners (Editor) TRIPS – A Scalable Spatial Sound Library for OpenSG Tomas Neumann, Christoph Fünfzig and Dieter Fellner Institute of Computer Graphics, Technical University of Braunschweig, Germany Abstract We present a Sound Library that is scalable on several computers and that brings the idea of a self-organized scenegraph to the Sound Library’s interface. It supports the implementation of audio features right from the start at a high productivity level for rapid prototypes as well as for professional applications in the immersive domain. The system is built on top of OpenSG 12 which offers a high level of functionality for visual applications and research, but does not come with audio support. We show and compare the effort to implement audio in an OpenSG application with and without TRIPS. Today’s audio systems only accept raw 3D-coordinates and are limited to run on the same computer and the same operating system than the application runs on. Breaking these constraints could give developers more freedom and ease to add high-quality spatial sound to their software. Therefore, users benefit from the promising potential OpenSG offers. Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Multimedia Information Systems]: Audio input/output H.5.5 [Sound and Music Computing]: Systems I.3.7 [Computer Graphics]: Virtual Reality Keywords: High quality spatial sound, 3D-audio, cluster system, sound API, FieldContainer, rapid prototyping, game engine, immersive system 1. Introduction tions and computer hardware rapidly developed in the last 10 years, so did the sound and multimedia field. But in a Unix- Current developments on VR applications in general and of based environment nearly all sound engines lack the ability 12 OpenSG applications in particular demand a solution for to benefit from today’s consumer soundboards, which have 3D audio support, as positional sound is more important heavily progressed over the last years as well.