Downloaded from Genbank (See Methods for Details), Our 76 Specimen 163 Dataset (71 Eulipotyphlans) Resulted in a Final Alignment of 39,414 Bp

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Genbank (See Methods for Details), Our 76 Specimen 163 Dataset (71 Eulipotyphlans) Resulted in a Final Alignment of 39,414 Bp bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426706; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Myoglobin primary structure reveals multiple convergent transitions to semi- aquatic life in the world’s smallest mammalian divers Kai He,*,1,2,3 Triston G. Eastman,1 Hannah Czolacz,4 Shuhao Li,1 Akio Shinohara,5 Shin-ichiro Kawada,6 Mark S. Springer,7 Michael Berenbrink,*,†,4 and Kevin L. Campbell*,†,1 1Department of Biological Sciences, University of Manitoba, Winnipeg, MN, Canada 2State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China 3School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China 4Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom 5Department of Bio-resources, Division of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan 6Department of Zoology, Division of Vertebrates, National Museum of Nature and Science, Tokyo, Japan 7Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA *Corresponding authors: Email: [email protected], [email protected], or [email protected] †These authors contributed equally to this work 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426706; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 Identifying the phylogenomic underpinnings of specialized phenotypes that fueled transitions 3 into new adaptive zones is central to evolutionary biology but is often confounded by a 4 fragmentary fossil record, morphological convergence, and unresolved phylogenetic 5 relationships. The speciose mammalian order Eulipotyphla (e.g., moles, shrews, hedgehogs, 6 solenodons) combines an unusual diversity of semi-aquatic, semi-fossorial, and fossorial forms 7 that arose from terrestrial forbearers, yet the ecomorphological pathways leading to these 8 lifestyles have been disputed for a century and more, calling for novel approaches. Here we 9 resolve previously intractable eulipotyphlan intra-family relationships and establish the net 10 surface charge of the oxygen-storing muscle protein myoglobin-readily determined from its 11 primary structure-as a molecular signature to trace ancient lifestyle transitions based on protein 12 sequence alone. Our analyses confidently resolve fossorial habits having evolved twice in talpid 13 moles and reveal five independent origins of a semi-aquatic lifestyle in the order housing the 14 world’s smallest endothermic divers. 15 16 Introduction 17 A fundamental challenge of evolutionary biology is to understand the phylogenomic 18 foundations of biochemical and physiological specializations that have enabled organisms to 19 proliferate into new adaptive zones. While species of most mammalian orders generally occupy a 20 single niche, members of a few mammalian lineages have radiated into a diverse range of 21 environmental habitats. The order Eulipotyphla is one such assemblage, in that terrestrial forms 22 repeatedly evolved into high-altitude, scansorial (climbing), fossorial (subterranean), semi- 23 fossorial, and semi-aquatic niches (Burgin and He 2018; He, et al. 2017). 24 The fourth largest among the 27 mammalian orders after Rodentia, Chiroptera, and 25 Cetartiodactyla, the eulipotyphlan clade consists of 527 recognized species of small 26 insectivorous mammals distributed among four extant families (Burgin, et al. 2018): Erinaceidae 27 (hedgehogs, gymnures, and moonrats), Soricidae (shrews), Talpidae (moles, shrew moles, shrew- 28 like moles, and desmans), and Solenodontidae (solenodons). A fifth family (Nesophontidae, 29 Caribbean ‘island-shrews’) only became extinct in the past 500 years following the arrival of 30 Europeans in the West Indies (MacPhee, et al. 1999). Fossil evidence supports terrestrial habits 31 as ancestral for Eulipotyphla, with shrew-like moles, erinaceids, and the majority of shrews 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426706; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 32 retaining morphological characteristics (e.g., slender legs and a long, pointed mouse-like snout; 33 fig. 1) effective for hunting and avoiding predation on land (Churchfield 1990; Nowak 1999). 34 Semi-aquatic moles and shrews possess a stream-lined body and limb adaptations for underwater 35 locomotion (Nowak 1999; Burgin and He 2018), with desmans having an outward appearance 36 more similar to that of semi-aquatic rodents (e.g., muskrat) than to that of any other 37 eulipotyphlan mammal (fig. 1). By contrast, fossorial moles have evolved powerful forelimbs 38 that are held out to the sides of their tube-shaped bodies and have large, spade-like hands facing 39 posteriorly and oriented vertically allowing them to be effective burrowers (Gorman and Stone 40 1990). Finally, semi-fossorial shrews, solenodons, and shrew moles exhibit specializations in- 41 between that of terrestrial and fossorial lineages, often retaining pointed mouse-like snouts yet 42 possessing forelimbs that are oriented downwards and backwards to facilitate digging (Gorman 43 and Stone 1990; Nowak 1999). 44 45 46 Fig. 1. Museum specimen photos illustrating the four major ecomorphotypes within the order 47 Eulipotyphla. Representative terrestrial (shrew-like mole, Uropsilus soricipes; bottom right), semi-aquatic 48 (Russian desman, Desmana moschata; right centre), strictly fossorial (Eastern mole, Scalopus aquaticus; 49 left), and semi-fossorial (Chinese long-tailed mole, Scaptonyx fusicaudus; top centre) talpid mole species 50 are given. Photo by Kai He. 51 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426706; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 52 While the lifestyle of extant eulipotyphlan mammals is easily predicted based on external 53 morphological features alone (e.g., Woodman and Gaffney 2014; Sansalone, et al. 2016; 54 Sansalone, et al. 2019), definitive assignments of transitional evolutionary stages have remained 55 elusive due to an incomplete, fragmentary fossil record (Hickman 1984; Sánchez-Villagra, et al. 56 2006; Piras, et al. 2012; Hooker 2016). Additionally, because morphological specializations 57 coincide with lifestyle across the different clades of eulipotyphlan mammals, it has been difficult 58 to discern whether fossorial and semi-aquatic specializations found in Eurasian and North 59 American moles arose in a common ancestor or are due to convergent evolution (Schwermann 60 and Thompson 2015; He, et al. 2017). As a result, long-standing questions persist regarding the 61 evolutionary pathways leading to the diverse ecomorphological variation seen in eulipotyphlan 62 mammals. 63 For example, examinations of shoulder anatomy (Campbell 1939) and skeletal musculature 64 (Whidden 1999) indicated that the shoulder and humeroclavicular joint morphology of fossorial 65 talpid species aligned more closely with semi-aquatic locomotion, suggesting that the ancestor of 66 Talpinae moles was semi-aquatic, which we here term the ‘aquatic mole’ hypothesis. 67 Conversely, Reed (1951) analyzed anatomical features from four talpid genera and proposed that 68 semi-fossorial and fossorial forms evolved from a terrestrial ancestor and that the semi-aquatic 69 lifestyle of desmans was secondary to a semi-fossorial phase, a view also shared by Grand et al. 70 (1998). Skeletal and fossil evidence also suggested that a period of strictly fossorial life preceded 71 the invasion of semi-aquatic habits by the ancestors of star-nosed moles (Condylura cristata) 72 (Hickman 1984; Grand, et al. 1998; Sanchez-Villagra, et al. 2006; Piras, et al. 2012; Hooker 73 2016), though Sansalone et al. (2016) proposed that the semi-aquatic lifestyle of this genus 74 instead represents an autapomorphy from a semi-fossorial (shrew mole-like) ancestor. 75 Adaptive morphology and behavioural/physiological specializations for diving have also 76 been well documented for members of the family Soricidae (Hutterer 1985; Catania, et al. 2008; 77 Burgin and He 2018), though uncertainties regarding the evolution of semi-aquatic habits in this 78 clade are also pervasive. For example, semi-aquatic members of four genera, Sorex (North 79 American water shrews), Neomys (European water shrews), Chimarrogale (Asian water shrews), 80 and Nectogale (Elegant water shrews) show a graded series of progressively greater 81 morphological adaptations for underwater foraging (Hutterer 1985), yet phylogenetic analyses 82 strongly refute a common ancestry of aquatic exploitation
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Cryptic Phylogeographic History Sheds Light on the Generation of Species Diversity in Sky-Island Mountains
    bioRxiv preprint doi: https://doi.org/10.1101/199786; this version posted October 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cryptic phylogeographic history sheds light on the generation of species diversity in sky-island mountains Kai He1, 2, 3, #, Tao Wan 1, 4, Klaus-Peter Koepfli 5, 6, Wei Jin7, Shao-Ying Liu7, Xue-Long Jiang1, # 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Department of Biological Sciences, University of Manitoba, Winnipeg, MN R3T R3V, Canada 3 The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan. 4 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China 5 Smithsonian Conservation Biology Institute, National Zoological Park, DC 20008, USA 6 Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg 199034, RUSSIA 7 Sichuan Academy of Forest, Chengdu 610081, Sichuan, China Keywords: allopatry, Approximate Bayesian Computation, cryptic corridor, interglacial refugia, niche modeling, species delimitation Running title: Cryptic sky-island phylogeography # Correspondence: Kai He and Xue-Long Jiang, Fax: 86 871 6512 5226; E-mails: [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/199786; this version posted October 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Interglacial Refugia Preserved High Genetic Diversity of the Chinese Mole Shrew in the Mountains of Southwest China
    Heredity (2016) 116, 23–32 & 2016 Macmillan Publishers Limited All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE Interglacial refugia preserved high genetic diversity of the Chinese mole shrew in the mountains of southwest China KHe1,2, N-Q Hu1,3, X Chen4,5, J-T Li6 and X-L Jiang1 The mountains of southwest China (MSC) harbor extremely high species diversity; however, the mechanism behind this diversity is unknown. We investigated to what degree the topography and climate change shaped the genetic diversity and diversification in these mountains, and we also sought to identify the locations of microrefugia areas in these mountains. For these purposes, we sampled extensively to estimate the intraspecific phylogenetic pattern of the Chinese mole shrew (Anourosorex squamipes)in southwest China throughout its range of distribution. Two mitochondrial genes, namely, cytochrome b (CYT B) and NADH dehydrogenase subunit 2 (ND2), from 383 archived specimens from 43 localities were determined for phylogeographic and demographic analyses. We used the continuous-diffusion phylogeographic model, extensive Bayesian skyline plot species distribution modeling (SDM) and approximate Bayesian computation (ABC) to explore the changes in population size and distribution through time of the species. Two phylogenetic clades were identified, and significantly higher genetic diversity was preserved in the southern subregion of the mountains. The results of the SDM, continuous-diffusion phylogeographic model, extensive Bayesian skyline plot and ABC analyses were congruent and supported that the Last Interglacial Maximum (LIG) was an unfavorable period for the mole shrews because of a high degree of seasonality; A. squamipes survived in isolated interglacial refugia mainly located in the southern subregion during the LIG and rapidly expanded during the last glacial period.
    [Show full text]
  • Special Publications Museum of Texas Tech University Number 63 18 September 2014
    Special Publications Museum of Texas Tech University Number 63 18 September 2014 List of Recent Land Mammals of Mexico, 2014 José Ramírez-Pulido, Noé González-Ruiz, Alfred L. Gardner, and Joaquín Arroyo-Cabrales.0 Front cover: Image of the cover of Nova Plantarvm, Animalivm et Mineralivm Mexicanorvm Historia, by Francisci Hernández et al. (1651), which included the first list of the mammals found in Mexico. Cover image courtesy of the John Carter Brown Library at Brown University. SPECIAL PUBLICATIONS Museum of Texas Tech University Number 63 List of Recent Land Mammals of Mexico, 2014 JOSÉ RAMÍREZ-PULIDO, NOÉ GONZÁLEZ-RUIZ, ALFRED L. GARDNER, AND JOAQUÍN ARROYO-CABRALES Layout and Design: Lisa Bradley Cover Design: Image courtesy of the John Carter Brown Library at Brown University Production Editor: Lisa Bradley Copyright 2014, Museum of Texas Tech University This publication is available free of charge in PDF format from the website of the Natural Sciences Research Laboratory, Museum of Texas Tech University (nsrl.ttu.edu). The authors and the Museum of Texas Tech University hereby grant permission to interested parties to download or print this publication for personal or educational (not for profit) use. Re-publication of any part of this paper in other works is not permitted without prior written permission of the Museum of Texas Tech University. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for per- manence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 18 September 2014 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 63 Series Editor: Robert J.
    [Show full text]
  • Fossil Micromammals of the Early Pliocene Locality of Almenara MB: Biostratigraphical and Palaeoecological Implications
    SPANISH JOURNAL OF PALAEONTOLOGY Fossil micromammals of the early Pliocene locality of Almenara MB: biostratigraphical and palaeoecological implications Samuel MANSINO1,2*, Vicente Daniel CRESPO1,2, María LÁZARO1, Francisco Javier RUIZ- SÁNCHEZ1,2,3, Juan ABELLA3,4 & Plinio MONTOYA1 1 Departament de Geologia, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain; [email protected]; [email protected]; [email protected]; [email protected], [email protected] [email protected] 2 Museu Valencià d’Història Natural, L’Hort de Feliu, P.O. Box 8460, 46018 Alginet, Valencia, Spain 3 INCYT-UPSE, Universidad Estatal Península de Santa Elena, 7047, Santa Elena, Ecuador 4 Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifi ci ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain * Corresponding author Mansino, S., Crespo, V.D., Lázaro, M., Ruiz-sánchez, F.J., Abella, J. & Montoya, P. 2016. Fossil micromammals of the early Pliocene locality of Almenara MB: biostratigraphical and palaeoecological implications. [Micromamíferos fósiles de la localidad del Plioceno inferior de Almenara MB: implicaciones bioestratigráfi cas y paleoecológicas]. Spanish Journal of Palaeontology, 31 (2), 253-270. Manuscript received 20 October 2015 © Sociedad Española de Paleontología ISSN 2255-0550 Manuscript accepted 04 March 2016 ABSTRACT RESUMEN In this work, we have studied the fossil rodent, insectivore En este trabajo hemos estudiado los roedores, insectívoros and chiropteran faunas, of a new locality from the Almenara- y quirópteros fósiles de una nueva localidad del complejo Casablanca karstic complex, named ACB MB (Castellón, kárstico de Almenara-Casablanca, denominada ACB east Spain).
    [Show full text]
  • Late Miocene Soricidae (Mammalia) Fauna from Tardosbánya (Western Hungary)
    Hantkeniana 2, 103-125 (1998) Budapest Late Miocene Soricidae (Mammalia) fauna from Tardosbánya (Western Hungary) Lukács Gy. MÉszÁRos Eötvös Loránd University, Department ofPalaeontology H-I083 Budapest, Ludovika tér 2, Hungary (Wi th 5 figures, 6 tables and 4 plates) The Soricidae (Mamrnalia, Insectivora) elements of the rich and well preserved fossil vertebrate fauna from Tardosbánya limestone quarry (Western Hungary, Gerecse Mountains) are presented. Five species could have been identified from the material: Amblycoptus oligodon KORMOS 1926, Crusafontina konnosi (BACHMAYER& WILSON, 1970), Blarinella dubia (BACHMAYERand WILSON, 1970), Episoricuius gibberodon (PETÉNYI, 1864) and Paenelimnoecus repenningi (BACHMAYER & WILSON, 1970). The occurrence of Crusafantina, B. dubia and P. repenningi indicates that the age of the sarnple is Late Miocene. The morphometrical studies on C. konnosi, and the morphology and the low relative frequency of A. oligodon suggest that the fauna is correlative with the Turolian MN 12 Zone. The occurrence of A. oligodon, C. konnosi and E. gibberodon indicates well watered, forested environment. Introduction The Late Miocene vertebrate fauna from Tardosbánya quarry was colleeted by D. JÁNOSSY Locality (Hungarian Natural History Museum) in 1975. He gave a prelinúnary faunal list of the sample (1981, Tardosbánya is situated at the northern margin only in manuscript form) and deposited the material of the Transdanubian Central Range (Western in the Geological Museum of Hungary (GMH) (in Hungary), about 10 km north from Tatabánya (see the Geological Institute of Hungary). JÁNOSSYlisted Fig. 1). The remains have been found in a sediment- the following soricids: filled fossil shaft in the Jurassic limestone of the Gerecse Mountains, excavated by exploitation in the - "Petenyia" "red marble" quarry near Tardosbánya.
    [Show full text]
  • Uropsilus, Talpidae): Implications for Taxonomy and Conservation Tao Wan1,2†, Kai He1,3† and Xue-Long Jiang1*
    Wan et al. BMC Evolutionary Biology 2013, 13:232 http://www.biomedcentral.com/1471-2148/13/232 RESEARCH ARTICLE Open Access Multilocus phylogeny and cryptic diversity in Asian shrew-like moles (Uropsilus, Talpidae): implications for taxonomy and conservation Tao Wan1,2†, Kai He1,3† and Xue-Long Jiang1* Abstract Background: The genus Uropsilus comprises a group of terrestrial, montane mammals endemic to the Hengduan and adjacent mountains. These animals are the most primitive living talpids. The taxonomy has been primarily based on cursory morphological comparisons and the evolutionary affinities are little known. To provide insight into the systematics of this group, we estimated the first multi-locus phylogeny and conducted species delimitation, including taxon sampling throughout their distribution range. Results: We obtained two mitochondrial genes (~1, 985 bp) and eight nuclear genes (~4, 345 bp) from 56 specimens. Ten distinct evolutionary lineages were recovered from the three recognized species, eight of which were recognized as species/putative species. Five of these putative species were found to be masquerading as the gracile shrew mole. The divergence time estimation results indicated that climate change since the last Miocene and the uplift of the Himalayas may have resulted in the diversification and speciation of Uropsilus. Conclusions: The cryptic diversity found in this study indicated that the number of species is strongly underestimated under the current taxonomy. Two synonyms of gracilis (atronates and nivatus) should be given full species status, and the taxonomic status of another three potential species should be evaluated using extensive taxon sampling, comprehensive morphological, and morphometric approaches. Consequently, the conservation status of Uropsilus spp.
    [Show full text]
  • Walker's Mammals of the World. Monotremes, Marsupials, Afrotherians, Xenarthrans, and Sundatherians
    Mammalian Biology 94 (2019) 149–150 Contents lists available at ScienceDirect Mammalian Biology journal homepage: www.elsevier.com/locate/mambio Book reviews Walker’s Mammals of the World. Monotremes, Marsupi- Frank E. Zachos als, Afrotherians, Xenarthrans, and Sundatherians, R.M. Vienna, Austria Nowak. Johns Hopkins University Press, Baltimore (2018). E-mail address: [email protected] 784 pp., 508 colour photographs. Hardback. Ca. D 88. ISBN: 978-1-4214-2467-5. Available online 15 November 2018 https://doi.org/10.1016/j.mambio.2018.09.009 These are good times for mammalogists! While the milestone multi-volume encyclopedia Handbook of the Mammals of the World (HMW) is nearing completion, the famous Walker’s Mammals of the Handbook of the Mammals of the World. Vol. 8. Insectivores, World has been updated as well. And what an update it is. Rather Sloths and Colugos, D. E. Wilson and R. A. Mittermeier (chief than the classical two volumes with black-and-white photographs editors). Lynx Edicions, Barcelona (2018). 709 pp., 28 colour (the last edition is from 1999 and thus almost 20 years old), there plates, 480 colour photographs, 685 distribution maps. Hard- is now a single volume with colour photos covering monotremes, back. D 160, ISBN: 978-84-16728-08-4. marsupials, afrotherians, xenarthrans and sundatherians (ie, Scan- dentia and Dermoptera). It seems to be unclear whether further This is the penultimate volume of this milestone publication, volumes are planned but, according to the preface, they “may be covering an array of different groups: Xenarthra (only referred to issued in the future”.
    [Show full text]
  • The Genome of the Pyrenean Desman and the Effects of Bottlenecks and Inbreeding on the Genomic Landscape of an Endangered Species
    Received: 18 August 2020 | Revised: 19 March 2021 | Accepted: 27 April 2021 DOI: 10.1111/eva.13249 ORIGINAL ARTICLE The genome of the Pyrenean desman and the effects of bottlenecks and inbreeding on the genomic landscape of an endangered species Lídia Escoda | Jose Castresana Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain Abstract The Pyrenean desman (Galemys pyrenaicus) is a small semiaquatic mammal endemic Correspondence Jose Castresana, Institute of Evolutionary to the Iberian Peninsula. Despite its limited range, this species presents a strong ge- Biology (CSIC- Universitat Pompeu Fabra), netic structure due to past isolation in glacial refugia and subsequent bottlenecks. Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain. Additionally, some populations are highly fragmented today as a consequence of river Email: [email protected] barriers, causing substantial levels of inbreeding. These features make the Pyrenean Funding information desman a unique model in which to study the genomic footprints of differentiation, Plan Nacional I+D+i del Ministerio de bottlenecks and extreme isolation in an endangered species. To understand these Ciencia e Innovación, Grant/Award Number: CGL2017- 84799- P (MINECO/AEI/FEDER, UE) processes, the complete genome of the Pyrenean desman was sequenced and as- sembled using a Bloom filter- based approach. An analysis of the 1.83 Gb reference genome and the sequencing of five additional individuals from different evolutionary units allowed us to detect its main genomic characteristics. The population differen- tiation of the species was reflected in highly distinctive demographic trajectories. In addition, a severe population bottleneck during the postglacial recolonization of the eastern Pyrenees created one of the lowest genomic heterozygosity values recorded in a mammal.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • Checklist of Rodents and Insectivores of the Mordovia, Russia
    ZooKeys 1004: 129–139 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57359 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of rodents and insectivores of the Mordovia, Russia Alexey V. Andreychev1, Vyacheslav A. Kuznetsov1 1 Department of Zoology, National Research Mordovia State University, Bolshevistskaya Street, 68. 430005, Saransk, Russia Corresponding author: Alexey V. Andreychev ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020 http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332 Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359 Abstract A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivo- rous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods. Keywords Insectivores, Mordovia, rodents, spatial distribution Introduction There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of Copyright A.V.
    [Show full text]
  • Generality and Antiquity of the Island Rule Mark V
    Journal of Biogeography (J. Biogeogr.) (2013) 40, 1427–1439 SYNTHESIS Of mice and mammoths: generality and antiquity of the island rule Mark V. Lomolino1*, Alexandra A. van der Geer2, George A. Lyras2, Maria Rita Palombo3, Dov F. Sax4 and Roberto Rozzi3 1College of Environmental Science and ABSTRACT Forestry, State University of New York, Aim We assessed the generality of the island rule in a database comprising Syracuse, NY, 13210, USA, 2Netherlands 1593 populations of insular mammals (439 species, including 63 species of fos- Naturalis Biodiversity Center, Leiden, The Netherlands, 3Dipartimento di Scienze sil mammals), and tested whether observed patterns differed among taxonomic della Terra, Istituto di Geologia ambientale e and functional groups. Geoingegneria, Universita di Roma ‘La Location Islands world-wide. Sapienza’ and CNR, 00185, Rome, Italy, 4Department of Ecology and Evolutionary Methods We measured museum specimens (fossil mammals) and reviewed = Biology, Brown University, Providence, RI, the literature to compile a database of insular animal body size (Si mean 02912, USA mass of individuals from an insular population divided by that of individuals from an ancestral or mainland population, M). We used linear regressions to investigate the relationship between Si and M, and ANCOVA to compare trends among taxonomic and functional groups. Results Si was significantly and negatively related to the mass of the ancestral or mainland population across all mammals and within all orders of extant mammals analysed, and across palaeo-insular (considered separately) mammals as well. Insular body size was significantly smaller for bats and insectivores than for the other orders studied here, but significantly larger for mammals that utilized aquatic prey than for those restricted to terrestrial prey.
    [Show full text]