Symmetries of Differential Equations in Cosmology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure” of Physics: a Case Study∗ (Journal of Philosophy 106 (2009): 57–88)
The “Structure” of Physics: A Case Study∗ (Journal of Philosophy 106 (2009): 57–88) Jill North We are used to talking about the “structure” posited by a given theory of physics. We say that relativity is a theory about spacetime structure. Special relativity posits one spacetime structure; different models of general relativity posit different spacetime structures. We also talk of the “existence” of these structures. Special relativity says that the world’s spacetime structure is Minkowskian: it posits that this spacetime structure exists. Understanding structure in this sense seems important for understand- ing what physics is telling us about the world. But it is not immediately obvious just what this structure is, or what we mean by the existence of one structure, rather than another. The idea of mathematical structure is relatively straightforward. There is geometric structure, topological structure, algebraic structure, and so forth. Mathematical structure tells us how abstract mathematical objects t together to form different types of mathematical spaces. Insofar as we understand mathematical objects, we can understand mathematical structure. Of course, what to say about the nature of mathematical objects is not easy. But there seems to be no further problem for understanding mathematical structure. ∗For comments and discussion, I am extremely grateful to David Albert, Frank Arntzenius, Gordon Belot, Josh Brown, Adam Elga, Branden Fitelson, Peter Forrest, Hans Halvorson, Oliver Davis Johns, James Ladyman, David Malament, Oliver Pooley, Brad Skow, TedSider, Rich Thomason, Jason Turner, Dmitri Tymoczko, the philosophy faculty at Yale, audience members at The University of Michigan in fall 2006, and in 2007 at the Paci c APA, the Joint Session of the Aristotelian Society and Mind Association, and the Bellingham Summer Philosophy Conference. -
University of Groningen the Bianchi Classification of Maximal D = 8 Gauged Supergravities Bergshoeff, Eric; Gran, Ulf; Linares
University of Groningen The Bianchi classification of maximal D = 8 gauged supergravities Bergshoeff, Eric; Gran, Ulf; Linares, Román; Nielsen, Mikkel; Ortín, Tomás; Roest, Diederik Published in: Classical and Quantum Gravity IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2003 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bergshoeff, E., Gran, U., Linares, R., Nielsen, M., Ortín, T., & Roest, D. (2003). The Bianchi classification of maximal D = 8 gauged supergravities. Classical and Quantum Gravity, 20, 3997-4014. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 24-09-2021 INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 20 (2003) 3997–4014 -
Anisotropic, Nonsingular Early Universe Model Leading to a Realistic Cosmology
This is a repository copy of Anisotropic, nonsingular early universe model leading to a realistic cosmology. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85582/ Version: Accepted Version Article: Dechant, Pierre-Philippe orcid.org/0000-0002-4694-4010, Lasenby, Anthony and Hobson, Michael (2009) Anisotropic, nonsingular early universe model leading to a realistic cosmology. Physical Review D. 043524. ISSN 1550-2368 https://doi.org/10.1103/PhysRevD.79.043524 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ An anisotropic, non-singular early universe model leading to a realistic cosmology † ‡ Pierre-Philippe Dechant,∗ Anthony N. Lasenby, and Michael P. Hobson Astrophysics Group, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, CB3 0HE, UK (Dated: February 18, 2013) Abstract We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a non-singular ‘pancaking’ solution: the hypersurface volume goes to zero instantaneously at the ‘Big Bang’, but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the Big Bang. -
Classification of Six-Dimensional Leibniz Algebras ${\Mathcal E} 3
Classification of six-dimensional Leibniz algebras E3 Ladislav Hlavatý∗ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic May 11, 2020 Abstract Leibniz algebras En were introduced as algebraic structure under- lying U-duality. Algebras E3 derived from Bianchi three-dimensional Lie algebras are classified here. Two types of algebras are obtained: Six-dimensional Lie algebras that can be considered extension of semi- Abelian four-dimensional Drinfel’d double and unique extensions of non-Abelian Bianchi algebras. For all of the algebras explicit forms of generalized frame fields are given. 1 Introduction arXiv:2003.06164v4 [hep-th] 8 May 2020 Extensions of Poisson–Lie T-dualities to non-perturbative symmetries of string theories are so called U-dualities (for review see e.g.[1]). Algebraic structures underlying U-duality were suggested in [2] and [3] as Leibniz algebras En obtained as extensions of n-dimensional Lie algebra defining non-symmetric product ◦ in [n + n(n − 1)/2]-dimensional vector space1 that satisfies Leibniz identity X ◦ (Y ◦ Z))=(X ◦ Y ) ◦ Z + Y ◦ (X ◦ Z). (1) ∗hlavaty@fjfi.cvut.cz 1for n ≤ 4 1 In those papers examples of these Leibniz algebras derived from two-dimensional and four-dimensional Lie algebras are given. Goal of the present note is to write down all algebras that can be derived from three dimensional Lie alge- bras whose classification given by Bianchi is well known. a1a2 a2a1 a1a2 Namely, let (Ta, T ), a, a1, a2 ∈ 1,...,n, T = −T is a basis of [n + n(n − 1)/2]-dimensional vector space. -
The Bianchi Classification in the Schü
P1: FLT General Relativity and Gravitation (GERG) PP736-GERG-459711 February 7, 2003 18:36 Style file version May 27, 2002 General Relativity and Gravitation, Vol. 35, No. 3, March 2003 (C 2003) The Bianchi Classification in the Sch¨ucking-Behr Approach1 A. Krasi´nski,2 Christoph G. Behr,3 Engelbert Sch¨ucking,4 Frank B. Estabrook,5 Hugo D. Wahlquist,6 George F. R. Ellis,7 Robert Jantzen,8 and Wolfgang Kundt9 Received July 15, 2002 The historical development of the Bianchi classification of homogeneous cosmological models is described with special emphasis on the contributions by Sch¨ucking and Behr. KEY WORDS: Bianchi models; Lie algebra; cosmology.3 1. INTRODUCTION Today, the Bianchi classification of 3-dimensional Lie algebras is no longer pre- sented by the original Bianchi method [4]. The now-common approach is usually credited to C. G. Behr, but one never sees any reference to a paper by him. Tracing the references back in time one is most often led either to the paper by Ellis and 1 Written collectively as “Golden Oldie XXX; each author is signed under his segment. 2 Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland; e-mail: [email protected] 3 Eduard-Steinle-Strae 19, 70 619 Stuttgart, Germany. 4 29 Washington Square West, New York, NY 10011, USA; e-mail: [email protected] 5 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA 6 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA; e-mail: [email protected] 7 Mathematics -
Dynamics of Bianchi Spacetimes
Dynamics of Bianchi spacetimes Fran¸coisB´eguin Universit´eParis-Sud 11 & ENS´ Febuary 9th, 2012 Raisons d'^etre: I natural finite dimensional class of spacetimes ; I BKL conjecture : generic spacetimes \behave like" spatially homogeneous spacetimes close to their initial singularity. Bianchi cosmological models : presentation Bianchi spacetimes are spatially homogeneous (not isotropic) cosmological models. Bianchi cosmological models : presentation Bianchi spacetimes are spatially homogeneous (not isotropic) cosmological models. Raisons d'^etre: I natural finite dimensional class of spacetimes ; I BKL conjecture : generic spacetimes \behave like" spatially homogeneous spacetimes close to their initial singularity. I A Bianchi spacetime is a spacetime (M; g) with 2 M ' I × G g = −dt + ht where I = (t−; t+) ⊂ R, G is 3-dimensional Lie group, ht is a left-invariant riemannian metric on G. I A Bianchi spacetime amounts to a one-parameter family of left-invariant metrics (ht )t2I on a 3-dimensional Lie group G. Bianchi cosmological models : definitions I A Bianchi spacetime is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime. I A Bianchi spacetime amounts to a one-parameter family of left-invariant metrics (ht )t2I on a 3-dimensional Lie group G. Bianchi cosmological models : definitions I A Bianchi spacetime is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime. I A Bianchi spacetime is a spacetime (M; g) with 2 M ' I × G g = −dt + ht where I = (t−; t+) ⊂ R, G is 3-dimensional Lie group, ht is a left-invariant riemannian metric on G. Bianchi cosmological models : definitions I A Bianchi spacetime is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime. -
On the Energy of Homogeneous Cosmologies
On the energy of homogeneous cosmologies James M. Nester Department of Physics, National Central University, Chungli 32054, Taiwan Department of Physics and Institute of Astronomy, National Central University, Chungli 32054, Taiwan. [email protected] Lau Loi So1 Department of Physics, National Central University, Chungli 32054, Taiwan [email protected] T. Vargas2 Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sao Paulo SP, Brazil. [email protected] Received ; accepted 1present address:Department of physics, Tamkang University, Tamsui 251, Taiwan. 2present address:Department of Physics, National Central University, Chungli 32054, Tai- wan. – 2 – ABSTRACT We investigate the quasi-local energy of all the homogeneous cosmological models. More specifically using the standard natural prescription we find the quasi-local energy-momentum for a large class of gravity theories with a tetrad description for all 9 Bianchi types with general gravitational sources. Using ideas related to a Hamiltonian approach we find that, with homogeneous boundary conditions, the quasi-local energy vanishes for all regions in all Bianchi class A models, and it does not vanish for any class B model. This is so not only for Einstein’s general relativity but, moreover, for the whole 3-parameter class of tetrad-teleparallel theories. For the physically favored one parameter subclass, which includes the teleparallel equivalent of Einstein’s theory as an important special case, the quasi-local energy for all class B models is positive. PACS 04.20.Cv, 04.20.Fy, 98.80.Jk 2006-12-19jmn 1. Introduction Energy has been one of the most useful physical concepts, no less so in gravitating systems—one need only recall its utility in the Newtonian Kepler problem. -
Hamiltonian Systems and Noether's Theorem
HAMILTONIAN SYSTEMS AND NOETHER'S THEOREM DANIEL SPIEGEL Abstract. This paper uses the machinery of symplectic geometry to make rigorous the mathematical framework of Hamiltonian mechanics. This frame- work is then shown to imply Newton's laws and conservation of energy, thus validating it as a physical theory. We look at symmetries of physical systems in the form of Lie groups, and show that the Hamiltonian framework grants us the insight that the existence of a symmetry corresponds to the conserva- tion of a physical quantity, i.e. Noether's Theorem. Throughout the paper we pay heed to the correspondence between mathematical definitions and physical concepts, and supplement these definitions with examples. Contents 1. Introduction 1 2. Hamiltonian Systems 2 3. Symmetries and Lie Groups 5 4. Noether's Theorem 9 Acknowledgments 11 References 11 1. Introduction In 1834, the Irish mathematician William Hamilton reformulated classical New- tonian mechanics into what is now known as Hamiltonian mechanics. While New- ton's laws are valuable for their clarity of meaning and utility in Cartesian coordi- nates, Hamiltonian mechanics provides ease of computation for many other choices of coordinates (as did the Lagrangian reformulation in 1788), tools for handling sta- tistical systems with large numbers of particles, and a more natural transition into quantum mechanics. We refer the reader to chapter 13 of John Taylor's Classical Mechanics [3] for an introductory discussion of these uses. This paper, however, will focus on the insights that Hamilton's formalism provides with regards to the conservation of physical quantities. For all these advantages, it is clear why Hamil- tonian mechanics is an important area of study for any physics student. -
On the Complete Symmetry Group of the Classical Kepler System J
On the complete symmetry group of the classical Kepler system J. Krause Citation: Journal of Mathematical Physics 35, 5734 (1994); doi: 10.1063/1.530708 View online: https://doi.org/10.1063/1.530708 View Table of Contents: http://aip.scitation.org/toc/jmp/35/11 Published by the American Institute of Physics Articles you may be interested in Symmetry transformations of the classical Kepler problem Journal of Mathematical Physics 14, 1125 (1973); 10.1063/1.1666448 Laplace-Runge-Lenz vector in quantum mechanics in noncommutative space Journal of Mathematical Physics 54, 122106 (2013); 10.1063/1.4835615 The complete Kepler group can be derived by Lie group analysis Journal of Mathematical Physics 37, 1772 (1996); 10.1063/1.531496 Illustrating dynamical symmetries in classical mechanics: The Laplace–Runge–Lenz vector revisited American Journal of Physics 71, 243 (2003); 10.1119/1.1524165 Prehistory of the ’’Runge–Lenz’’ vector American Journal of Physics 43, 737 (1975); 10.1119/1.9745 More on the prehistory of the Laplace or Runge–Lenz vector American Journal of Physics 44, 1123 (1976); 10.1119/1.10202 On the complete symmetry group of the classical Kepler system J. Krause Facultad de Fisica, Pontijcia Vniversidad Cato’lica de Chile, Casilla 306, Santiago 22, Chile (Received 18 April 1994; accepted for publication 17 May 1994) A rather strong concept of symmetry is introduced in classical mechanics, in the sense that some mechanical systems can be completely characterized by the sym- metry laws they obey. Accordingly, a “complete symmetry group” realization in mechanics must be endowed with the following two features: (1) the group acts freely and transitively on the manifold of all allowed motions of the system; (2) the given equations of motion are the only ordinary differential equations that remain invariant under the specified action of the group. -
Rotating Dust Solutions of Einstein's Equations with 3-Dimensional Symmetry Groups. I. Two Killing Fields Spanned on U and W
Rotating dust solutions of Einstein’s equations with 3-dimensional symmetry groups. I. Two Killing fields spanned on ua and wa Andrzej Krasin´ski N. Copernicus Astronomical Center and College of Science, Polish Academy of Sciences, Bartycka 18, 00 716 Warszawa, Poland ~Received 14 May 1997; accepted for publication 7 July 1997! For a rotating dust with a 3-dimensional symmetry group all possible metric forms can be classified and, within each class, explicitly written out. This is made possible by the formalism of Pleban´ski based on the Darboux theorem. In the resulting coordinates, the Killing vector fields ~if any exist! assume a special form. Each Killing vector field may be either spanned on the fields of velocity and rotation or linearly independent of them. By considering all such cases one arrives at the classification. With respect to the structures of the groups, this is just the Bianchi classification, but with all possible orientations of the orbits taken into account. In this paper, which is part 1 of a 3-part series, all solutions are considered for which two Killing fields are spanned on velocity and rotation. The solutions of Lanczos and Go¨del are identified as special cases, and their new invariant definitions are provided. In addition, a new invariant definition is given of the Ozsvath class III solution. © 1998 American Institute of Physics. @S0022-2488~97!03112-5# I. INTRODUCTION AND SUMMARY The theorem of Darboux presented in Sec. II allows one to introduce invariantly defined coordinates in which the velocity field of a fluid ~not assumed to be perfect! acquires a ‘‘canoni- cal’’ form. -
On Certain Types of Point Symmetries of Systems of Second-Order Ordinary Differential Equations
On certain types of point symmetries of systems of second-order ordinary differential equations R. Campoamor-Stursberg Instituto de Matem´atica Interdisciplinar (IMI) and Dpto. de Geometr´ıay Topolog´ıa,Fac. CC. Matem´aticas Universidad Complutense de Madrid Plaza de Ciencias 3, E-28040 Madrid, Spain Abstract Existence criteria for some generic types of point symmetries of systems of n-second order ordinary differential equations are studied, specially in connection with the generation of semisimple subalgebras of symmetries belonging to the simple linear and orthogonal types, as well as their maximal dimension and rank. The structure of certain time-dependent symmetries, in particular scaling symmetries, are also stud- ied, and the structure of the subalgebras they span determined. Generic examples illustrating the procedure are given. Key words: Lie symmetry method, second order systems of ODEs, Lie algebra, PACS: 02.20Qs, 02.30Hq 1 Introduction Far beyond its original motivation and conception to reduce and classify ordinary differen- tial equations (ODEs), as well as to analyze certain properties of their solutions, the Lie symmetry method has been generalized and enlarged to become a powerful and sometimes indispensable tool in Geometry and Mechanics [1,2]. Among the various questions analyzed, the linearization of ordinary differential equations is relevant problem, as it reduces heav- ily the computational complexity. While the linearization problem for scalar second order ODEs has been solved satisfactorily [3{5], for the case of systems there still remains some work to do. In this context, it is known that, under certain symmetry conditions, systems Email address: [email protected] (R. -
On the Complete Symmetry Group of the Classical Kepler System J
On the complete symmetry group of the classical Kepler system J. Krause Facultad de Fisica, Pontijcia Vniversidad Cato’lica de Chile, Casilla 306, Santiago 22, Chile (Received 18 April 1994; accepted for publication 17 May 1994) A rather strong concept of symmetry is introduced in classical mechanics, in the sense that some mechanical systems can be completely characterized by the sym- metry laws they obey. Accordingly, a “complete symmetry group” realization in mechanics must be endowed with the following two features: (1) the group acts freely and transitively on the manifold of all allowed motions of the system; (2) the given equations of motion are the only ordinary differential equations that remain invariant under the specified action of the group. This program is applied success- fully to the classical Kepler problem, since the complete symmetry group for this particular system is here obtained. The importance of this result for the quantum kinematic theory of the Kepler system is emphasized. I. INTRODUCTION In this paper, we introduce an extended notion of symmetry in mechanics, which is somehow stronger than the concept of symmetry that has been used hitherto. As we shall see, this new idea of symmetry demands the fulfilment of more tightened conditions than those required by the traditional Noether and Lie theories of symmetries in classical mechanics.’ The main feature underlying our approach cherishes the idea of characterizing a classical system by the symmetry laws it obeys, in a strictly specified manner. As a matter of principle, this means that different mechanical systems cannot have exactly the same symmetry properties, and if they do, then the systems must have essentially the same mechanical nature.