Reporting Service 2002, No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TREE NOTES CALIFORNIA DEPARTMENT of FORESTRY and FIRE PROTECTION Arnold Schwarzenegger Andrea E
TREE NOTES CALIFORNIA DEPARTMENT OF FORESTRY AND FIRE PROTECTION Arnold Schwarzenegger Andrea E. Tuttle Michael Chrisman Governor Director Secretary for Resources State of California The Resources Agency NUMBER: 28 JANUARY 2004 Ips Beetles in California Pines by Donald R. Owen Forest Pest Management Specialist, 6105 Airport Road, Redding, CA 96022 There are a number of bark beetle species that species, climate, and other factors, Ips may attack and kill pines in California. Foremost complete from one to many generations per among these are species of Dendroctonus and year. Under ideal conditions, a single Ips. Although species of Dendroctonus are generation may be completed in about 45 considered to be the most aggressive tree days. Ips killers, species of can be significant pests Ips under certain circumstances and/or on certain are shiny black to reddish brown, hosts. Nearly all of California’s native pines cylindrical beetles, ranging in size from about Ips 3 - 6.5 cm. A feature which readily areattackedbyoneormorespeciesof . Dendroctonus Some species of Ips also attack spruce, but are distinguishes them from beetles not considered to be significant pests in is the presence of spines on the posterior end California. of the wing covers. There may be between 3-6 pairs of spines, the size, number and While numerous bark beetles colonize pines, arrangement of which are unique for each only a handful are capable of killing live trees. The majority of bark beetles, including species of Ips, are secondary invaders that colonize recently dead, dying, or weakened trees. Those species of Ips that kill trees, do so opportunistically and typically only kill trees under stress. -
Invasive Vegetation Management: 2020 Annual Report, Crater Lake
National Park Service U.S. Department of the Interior Crater Lake National Park Invasive Vegetation Management 2020 Annual Report ON THIS PAGE An Invasive Vegetation Management crew member surveys for invasive plants at Poison Meadows. Photo by Shane Palmer. ON THE COVER The Invasive Vegetation Management crew surveys for invasive plants within the area burned by the 2017 Blanket Creek fire. Photo by Shane Palmer. Invasive Vegetation Management 2020 Annual Report Hamilton L. Hasty, Jennifer S. Hooke, and Scott E. Heisler National Park Service Crater Lake National Park P.O. Box 7 Crater Lake, Oregon 97604 April 2021 U.S. Department of the Interior National Park Service Crater Lake National Park Crater Lake, Oregon This annual report series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by a subject matter expert who was not directly involved in the collection, analysis, or reporting of the data. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. -
Climatic Niche Shifts Between Species Native and Naturalized Ranges Raise
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2014) 23, 1356–1365 bs_bs_banner RESEARCH Climatic niche shifts between species’ PAPER native and naturalized ranges raise concern for ecological forecasts during invasions and climate change Regan Early1,2,3*andDovF.Sax4 1Centre for Ecology and Conservation, ABSTRACT University of Exeter, Cornwall Campus, Aim Correlative models that forecast extinction risk from climate change and Penryn TR10 9EZ, UK, 2Cátedra Rui Nabeiro – Biodiversidade, Universidade de Évora, Casa invasion risks following species introductions, depend on the assumption that Cordovil 2a Andar, Rua Dr. Joaquim Henrique species’ current distributions reflect their climate tolerances (‘climatic equilib- da Fonseca, 7000-890 Évora, Portugal, rium’). This assumption has rarely been tested with independent distribution data, 3Departamento de Biodiversidad y Biología and studies that have done so have focused on species that are widespread or weedy Evolutiva, Museo Nacional de Ciencias in their native range. We use independent data to test climatic equilibrium for a Naturales, Consejo Superior de Investigaciones broadly representative group of species, and ask whether there are any general Científicas (CSIC), Calle José Gutierrez indicators that can be used to identify when equilibrium occurs. Abascal, 2, 28006 Madrid, Spain, 4Department Location Europe and contiguous USA. of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA Methods We contrasted the climate conditions occupied by 51 plant species in their native (European) and naturalized (USA) distributions by applying kernel smoothers to species’ occurrence densities. We asked whether species had natural- ized in climate conditions that differ from their native ranges, suggesting climatic disequilibrium in the native range, and whether characteristics of species’ native distributions correspond with climatic equilibrium. -
Xyleborus Bispinatus Reared on Artificial Media in the Presence Or
insects Article Xyleborus bispinatus Reared on Artificial Media in the Presence or Absence of the Laurel Wilt Pathogen (Raffaelea lauricola) Octavio Menocal 1,*, Luisa F. Cruz 1, Paul E. Kendra 2 ID , Jonathan H. Crane 1, Miriam F. Cooperband 3, Randy C. Ploetz 1 and Daniel Carrillo 1 1 Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA; luisafcruz@ufl.edu (L.F.C.); jhcr@ufl.edu (J.H.C.); kelly12@ufl.edu (R.C.P.); dancar@ufl.edu (D.C.) 2 Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Rd., Miami, FL 33158, USA; [email protected] 3 Otis Laboratory, USDA-APHIS-PPQ-CPHST, 1398 W. Truck Road, Buzzards Bay, MA 02542, USA; [email protected] * Correspondence: omenocal18@ufl.edu; Tel.: +1-786-217-9284 Received: 12 January 2018; Accepted: 24 February 2018; Published: 28 February 2018 Abstract: Like other members of the tribe Xyleborini, Xyleborus bispinatus Eichhoff can cause economic damage in the Neotropics. X. bispinatus has been found to acquire the laurel wilt pathogen Raffaelea lauricola (T. C. Harr., Fraedrich & Aghayeva) when breeding in a host affected by the pathogen. Its role as a potential vector of R. lauricola is under investigation. The main objective of this study was to evaluate three artificial media, containing sawdust of avocado (Persea americana Mill.) and silkbay (Persea humilis Nash.), for rearing X. bispinatus under laboratory conditions. In addition, the media were inoculated with R. lauricola to evaluate its effect on the biology of X. bispinatus. There was a significant interaction between sawdust species and R. -
Coleoptera) (Excluding Anthribidae
A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included. -
Analisi Della Competizione Interspecifica Fra Specie Native Ed Esotiche Di Coleotteri Scolitidi (Coleoptera: Curculionidae,Scolytinae)
UNIVERSITÀ DEGLI STUDI DI PADOVA Dip. Territorio e Sistemi Agro-Forestali (TESAF) Dip. di Agronomia Animali Alimenti Risorse Naturali e Ambiente (DAFNAE) Tesi di laurea magistrale in Scienze Forestali e Ambientali; Analisi della competizione interspecifica fra specie native ed esotiche di coleotteri scolitidi (Coleoptera: Curculionidae,Scolytinae) Relatore: Prof. Massimo Faccoli Correlatore: Dott. Davide Rassati Laureanda: Eva Pioggiarella Matricola n. 1110979 ANNO ACCADEMICO 2016-2017 2 INDICE RIASSUNTO ....................................................................................................................................... 5 ABSTRACT ......................................................................................................................................... 6 1. INTRODUZIONE ............................................................................................................................ 7 1.1 Le specie invasive ...................................................................................................................... 7 1.2 Gli insetti del legno .................................................................................................................... 8 1.2.1 Specie esotiche di insetti del legno .................................................................................... 10 1.3 Gli scolitidi xylomicetofagi o ambrosia beetles....................................................................... 11 1.4 Impatti delle specie invasive di scolitidi xilomicetofagi nell’ambiente -
The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera)
BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2010) Vol. 3 : 55-143 The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera) David MIFSUD1 & Enzo COLONNELLI2 ABSTRACT. The Curculionoidea of the families Anthribidae, Rhynchitidae, Apionidae, Nanophyidae, Brachyceridae, Curculionidae, Erirhinidae, Raymondionymidae, Dryophthoridae and Scolytidae from the Maltese islands are reviewed. A total of 182 species are included, of which the following 51 species represent new records for this archipelago: Araecerus fasciculatus and Noxius curtirostris in Anthribidae; Protapion interjectum and Taeniapion rufulum in Apionidae; Corimalia centromaculata and C. tamarisci in Nanophyidae; Amaurorhinus bewickianus, A. sp. nr. paganettii, Brachypera fallax, B. lunata, B. zoilus, Ceutorhynchus leprieuri, Charagmus gressorius, Coniatus tamarisci, Coniocleonus pseudobliquus, Conorhynchus brevirostris, Cosmobaris alboseriata, C. scolopacea, Derelomus chamaeropis, Echinodera sp. nr. variegata, Hypera sp. nr. tenuirostris, Hypurus bertrandi, Larinus scolymi, Leptolepurus meridionalis, Limobius mixtus, Lixus brevirostris, L. punctiventris, L. vilis, Naupactus cervinus, Otiorhynchus armatus, O. liguricus, Rhamphus oxyacanthae, Rhinusa antirrhini, R. herbarum, R. moroderi, Sharpia rubida, Sibinia femoralis, Smicronyx albosquamosus, S. brevicornis, S. rufipennis, Stenocarus ruficornis, Styphloderes exsculptus, Trichosirocalus centrimacula, Tychius argentatus, T. bicolor, T. pauperculus and T. pusillus in Curculionidae; Sitophilus zeamais and -
Fossil History of Curculionoidea (Coleoptera) from the Paleogene
geosciences Review Fossil History of Curculionoidea (Coleoptera) from the Paleogene Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Ulitsa Frunze, 11, 630091 Novosibirsk, Novosibirsk Oblast, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia Received: 23 June 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Currently, some 564 species of Curculionoidea from nine families (Nemonychidae—4, Anthribidae—33, Ithyceridae—3, Belidae—9, Rhynchitidae—41, Attelabidae—3, Brentidae—47, Curculionidae—384, Platypodidae—2, Scolytidae—37) are known from the Paleogene. Twenty-seven species are found in the Paleocene, 442 in the Eocene and 94 in the Oligocene. The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from Eocene localities, Florissant (177 species), Baltic amber (124 species) and Green River formation (75 species). The family Curculionidae dominates in all Paleogene localities. Weevil species associated with herbaceous vegetation are present in most localities since the middle Paleocene. A list of Curculionoidea species and their distribution by location is presented. Keywords: Coleoptera; Curculionoidea; fossil weevil; faunal structure; Paleocene; Eocene; Oligocene 1. Introduction Research into the biodiversity of the past is very important for understanding the development of life on our planet. Insects are one of the Main components of both extinct and recent ecosystems. Coleoptera occupied a special place in the terrestrial animal biotas of the Mesozoic and Cenozoics, as they are characterized by not only great diversity but also by their ecological specialization. -
Vascular Plants
Guidelines for the Selection of Biological SSSIs Part 2: Detailed Guidelines for Habitats and Species Groups Chapter 11 Vascular Plants Authors Ian Taylor, Simon J. Leach, John P. Martin, Robert A. Jones, Julian Woodman and Iain Macdonald To view other Part 2 chapters and Part 1 of the SSSI Selection Guidelines visit: https://jncc.gov.uk/our-work/guidelines-for-selection-of-sssis/ Cite as: Taylor, I., Leach, S. J., Martin, J. P., Jones, R. A., Woodman, J. and Macdonald, I. 2021. Guidelines for the Selection of Biological SSSIs. Part 2: Detailed Guidelines for Habitats and Species Groups. Chapter 11 Vascular Plants. Joint Nature Conservation Committee, Peterborough. © Joint Nature Conservation Committee 2021 Guidelines for the Selection of Biological SSSIs – Part 2: Chapter 11 Vascular Plants (2021 revision v1.0) Cover note This chapter updates and replaces the previous Vascular Plant (VP) SSSI selection guidelines for vascular plants (JNCC 1989). It was drafted initially by Ian Taylor, Simon J. Leach and John P. Martin (NE) and Robert A. Jones (NRW), with the final draft in November 2020 produced by Ian Taylor (NE), Julian Woodman (NRW) and Iain Macdonald (NatureScot). It provides detailed guidance for selecting vascular plant sites throughout Great Britain to recommend for notification as SSSIs. It should be used in conjunction with Part 1 of the SSSI Selection Guidelines (Bainbridge et al. 2013), which details the overarching rationale, operational approach and criteria for the selection of SSSIs. The main changes from the previous vascular plant guidelines are: • a change of emphasis in favour of a species-by-species focus versus an in- combination (or assemblage) focus. -
Developmental Biology of Xyleborus Bispinatus (Coleoptera
Fungal Ecology 35 (2018) 116e126 Contents lists available at ScienceDirect Fungal Ecology journal homepage: www.elsevier.com/locate/funeco Developmental biology of Xyleborus bispinatus (Coleoptera: Curculionidae) reared on an artificial medium and fungal cultivation of symbiotic fungi in the beetle's galleries * L.F. Cruz a, , S.A. Rocio a, b, L.G. Duran a, b, O. Menocal a, C.D.J. Garcia-Avila c, D. Carrillo a a Tropical Research and Education Center, University of Florida, 18905 SW 280th St, Homestead, 33031, FL, USA b Universidad Autonoma Chapingo, Km 38.5 Carretera Mexico - Texcoco, Chapingo, Mex, 56230, Mexico c Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnostico, Servicios y Constatacion, Tecamac, 55740, Estado de Mexico, Mexico article info abstract Article history: Survival of ambrosia beetles relies on obligate nutritional relationships with fungal symbionts that are Received 10 January 2018 cultivated in tunnels excavated in the sapwood of their host trees. The dynamics of fungal associates, Received in revised form along with the developmental biology, and gallery construction of the ambrosia beetle Xyleborus bispi- 10 July 2018 natus were elaborated. One generation of this ambrosia beetle was reared in an artificial medium con- Accepted 12 July 2018 taining avocado sawdust. The developmental time from egg to adult ranged from 22 to 24 d. The mean Available online 23 August 2018 total gallery length (14.4 cm and 13 tunnels) positively correlated with the number of adults. The most Corresponding Editor: Peter Biedermann prevalent fungal associates were Raffaelea arxii in the foundress mycangia and new galleries, and Raf- faelea subfusca in the mycangia of the F1 adults and the final stages of the galleries. -
Scyphophorus Yuccae) in a Flowering Field of Yucca Whipplei
Great Basin Naturalist Volume 57 Number 1 Article 4 3-7-1997 Dispersal characteristics of the yucca weevil (Scyphophorus yuccae) in a flowering field of Yucca whipplei Travis E. Huxman California State University, San Bernardino Kimberly A. Huxman California State University, San Bernardino Marc R. Stamer California State University, San Bernardino Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Huxman, Travis E.; Huxman, Kimberly A.; and Stamer, Marc R. (1997) "Dispersal characteristics of the yucca weevil (Scyphophorus yuccae) in a flowering field of Yucca whipplei," Great Basin Naturalist: Vol. 57 : No. 1 , Article 4. Available at: https://scholarsarchive.byu.edu/gbn/vol57/iss1/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 57(1), © 1997, pp. 38-43 DISPERSAL CHARACTERISTICS OF THE YUCCA WEEVIL (SCYPHOPHORUS YUCCAE) IN A FLOWERING FIELD OF YUCCA WHIPFLEI Travis E. HuxmanI ,2, Kimberly A. Huxman1,2, and Marc R. Stamerl ABSTHhcT.-Dispersal charactcristics wcre measured for a population of yucca weevils (Scyplwplwrus YUGcae) in a plot consisting of flowering and nonflowering Yucca whipplei. We compared weevil dispersal to yucca distribution, phe nology, and caudex temperature. We also compared weevil movement to wind patterns and time ofday. Captured weevils were marked and released into both flowering and nonflowering home plants in the field. Distance traveled, weevil flight direction, and tm'get plant characteristics were recorded. -
(2009) Red Data List of Derbyshire's Vascular Plants
Red Data List of Derbyshire’s Vascular Plants Moyes, N.J. & Willmot, A. Derby Museum & Art Gallery 2009 Contents 1. Introduction Page 2 2. Red Data List Categories – What’s Included? Page 3 3. What’s Not Included? Page 4 4. Conclusion & Recommendations Page 4 5. Table 1 List of Category 1 Plants Page 5 6. Table 2 List of Category 2 Plants Page 5 7. Table 3 List of Category 3 Plants Page 7 8. Table 4 List of Category 4 Plants Page 8 9. Table 5 List of Category 5 Plants Page 9 10. Table 6 List of Category 6 Plants Page 11 11. References Page 12 Appendix 1 History of Derbyshire Red Data Lists Page 13 Appendix 2 Assessing Local Decline Page 15 Appendix 3 Full List of Derbyshire Red Data Plants Page 18 CITATION: Moyes, N.J. & Willmot, A. (2009) Red Data List of Derbyshire’s Vascular Plants. Derby Museum. 1 1) Introduction County Rare Plant Lists – or Red Data Lists – are a valuable tool to identify species of conservation concern at the local level. These are the plants we should be most concerned about protecting when they are still present, or looking out for if they seem to have declined or become extinct in the locality. All the species named in this Red Data List are native vascular plants in the area, and they either: have a national conservation status in the UK, or are rare in Derbyshire, or have exhibited a significant local decline in recent times, or have become locally extinct. The geographic area in the definition of Derbyshire used here includes: the modern administrative county of Derbyshire, the City of Derby the historic botanical recording area known as the “vice-county” of Derbyshire (VC57).