University of Florida Thesis Or Dissertation Formatting

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting SYSTEMATICS, PALEOBIOLOGY, AND PALEOECOLOGY OF LATE MIOCENE SHARKS (ELASMOBRANCHII, SELACHII) FROM PANAMA: INTEGRATION OF RESEARCH AND EDUCATION By CATALINA PIMIENTO A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2010 1 © 2010 Catalina Pimiento 2 To my husband 3 ACKNOWLEDGMENTS This project was funded by NSF EAR 0418042, Sigma Xi G2009100426, the Mitchell Hope Scholarship, and the Ken Ericson Scholarship. I want to specially give thanks to my advisor, Dr. Bruce MacFadden for his mentoring, support, encouragement and sympathy. He became a father during my master’s degree and I have to thank God for giving me the best advisor I could have asked for. I will always appreciate his patience when I was too intense with the research, his comprehension when I was homesick and just wanted to go see my family, and his sense of humor, especially during cold boring mornings. Also, I would like to thank Dr. Doug Jones, my co-advisor for being such a supportive and inspiring guide and for helping me to get out of trouble. Thanks to the remaining members of my committee Dr. Jonathan Bloch and Dr. Rose Pringle for their helpful feedback and advise during this project. Dana Ehret has been a great colleague; I thank his interest in my research and for being such a cooperative friend. A great share of this work was completed thanks to him. Thanks to everybody at the FLMNH for their constant help, and to Dr. Colette St. Mary for being very supportive and because I always could reach her, even with silly questions. Thanks Dr. Gordon Hubbell for helping with the identification of the material, for allowing me to study his private collection and for his helpful comments during this research. Special thanks to the Smithsonian Tropical Research Institute, specially to Carlos Jaramillo and his field team: Aldo Rincon, James Wilson, Cesar Silva and Sandra Suarez for their support during the fieldwork and for facilitating the materials collected. Thanks to the Direccion de Recursos Minerales of Panama for collecting permits, to Felix Rodriguez and Aaron O'Dea for facilitating previous collected material and to Luz Oviedo, Marisol Lopez and Ricardo Chong for helping with the website. 4 Thanks to Rony Leder for helping with the identification of the material; Dale Winkler from the SMU, and Dave Bohaska and R. Purdy from the NMNH for access to collections. Thanks to Gary Morgan for beneficial suggestions to this research. Thanks to Maria Ines Barreto for showing me the north when I was lost; to all my dear friends in Gainesville for making my life sweeter, to my mom and dad for believing in me even when I doubted myself, to my brothers for being my inspiration and to my husband: thank you my love for supporting me during these two years of abandonment, for making this tough journey enjoyable, for help in editing manuscripts, practicing talks, and for being a constant source of ideas. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................9 LIST OF FIGURES .......................................................................................................................10 LIST OF ABBREVIATIONS........................................................................................................12 ABSTRACT...................................................................................................................................13 CHAPTER 1 GENERAL INTRODUCTION ..............................................................................................15 Scientific Component .............................................................................................................15 Broader Impact Component....................................................................................................17 2 LATE MIOCENE SHARKS (CHONDRICHTHYES, ELASMOBRANCHII, SELACHII) FROM THE GATUN FORMATION, PANAMA.............................................20 Introduction.............................................................................................................................20 Geological, Paleontological, and Paleoecological Context ....................................................21 Methodology...........................................................................................................................24 Materials..........................................................................................................................24 Sampling Strategy ...........................................................................................................26 Systematic Paleontology.........................................................................................................27 Discussion...............................................................................................................................48 Taxonomic Longevity .....................................................................................................52 Size ..................................................................................................................................52 Habitat Preferences..........................................................................................................53 3 ANCIENT NURSERY AREA FOR THE EXTINCT GIANT SHARK MEGALODON (CARCHAROCLES MEGALODON) IN THE MIOCENE OF PANAMA.............................65 Introduction.............................................................................................................................65 Materials and Methods ...........................................................................................................69 Temporal Comparisons of Similar Faunas......................................................................70 Life Stage Comparisons ..................................................................................................70 Total Length Estimates....................................................................................................71 Results and Discussion ...........................................................................................................71 Temporal Comparisons of Similar Faunas......................................................................71 Life Stage Comparisons ..................................................................................................72 Total Length Estimations ................................................................................................73 Concluding Remarks: Nursery Area Hypothesis ............................................................74 6 4 BROADER IMPACT COMPONENT: ENGAGING YOUNG LEARNERS IN SCIENCE THROUGH A WEBSITE ON FOSSIL SHARKS FROM PANAMA ................78 Introduction.............................................................................................................................78 Problem............................................................................................................................79 Objective..........................................................................................................................79 Background......................................................................................................................80 Fossil Sharks from Panama as a Science-Engaging Tool.......................................................83 Why Fossil Sharks? .........................................................................................................83 Why Panama?..................................................................................................................83 Front-End Evaluation: Learning from and about the Audience .............................................85 Website Design.......................................................................................................................87 Formative Evaluation ......................................................................................................87 Web 2.0............................................................................................................................88 Website Sections .............................................................................................................89 Geologic time ...........................................................................................................89 Fossil sharks .............................................................................................................90 Megalodon................................................................................................................90 Present and future.....................................................................................................90 Recommendations and Best Practices ....................................................................................91 Communication with the Team .......................................................................................91 Keep it Simple .................................................................................................................91 Short Texts.......................................................................................................................92
Recommended publications
  • NPOA Sharks Booklet.Indd
    National Plan of Action for the Conservation and Management of Sharks (NPOA-Sharks) November 2013 South Africa Department of Agriculture, Forestry and Fisheries Private Bag X2, Rogge Bay, 8012 Tel: 021 402 3911 Fax: +27 21 402 3364 www.daff.gov.za Design and Layout: FNP Communications and Gerald van Tonder Photographs courtesy of: Department of Agriculture, Forestry and Fisheries (DAFF), Craig Smith, Charlene da Silva, Rob Tarr Foreword South Africa’s Exclusive Economic Zone is endowed with a rich variety of marine living South Africa is signatory to the Code of Conduct for Responsible Fisheries – voluntarily agreed to by members of the United Nations Food and Agriculture Organisation (FAO) – and, as such, is committed to the development and implementation of National Plans of Action (NPOAs) as adopted by the twenty-third session of the FAO Committee on Fisheries in February 1999 and endorsed by the FAO Council in June 1999. Seabirds – aimed at reducing incidental catch and promoting the conservation of seabirds Fisheries and now regularly conducts Ecological Risk Assessments for all the commercial practices. Acknowledging the importance of maintaining a healthy marine ecosystem and the possibility of major detrimental effects due to the disappearance of large predators, South from the list of harvestable species. In accordance with international recommendations, South Africa subsequently banned the landing of a number of susceptible shark species, including oceanic whitetip, silky, thresher and hammerhead sharks. improves monitoring efforts for foreign vessels discharging shark products in its ports. To ensure long-term sustainability of valuable, but biologically limited, shark resources The NPOA-Sharks presented here formalises and streamlines ongoing efforts to improve conservation and management of sharks caught in South African waters.
    [Show full text]
  • Ground Sharks
    click for previous page - v - TABLE OF CONTENTS Code Page 9. ORDER CARCHARHINIFORMES - GROUND SHARKS ....................................................................................... 251 9.1 FAMILY SCYLIORHINIDAE - Catsharks .................................................. SCYL ........................................... 253 Apristurus....................................................................................................... SCYL Aprist ................................ 257 A. atlanticus ..................................................................................... SCYL Aprist 1 ............................... 261 A. brunneus ...................................................................................... SCYL Aprist 2 ............................... 262 A. canutus ............................................................................................ SCYL Aprist 3 ............................... 263 A. herklotsi ........................................................................................ SCYL Aprist 4 ............................... 264 A. indicus ............................................................................................. SCYL Aprist 5 ............................... 265 A. investigatoris ................................................................................... SCYL Aprist 6 ............................... 267 A. japonicus ....................................................................................... SCYL Aprist 7 ............................... 268
    [Show full text]
  • Tulane Studies Tn Geology and Paleontology Pliocene
    TULANE STUDIES TN GEOLOGY AND PALEONTOLOGY Volu me 22, Number 2 Sepl<'mber 20. l!J8~) PLIOCENE THREE-TOED HORSES FROM LOUISIANA. WITH COMMENTS ON THE CITRONELLE FORMATION EAHL M. MANNING MUSP.UM OF'GEOSCIF:NCE. LOUISJJ\NA STATE UNIVF:RSlTY. JJATO.\I ROI.JG/<. LOL'/S//\;\':1 and llRUCE J. MACFADDlrn DEJ>ARTM/<:NTOF NATUH/\LSCIENCES. F'LORJD/\ MUSf:UM Of<'NJ\TUIV\/, lllSTOUY UNIVERSITY OF FLOH!IJJ\. GJ\/NESVlU.E. Fl.OH/DA CONTENTS Page T. ABSTRACT 3.5 II INTRODUCTION :l5 Ill. ACKNOWLEDGMENTS :rn TV . ABBREVIATIONS :l7 V. SYSTEMATIC PALEONTOLOGY ;37 VI. AGE OF THE TUNICA HILLS HIPPARIONINES 38 VIL STRATIGRAPHIC PROVENIENCE 38 Vlll. PLIOCENE TERRESTRIAL VERTEBRATES OF THE GULF AND ATLANTIC COASTAL PLAIN .JO IX. COMMENTS ON THE CITRONELLE FORMATION .JI X. AGE OF THE CITRONELLE 42 XL TH E CITRONELLE FORMATION IN nm TUNICA HILLS .t:1 XII. LITERATURE CITED l.J January of 1985, the senior author was L ABSTRACT shown a large collection of late Pleistocene Teeth and metacarpals of early Pliocene (Rancholabrean land-mammal agel ver­ (latest Hemphillian land-mammal age) tebrate fossils from the Tunica Hills of three-toed (hipparionine) horses are de­ Louisiana (Fig. I) by Dr. A. Bradley scribed from the Tunica Hills of West McPherson of Centenary College, Feliciana Parish in east-central Louisiana. Shreveport. McPherson and Mr. Bill Lee An upper molar perta ins to Nannippus of Balon Rouge had collected fossils from minor, known from the Hcmphillian of that area since about 1981. Among the Central and North America, and two teeth standard assemblage of Rancholabrean and two distal metacarpals pertain to a re­ taxa (e.g.
    [Show full text]
  • South Africa, Republic Of
    National Plan of Action for the Conservation and Management of Sharks (NPOA-Sharks) Foreword South Africa’s Exclusive Economic Zone is endowed with a rich variety of marine living resources. The sustainable management of these resources for the benefit of all South Africans, present and future, remains a firm commitment of the South African Government. South Africa is signatory to the Code of Conduct for Responsible Fisheries - voluntarily agreed to by members of the United Nations Food and Agriculture Organisation (FAO) - and, as such, is committed to the development and implementation of National Plans of Action (NPOAs) as adopted by the twenty- third session of the FAO Committee on Fisheries in February 1999 and endorsed by the FAO Council in June 1999. NPOAs describe strategies through which commercial fishing nations can achieve economically and ecologically sustainable fisheries. South Africa published the NPOA-Seabirds – aimed at reducing incidental catch and promoting the conservation of seabirds in longline fisheries - in August 2008. South Africa has adopted an Ecosystem Approach to Fisheries and now regularly conducts Ecological Risk Assessments for all the commercial fishing sectors, widely consulting with all stakeholders regarding best management practices. Acknowledging the importance of maintaining a healthy marine ecosystem and the possibility of major detrimental effects due to the disappearance of large predators, South Africa was the first country to offer full protection to the great white shark, removing it from the list of harvestable species. In accordance with international recommendations, South Africa subsequently banned the landing of a number of susceptible shark species, including oceanic whitetip, silky, thresher and hammerhead sharks.
    [Show full text]
  • Sphyrna Tudes (Smalleye Hammerhead Shark)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Sphyrna tudes (Smalleye Hammerhead Shark) Family: Sphyrnidae (Hammerhead Sharks) Order: Carcharhiniformes (Ground Sharks) Class: Chondrichthyes (Cartilaginous Fish) Fig. 1. Smalleye hammerhead shark, Sphyrna tudes. [http://otlibrary.com/wp-content/gallery/golden-hammerhead-shark/hammerhead-jeff-pierce-lo-res.jpg, downloaded 7 January 2015] TRAITS. One of the smaller species of hammerhead (Family Sphyrnidae), the smalleye hammerhead shark can reach a length of 1.5m and weigh around 9 kg. They have a streamlined, slender body as opposed to their bulkier relatives (Martin, 1999). Adult males may range from 110-130cm total length while adult females have an average length of 120-145cm. Newborns are usually about 30cm at birth. Common to all hammerhead sharks is the mallet/hammer shaped cephalofoil, which has a width of 28-32% of body length, and is wide and long. Newborns typically have a longer cephalofoil, which is more curved and with a smaller indent than that of adults (Castro, 1989). These hammerheads have considerably smaller eyes compared to that of other hammerheads, hence its name, and have tri-layered eyelids for protection. However the most distinctive trait being their golden coloration (Fig. 1), which gives the species other names like the golden hammerhead or the curry shark (Gallagher, 2010). Their colour may range from UWI The Online Guide to the Animals of Trinidad and Tobago Ecology bright gold to orange-yellow; however these colours only appear at the juvenile stage, usually when a length of 45cm is reached, and fade at sexual maturity (Castro, 1989).
    [Show full text]
  • The Social Lives of Hammerheads. Authors: De Maddalena, Alessandro; Buttigieg, Alexander Publication: World and I Online Date: Jun 1, 2006
    The social lives of hammerheads. Authors: De Maddalena, Alessandro; Buttigieg, Alexander Publication: World and I Online Date: Jun 1, 2006 Hammerhead sharks form the family of Sphyrnidae, that includes eight species: the winghead shark (Eusphyra blochii), scalloped bonnethead (Sphyrna corona), scalloped hammerhead (S. lewini), scoophead shark (S. media), great hammerhead (S. mokarran), bonnethead shark (S. tiburo), golden hammerhead (S. tudes) and the smooth hammerhead (S. zygaena). In the hammerhead shark, the front part of the head is flattened dorsoventrally and laterally increased to form what we call the "cephalofoil," or two wide flattened expansions that constitute the characteristic shape of a hammer. These two expansions are made out of muscular and connective tissues supported by a cartilaginous skeleton that is an integrated part of the skull. The round shaped eyes are placed very wide apart at the two lateral extremities of these expansions. Also placed at the front margin of these lateral expansions are the nostrils. The "hammer" or cephalofoil of the hammerheads unfolds into a series of functions correlated to the movement and the predation of these sharks. It has been observed that hammerhead sharks posses a very highly developed brain, and perhaps this could be the reason for the ability to lead the social life particular to these animals. Without a doubt, the most surprising aspect of socialization in hammerhead sharks is that of the immensely huge gatherings that different species form in numerous geographical areas. These gatherings could be formed from resident populations in that area or can be composed of individuals that migrate in masses. Huge gatherings of scalloped hammerhead sharks have been observed at the Sea of Cortez, near the Galapagos Island, near Cocos Island (Costa Rica), Malpelo (Columbia), and San Salvador (Bahamas), Hawaii, the Red Sea, Natal (South Africa), in Australia, the China Sea and near Cabilao Island (Philippines).
    [Show full text]
  • Management of Shark Fishery in Sri Lanka
    Received: 6 and 15 September, 2012 IOTC–2012–WPEB08–10 Rev_1 MANAGEMENT OF SHARK FISHERY IN SRI LANKA H.L.N.S.Herath Department of Fisheries and Aquatic Resources Colombo 10, Sri Lanka Abstract The fisheries sector is one of the most important sectors in the economy of Sri Lanka by providing direct and indirect employment to the country. The sector also contributes nearly 3% to the GDP and provides 65-70 % of the animal protein consumed by the population. Fisheries management arrangements within the EEZ were implemented under the provisions of Fisheries and Aquatic Resources Act No.2 of 1996. The objectives of the Act are management, conservation, regulation, and development of the fisheries and aquatic resources of Sri Lanka. During the past two decades the fishing activities have been expanded from its continental shelf and beyond 200 mile EEZ. Sharks have been exploited for 4-5 decades using various fishing methods during last decades. However presently deep water shark fisheries are operating in very insignificant levels. Majority of the catch come as by-catch from tuna long line and gill net fishery. It has been observed that Shark catches have been decreased rapidly during last decades as a result of the management arrangements. The catch composition mainly includes silky shark and other twelve species. There is a action plan for preparation of NPOA-Sharks in Sri Lanka and Fisheries Act and other environmentally related legislations take initiatives to the conservation and management the shark fisheries in the country. 1 Received: 6 and 15 September, 2012 IOTC–2012–WPEB08–10 Rev_1 Introduction Sri Lanka is a coastal fishing nation in the Indian Ocean and has sovereign right over 517,000 km2 of Exclusive Economic Zone declared by 1978(Figure 1).
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • (Orcinus Orca) and Hammerhead Sharks (Sphyrna Sp.) in Galápagos Waters
    LAJAM 5(1): 69-71, June 2006 ISSN 1676-7497 INTERACTION BETWEEN KILLER WHALES (ORCINUS ORCA) AND HAMMERHEAD SHARKS (SPHYRNA SP.) IN GALÁPAGOS WATERS LUCA SONNINO SORISIO1, ALESSANDRO DE MADDALENA2 AND INGRID N. VISSER3,4 ABSTRACT: A possible predatory interaction between killer whales (Orcinus orca) and hammerhead sharks (Sphyrna sp.) was observed during April 1991 near Punta Cormorant, Galápagos Islands. Three killer whales were observed in close proximity to a freshly dead female hammerhead. One of the killer whales (approximately 6m in length) was observed motionless in a vertical position above the shark carcass and later was seen chasing an approximately 40cm hammerhead, supposedly a pup born prematurely from the dead shark. The sharks are thought to have been scalloped hammerheads (S. lewini). RESÚMEN: Una posible interacción predatoria entre orcas (Orcinus orca) y peces martillo (Sphyrna sp.) fue observada en Abril de 1991 cerca de Punta Cormorán, Islas Galápagos. Tres orcas fueron vistas muy próximas a una hembra de pez martillo recién muerta. Una de las orcas (de unos 6m de longitud), fue observada inmóvil en posición vertical sobre la carcasa del tiburón y después fue vista persiguiendo a un pez martillo de unos 40cm, supuestamente una cría nacida prematuramente de la hembra muerta. Se piensa que los tiburones pudieran ser cornudas negras (S. lewini). KEYWORDS: killer whale; Orcinus orca; hammerhead shark; Sphyrna; predation. Observations of killer whales (Orcinus orca) feeding on, the infrequent sightings and even rarer number of or attacking sharks are relatively infrequent (Table 1). observations of killer whale predation off the Galápagos Reports of killer whales off the Galápagos Islands are Islands, we report here on a possible predatory not common (e.g., Day, 1994; Merlen, 1999; Smith and interaction between killer whales and hammerhead Whitehead, 1999) as during a 27-year period of record sharks (Sphyrna sp.).
    [Show full text]
  • SAC-07-06B(Ii) an INVENTORY of SOURCES of DATA in CENTRAL AMERICA on SHARK FISHERIES OPERATING in the EASTERN PACIFIC OCEAN METADATA REPORT
    INTER-AMERICAN TROPICAL TUNA COMMISSION SCIENTIFIC ADVISORY COMMITTEE SEVENTH MEETING La Jolla, California (USA) 09-13 May 2016 DOCUMENT SAC-07-06b(ii) AN INVENTORY OF SOURCES OF DATA IN CENTRAL AMERICA ON SHARK FISHERIES OPERATING IN THE EASTERN PACIFIC OCEAN METADATA REPORT Compiled by Salvador Siu and Alexandre Aires-da-Silva CONTENTS Executive summary ..................................................................................................................................... 1 1. Introduction ........................................................................................................................................ 2 1.1. Shark fisheries in Central America .................................................................................................. 2 1.2. The shark-fishing fleets ................................................................................................................... 4 1.3. Sharks and the IATTC ...................................................................................................................... 5 1.4. Objectives of study.......................................................................................................................... 6 2. Identification and description of data sources - Metadata ................................................................. 6 2.1. Belize ............................................................................................................................................... 6 2.2. Costa Rica .......................................................................................................................................
    [Show full text]
  • A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae)
    A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae) Steven C. Wallace1*, Richard C. Hulbert Jr.2 1 Department of Geosciences, Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, Tennessee, United States of America, 2 Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America Abstract South-central Florida’s latest Hemphillian Palmetto Fauna includes two machairodontine felids, the lion-sized Machairodus coloradensis and a smaller, jaguar-sized species, initially referred to Megantereon hesperus based on a single, relatively incomplete mandible. This made the latter the oldest record of Megantereon, suggesting a New World origin of the genus. Subsequent workers variously accepted or rejected this identification and biogeographic scenario. Fortunately, new material, which preserves previously unknown characters, is now known for the smaller taxon. The most parsimonious results of a phylogenetic analysis using 37 cranio-mandibular characters from 13 taxa place it in the Smilodontini, like the original study; however, as the sister-taxon to Megantereon and Smilodon. Accordingly, we formally describe Rhizosmilodon fiteae gen. et sp. nov. Rhizosmilodon, Megantereon, and Smilodon ( = Smilodontini) share synapomorphies relative to their sister-taxon Machairodontini: serrations smaller and restricted to canines; offset of P3 with P4 and p4 with m1; complete verticalization of mandibular symphysis; m1 shortened and robust with widest point anterior to notch; and extreme posterior ‘‘lean’’ to p3/p4. Rhizosmilodon has small anterior and posterior accessory cusps on p4, a relatively large lower canine, and small, non-procumbent lower incisors; all more primitive states than in Megantereon and Smilodon.
    [Show full text]
  • Miocene Paleontology and Stratigraphy of the Suwannee River Basin of North Florida and South Georgia
    MIOCENE PALEONTOLOGY AND STRATIGRAPHY OF THE SUWANNEE RIVER BASIN OF NORTH FLORIDA AND SOUTH GEORGIA SOUTHEASTERN GEOLOGICAL SOCIETY Guidebook Number 30 October 7, 1989 MIOCENE PALEONTOLOGY AND STRATIGRAPHY OF THE SUWANNEE RIVER BASIN OF NORTH FLORIDA AND SOUTH GEORGIA Compiled and edit e d by GARY S . MORGAN GUIDEBOOK NUMBER 30 A Guidebook for the Annual Field Trip of the Southeastern Geological Society October 7, 1989 Published by the Southeastern Geological Society P. 0 . Box 1634 Tallahassee, Florida 32303 TABLE OF CONTENTS Map of field trip area ...... ... ................................... 1 Road log . ....................................... ..... ..... ... .... 2 Preface . .................. ....................................... 4 The lithostratigraphy of the sediments exposed along the Suwannee River in the vicinity of White Springs by Thomas M. scott ........................................... 6 Fossil invertebrates from the banks of the Suwannee River at White Springs, Florida by Roger W. Portell ...... ......................... ......... 14 Miocene vertebrate faunas from the Suwannee River Basin of North Florida and South Georgia by Gary s. Morgan .................................. ........ 2 6 Fossil sirenians from the Suwannee River, Florida and Georgia by Daryl P. Damning . .................................... .... 54 1 HAMIL TON CO. MAP OF FIELD TRIP AREA 2 ROAD LOG Total Mileage from Reference Points Mileage Last Point 0.0 0.0 Begin at Holiday Inn, Lake City, intersection of I-75 and US 90. 7.3 7.3 Pass under I-10. 12 . 6 5.3 Turn right (east) on SR 136. 15.8 3 . 2 SR 136 Bridge over Suwannee River. 16.0 0.2 Turn left (west) on us 41. 19 . 5 3 . 5 Turn right (northeast) on CR 137. 23.1 3.6 On right-main office of Occidental Chemical Corporation.
    [Show full text]