LECTURE 7: TETRAD ANALYSIS; GENE CONVERSION, Continued Reading: Ch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution of Genetic Systems in Filamentous Ascomycetes
Evolution of Genetic Systems in Filamentous Ascomycetes Evolutie van genetische systemen in hyphenvormende zakjeszwammen 0000 0513 3836 Promotor: dr. R.F. Hoekstra hoogleraar in de populatie- en kwantitatieve genetica fjtfoiißi f ßin Maarten J. Nauta Evolution of Genetic Systems in Filamentous Ascomycetes Proefschrift ter verkrijging van de graad van doctor in de landbouw- en milieuwetenschappen op gezag van de rector magnificus, dr. C.M. Karssen, in het openbaar te verdedigen op woensdag 12januar i 1994 des namiddags te vier uur in de Aula van de Landbouwuniversiteit te Wageningen. 15 0 S(p^ZJ> These investigations were supported by the Netherlands Organization for Scientific Research (N.W.O.). BibUt/FHEEK LAMDbOirWUNIVERSITEJi. WAGE NINGE N CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Nauta, Maarten J. Evolution of genetic systems in filamentous ascomycetes / Maarten J. Nauta. - [ S.l. : s.n.]. -111 . Thesis Wageningen. - With ref. - With summary in Dutch. ISBN 90-5485-199-6 Subject headings: population genetics / ascomycetes. omslagontwerp: Ernst van Cleef foto omslag: Barrages tussen verschillende stammen van Podospora anserina als gevolg van vegetatieve incompatibiliteit. (met dank aan Inge Haspels) aan mijn ouders Voorwoord Dit proefschrift is het resultaat van vier jaar onderzoek, verricht bij de vakgroep Erfelijkheidsleer van de Landbouwuniversiteit in Wageningen. In zekere zin valt zo'n proefschrift te vergelijken met een levend wezen. Uit de genetica is bekend dat de verschijningsvorm van elk levend wezen tot stand komt door een combinatie van erfelijke aanleg en invloeden uit de omgeving. Voor een proefschrift geldt eigenlijk hetzelfde: Zowel het werk van de auteur, als de bijdragen van zijn omgeving zijn onontbeerlijk om tot een verschijningsvorm te komen. -
Genetic Effects on Microsatellite Diversity in Wild Emmer Wheat (Triticum Dicoccoides) at the Yehudiyya Microsite, Israel
Heredity (2003) 90, 150–156 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel Y-C Li1,3, T Fahima1,MSRo¨der2, VM Kirzhner1, A Beiles1, AB Korol1 and E Nevo1 1Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel; 2Institute for Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany This study investigated allele size constraints and clustering, diversity. Genome B appeared to have a larger average and genetic effects on microsatellite (simple sequence repeat number (ARN), but lower variance in repeat number 2 repeat, SSR) diversity at 28 loci comprising seven types of (sARN), and smaller number of alleles per locus than genome tandem repeated dinucleotide motifs in a natural population A. SSRs with compound motifs showed larger ARN than of wild emmer wheat, Triticum dicoccoides, from a shade vs those with perfect motifs. The effects of replication slippage sun microsite in Yehudiyya, northeast of the Sea of Galilee, and recombinational effects (eg, unequal crossing over) on Israel. It was found that allele distribution at SSR loci is SSR diversity varied with SSR motifs. Ecological stresses clustered and constrained with lower or higher boundary. (sun vs shade) may affect mutational mechanisms, influen- This may imply that SSR have functional significance and cing the level of SSR diversity by both processes. natural constraints. -
Capture of a Recombination Activating Sequence from Mammalian Cells
Gene Therapy (1999) 6, 1819–1825 1999 Stockton Press All rights reserved 0969-7128/99 $15.00 http://www.stockton-press.co.uk/gt Capture of a recombination activating sequence from mammalian cells P Olson and R Dornburg The Dorrance H Hamilton Laboratories, Center for Human Virology, Division of Infectious Diseases, Jefferson Medical College, Thomas Jefferson University, Jefferson Alumni Hall, 1020 Locust Street, Rm 329, Philadelphia, PA 19107, USA We have developed a genetic trap for identifying revealed a putative recombination signal (CCCACCC). sequences that promote homologous DNA recombination. When this heptamer or an abbreviated form (CCCACC) The trap employs a retroviral vector that normally disables were reinserted into the vector, they stimulated vector itself after one round of replication. Insertion of defined repair and other DNA rearrangements. Mutant forms of DNA sequences into the vector induced the repair of a 300 these oligomers (eg CCCAACC or CCWACWS) did not. base pair deletion, which restored its ability to replicate. Our data suggest that the recombination events occurred Tests of random sequence libraries made in the vector within 48 h after transfection. Keywords: recombination; retroviral vector; vector stability; gene conversion; gene therapy Introduction scripts are still made from the intact left LTR, but reverse transcription copies the deletion to both LTRs, disabling Recognition of cis-acting DNA signals occupies a central the daughter provirus.15–17 We found that the SIN vectors role in both site-specific and general recombination path- that could escape this programmed disablement did so 1–6 ways. Signals in site-specific pathways define the by recombinationally repairing the U3-deleted LTR. -
Self-Fertility and Uni-Directional Mating-Type Switching in Ceratocystis Coerulescens, a Filamentous Ascomycete
Curr Genet (1997) 32: 52–59 © Springer-Verlag 1997 ORIGINAL PAPER T. C. Harrington · D. L. McNew Self-fertility and uni-directional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete Received: 6 July 1996 / 25 March 1997 Abstract Individual perithecia from selfings of most some filamentous ascomycetes. Although a switch in the Ceratocystis species produce both self-fertile and self- expression of mating-type is seen in these fungi, it is not sterile progeny, apparently due to uni-directional mating- clear if a physical movement of mating-type genes is in- type switching. In C. coerulescens, male-only mutants of volved. It is also not clear if the expressed mating-types otherwise hermaphroditic and self-fertile strains were self- of the respective self-fertile and self-sterile progeny are sterile and were used in crossings to demonstrate that this homologs of the mating-type genes in other strictly heter- species has two mating-types. Only MAT-2 strains are othallic species of ascomycetes. capable of selfing, and half of the progeny from a MAT-2 Sclerotinia trifoliorum and Chromocrea spinulosa show selfing are MAT-1. Male-only, MAT-2 mutants are self- a 1:1 segregation of self-fertile and self-sterile progeny in sterile and cross only with MAT-1 strains. Similarly, self- perithecia from selfings or crosses (Mathieson 1952; Uhm fertile strains generally cross with only MAT-1 strains. and Fujii 1983a, b). In tetrad analyses of selfings or crosses, MAT-1 strains only cross with MAT-2 strains and never self. half of the ascospores in an ascus are large and give rise to It is hypothesized that the switch in mating-type during self-fertile colonies, and the other ascospores are small and selfing is associated with a deletion of the MAT-2 gene. -
Conversion Between 100-Million-Year-Old Duplicated Genes Contributes to Rice Subspecies Divergence
Wei et al. BMC Genomics (2021) 22:460 https://doi.org/10.1186/s12864-021-07776-y RESEARCH Open Access Conversion between 100-million-year-old duplicated genes contributes to rice subspecies divergence Chendan Wei1†, Zhenyi Wang1†, Jianyu Wang1†, Jia Teng1, Shaoqi Shen1, Qimeng Xiao1, Shoutong Bao1, Yishan Feng1, Yan Zhang1, Yuxian Li1, Sangrong Sun1, Yuanshuai Yue1, Chunyang Wu1, Yanli Wang1, Tianning Zhou1, Wenbo Xu1, Jigao Yu2,3, Li Wang1* and Jinpeng Wang1,2,3* Abstract Background: Duplicated gene pairs produced by ancient polyploidy maintain high sequence similarity over a long period of time and may result from illegitimate recombination between homeologous chromosomes. The genomes of Asian cultivated rice Oryza sativa ssp. indica (XI) and Oryza sativa ssp. japonica (GJ) have recently been updated, providing new opportunities for investigating ongoing gene conversion events and their impact on genome evolution. Results: Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19–5.77% of genes duplicated across the three rice genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~ 0.4 mya, with more (7.77–9.53%) showing conversion of only portions of genes. Independently converted duplicates surviving in the genomes of different subspecies often use the same donor genes. The ongoing gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes, 11 and 12, in each rice genome being most affected. Notably, ongoing gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. -
A Long Polymorphic GT Microsatellite Within a Gene Promoter Mediates Non-Imprinted Allele-Specific DNA Methylation of a Cpg Island in a Goldfish Inter-Strain Hybrid
International Journal of Molecular Sciences Article A Long Polymorphic GT Microsatellite within a Gene Promoter Mediates Non-Imprinted Allele-Specific DNA Methylation of a CpG Island in a Goldfish Inter-Strain Hybrid 1,2, , 2, 2 Jianbo Zheng * y , Haomang Xu y and Huiwen Cao 1 Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China 2 College of Life Sciences, Zhejiang University, Hangzhou 310058, China * Correspondence: [email protected]; Tel.: +86-572-204-5681 These authors equally contributed to this work. y Received: 26 June 2019; Accepted: 6 August 2019; Published: 12 August 2019 Abstract: It is now widely accepted that allele-specific DNA methylation (ASM) commonly occurs at non-imprinted loci. Most of the non-imprinted ASM regions observed both within and outside of the CpG island show a strong correlation with DNA polymorphisms. However, what polymorphic cis-acting elements mediate non-imprinted ASM of the CpG island remains unclear. In this study, we investigated the impact of polymorphic GT microsatellites within the gene promoter on non-imprinted ASM of the local CpG island in goldfish. We generated various goldfish heterozygotes, in which the length of GT microsatellites or some non-repetitive sequences in the promoter of no tail alleles was different. By examining the methylation status of the downstream CpG island in these heterozygotes, we found that polymorphisms of a long GT microsatellite can lead to the ASM of the downstream CpG island during oogenesis and embryogenesis, polymorphisms of short GT microsatellites and non-repetitive sequences in the promoter exhibited no significant effect on the methylation of the CpG island. -
High-Frequency Germ Line Gene Conversion in Transgenic Mice J
MOLECULAR AND CELLULAR BIOLOGY, June 1992, p. 2545-2552 Vol. 12, No. 6 0270-7306/92/062545-08$02.00/0 Copyright ©) 1992, American Society for Microbiology High-Frequency Germ Line Gene Conversion in Transgenic Mice J. RAMANA MURTI, MICHAEL BUMBULIS, AND JOHN C. SCHIMENTI* Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 45106 Received 8 November 1991/Accepted 28 February 1992 Gene conversion is the nonreciprocal transfer of genetic information between two related genes or DNA sequences. It can influence the evolution of gene families, having the capacity to generate both diversity and homogeneity. The potential evolutionary significance of this process is directly related to its frequency in the germ line. While measurement of meiotic inter- and intrachromosomal gene conversion frequency is routine in fungal systems, it has hitherto been impractical in mammals. We have designed a system for identifying and quantitating germ line gene conversion in mice by analyzing transgenic male gametes for a contrived recombination event. Spermatids which undergo the designed intrachromosomal gene conversion produce functional 13-galactosidase (encoded by the lacZ gene), which is visualized by histochemical staining. We observed a high incidence of lacZ-positive spermatids (-2%), which were produced by a combination of meiotic and mitotic conversion events. These results demonstrate that gene conversion in mice is an active recombinational process leading to nonparental gametic haplotypes. This high frequency of intrachromosomal gene conversion seems incompatible with the evolutionary divergence of newly duplicated genes. Hence, a process may exist to uncouple gene pairs from frequent conversion-mediated homogenization. Gene (or DNA) duplication is a major molecular mecha- aptation. -
Somatic and Germinal Recombination of a Direct Repeat in Arabidopsis
Copyright 0 1992 by the Genetics Society of America Somatic and Germinal Recombination of a Direct Repeatin Arabidopsis Farhah F. Assaad' and Ethan R. Signer Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139 Manuscript received April 10, 1992 Accepted for publication June 25, 1992 ABSTRACT Homologous recombination between a pair of directly repeated transgenes was studied in Arabi- dopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an activeHPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformationwith selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimatedat <2 X 10-5 events per division for germinal and>1 0-6 events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombi- nants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implicationsare discussed. ENOMES are not static but rather in constant suggested for other organisms (HILLISet al. 1991), G dynamic flux. That is especially so in plants, can either remove a mutation from a gene copy or which lack a permanent germline and instead produce conversely allow a new mutation to spread through gametes from somatic lineages. Thus changes in the the repeat population. -
MEIOSIS and RECOMBINATION in SORDARIA FIMICOLA Introduction
MEIOSIS AND RECOMBINATION IN SORDARIA FIMICOLA Introduction: In ascomycete fungi, a form of meiosis occurs in which the products of meiosis order themselves within a fruiting body according to the physical separation and segregation of chromatids during the meiotic process. This is covered in some detail on pages 150-152 (including Figures 4.26 and 4.27) in Hartl and Jones, Essential Genetics. You should study these pages before beginning this module. As described, ordered tetrad analysis provides a way to measure the genetic map distance between a gene and the centromere of the chromosome on which that gene resides. That is what you will do over the next two weeks in this laboratory. I. Natural history and Life Cycle of Sordaria fimicola Sordaria fimicola is an ascomycete fungi that can be found growing in rotting vegetation and animal dung (in fact, the name Sordaria fimicola means "filthy dung dweller"). Sordaria and another ascomycete, the common bread fungus Neurospora crassa (Fig. 4.26), have been used as model systems for studying the process of chromosome exchange (crossing-over) because of their reproductive characteristics. The life cycle of Sordaria is representative of the ascomycetes (although there are substantial differences in the details among species). The individual fungus begins as a haploid ascospore. The ascospore germinates to form hyphae (singular = hypha), which are long filaments comprised of haploid cells. These hyphae grow and extend throughout the nutrient source (dung or rotting vegetation in nature, nutrient medium in the laboratory situation) and digest it by means of enzymes secreted by the cells. Nutrients are then absorbed into the cells. -
Advanced Gene Mapping in Eukaryotes
RUSSMC07 2/7/05 11:54 AM Page 165 7 Advanced Gene Mapping in Eukaryotes Ordered tetrads of the fungus, Neurospora Crassa. PRINCIPAL POINTS • Tetrad analysis is a mapping technique that can be be used to determine gene order and map distances used to map the genes of certain haploid eukaryotic between genes. organisms in which the products of a single meiosis— • Due to both ethical and practical issues, human the meiotic tetrad—are contained within a single genes cannot be mapped by making crosses and structure. In these situations, the map distance analyzing progeny. A number of approaches are between genes is computed by analyzing the relative used to determine the linkage relationships proportion of tetrad types, rather than by analyzing between human genes, including analyzing individual progeny. pedigree data recombinationally and physically • In organisms in which the meiotic tetrads are locating genes on chromosomes by molecularly arranged linearly, it is easy to map the distance aided methods. of a gene from its centromere. • Crossing-over can also occur during mitosis, although i SPECIAL TECHNIQUES ARE AVAILABLE FOR at a frequency much lower than during meiosis. As in constructing linkage maps for eukaryotic organisms meiosis, mitotic crossing-over occurs at a four-strand beyond the standard genetic mapping crosses. In this stage. chapter you will learn about these techniques. Then, in the iActivity, you can apply what you’ve learned and further • For organisms amenable to such analysis, such as the explore one of the advanced mapping techniques. fungus Aspergillus nidulans, mitotic recombination can iActivity 165 RUSSMC07 1/26/05 12:47 PM Page 166 166 Chapter 7 Advanced Gene Mapping in Eukaryotes In the previous chapter, we considered the classical princi- Go to the iActivity Mapping Genes by Tetrad i ples for mapping genes in eukaryotes by means of recombi- Analysis on your CD-ROM and assume the role nation analysis. -
Download Full Text (Pdf)
http://www.diva-portal.org This is the published version of a paper published in Genome Biology and Evolution. Citation for the original published paper (version of record): Cossu, R M., Casola, C., Giacomello, S., Vidalis, A., Scofield, D G. et al. (2017) LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes Genome Biology and Evolution, 9(12): 3449-3462 https://doi.org/10.1093/gbe/evx260 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-144974 GBE LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes Rosa Maria Cossu1,2,†, Claudio Casola3,†, Stefania Giacomello4,5, Amaryllis Vidalis6,7, Douglas G. Scofield6,8,9,*, and Andrea Zuccolo1,10,* 1Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy 2Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy 3Department of Ecosystem Science and Management, Texas A&M University 4Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden 5Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden 6Department of Ecology and Environmental Science, Umea˚ University, Sweden 7Section of Population Epigenetics and Epigenomics, Center of Life and Food Sciences Weihenstephan, Technische Universitat€ Mu¨ nchen, Freising, Germany 8Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Sweden 9Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Sweden 10Istituto di Genomica Applicata, Udine, Italy †These authors contributed equally to this work. -
Transposable Elements in Sexual and Asexual Animals
Transposable elements in sexual and asexual animals Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen im Promotionsprogramm Biologie der Georg-August University School of Science (GAUSS) vorgelegt von Diplom-Biologe J e n s B a s t aus Bad Bergzabern Göttingen, 2014 Betreuungsausschuss Prof. Dr. Stefan Scheu, Tierökologie, J.F. Blumenbach Institut PD Dr. Mark Maraun, Tierökologie, J.F. Blumenbach Institut Dr. Marina Schäfer, Tierökologie, J.F. Blumenbach Institut Mitglieder der Prüfungskommision Referent: Prof. Dr. Stefan Scheu, Tierökologie, J.F. Blumenbach Institut Korreferent: PD Dr. Mark Maraun, Tierökologie, J.F. Blumenbach Institut Weitere Mitglieder der Prüfungskommision: Prof. Dr. Elvira Hörandl, Systematische Botanik, Albrecht von Haller Institut Prof. Dr. Ernst Wimmer, Entwicklungsbiologie, J.F. Blumenbach Institut Prof. Dr. Ulrich Brose, Systemische Naturschutzbiologie, J.F. Blumenbach Institut PD Dr. Marko Rohlfs, Tierökologie, J.F. Blumenbach Institut Tag der mündlichen Prüfung: 30.01.2015 2 Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt. – Schreiben Gauss an Wolfgang Bolyai, 1808 3 Curriculum Vitae PERSONAL DETAILS NAME Jens Bast BIRTH January, 31 1983 in Bad Bergzabern NATIONALITY German EDUCATION 2011-2015 PhD thesis (biology) Georg-August University Goettingen Title: 'Transposable elements in sexual and