The Unplanned Impact of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

The Unplanned Impact of Mathematics COMMENT The unplanned impact of mathematics Peter Rowlett introduces seven little-known tales illustrating that theoretical work may lead to practical applications, but it can’t be forced and it can take centuries. s a child, I read a joke about some- it contains a mistake. If it was true for Archi- without apparent direction or purpose is one who invented the electric plug medes, then it is true today. fundamental to the discipline. Applicability and had to wait for the invention The mathematician develops topics that is not the reason we work, and plenty that is Aof a socket to put it in. Who would invent no one else can see any point in pursuing, or not applicable contributes to the beauty and something so useful without knowing what pushes ideas far into the abstract, well beyond magnificence of our subject. purpose it would serve? Mathematics often where others would stop. Chatting with a col- There has been pressure in recent years displays this astonishing quality. Trying league over tea about a set of problems that for researchers to predict the impact of to solve real-world problems, researchers ask for the minimum number of stationary their work before it is undertaken. Alan often discover that the tools they need were guards needed to keep under observation Thorpe, then chair of Research Councils PARKINS DAVID BY ILLUSTRATIONS developed years, decades or even centuries every point in an art gallery, I outlined the UK, was quoted by Times Higher Educa- earlier by mathematicians with no prospect basic mathematics, noting that it only works tion (22 October 2009) as saying: “We have of, or care for, applicability. And the toolbox on a two-dimensional floor plan and breaks to demonstrate to the taxpayer that this is is vast, because, once a mathematical result down in three-dimensional situations, such an investment, and we do want research- is proven to the satisfaction of the disci- as when the art gallery contains a mezzanine. ers to think about what the impact of their pline, it doesn’t need to be re-evaluated in “Ah,” he said, “but if we move to 5D we can work will be.” The US National Science the light of new evidence or refuted, unless adapt …” This extension and abstraction Foundation is similarly focused on broader 166 | NATURE | VOL 475 | 14 JULY 2011 © 2011 Macmillan Publishers Limited. All rights reserved COMMENT impacts of research proposals (see Nature solving problems in geometry, mechanics 465, 416–418; 2010). However, predicting and optics. After his death the torch was GRAHAM HOARE impact is extremely problematic. The latest carried by Peter Guthrie Tait (1831–1901), International Review of Mathematical Sci- professor of natural philosophy at the Uni- From geometry ences (Engineering and Physical Sciences versity of Edinburgh. William Thomson Research Council; 2010), an independent (Lord Kelvin) wrote of Tait: “We have had to the Big Bang assessment of the quality and impact of a thirty-eight-year war over quaternions.” UK research, warned that even the most Thomson agreed with Tait that they would Correspondence editor, Mathematics theoretical mathematical ideas “can be use quaternions in their important joint Today useful or enlightening in unexpected ways, book the Treatise on Natural Philosophy sometimes several decades after their (1867) wherever they were useful. How- In 1907, Albert Einstein’s formulation of appearance”. ever, their complete absence from the final the equivalence principle was a key step There is no way to guarantee in advance manuscript shows that Thomson was not in the development of the general theory what pure mathematics will later find persuaded of their value. of relativity. His idea, that the effects of application. We can only let the process By the close of the nineteenth century, acceleration are indistinguishable from of curiosity and abstraction take place, let vector calculus had eclipsed quaternions, the effects of a uniform gravitational field, mathematicians obsessively take results to and mathematicians in the twentieth cen- depends on the equivalence between gravi- their logical extremes, leaving relevance far tury generally followed Kelvin rather than tational mass and inertial mass. Einstein’s behind, and wait to see which topics turn Tait, regarding quaternions as a beautiful, essential insight was that gravity mani- out to be extremely useful. If not, when the but sadly impractical, historical footnote. fests itself in the form of space-time cur- challenges of the future arrive, we won’t So it was a surprise when a colleague vature; gravity is no longer regarded as a have the right piece of seemingly pointless who teaches computer-games development force. How matter curves the surrounding mathematics to hand. asked which mathematics module students space-time is expressed by Einstein’s field To illustrate this, I asked members of the should take to learn about quatern­ions. It equations. He published his general theory British Society for the History of Mathemat- turns out that they are particularly valuable in 1915; its origins can be traced back to ics (including myself) for unsung stories for calculations involving three-dimen- the middle of the previous century. of the unplanned impact of mathematics sional rotations, where they have various In his brilliant Habilitation lecture of (beyond the use of number theory in mod- advantages over matrix methods. This 1854, Bernhard Riemann introduced the ern cryptography, or that the mathematics makes them indispensable in robotics and principal ideas of modern differential geom- to operate a computer existed when one was computer vision, and in ever-faster graph- etry — n-dimensional spaces, metrics and built, or that imaginary numbers became ics programming. curvature, and the way in which curvature essential to the complex calculations that fly Tait would no doubt be happy to have controls the geometric properties of space aeroplanes). Here follow seven; for more, see finally won his ‘war’ with Kelvin. And Ham- — by inventing the concept of a manifold. www.bshm.org. Peter Rowlett ilton’s expectation that his discovery would Manifolds are essentially generalizations be of great benefit has been realized, after 150 of shapes, such as the surface of a sphere years, in gaming, an industry estimated to be or a torus, on which one can do calculus. MARK MCCARTNEY & worth more than US$100 billion worldwide. Riemann went far beyond the conceptual frameworks of Euclidean and non-Euclidean TONY MANN geometry. He foresaw that his manifolds could be models of the physical world. From quaternions The tools developed to apply Riemannian geometry to physics were initially the work to Lara Croft of Gregario Ricci-Curbastro, beginning in 1892 and extended with his student Tullio University of Ulster, Newtownabbey, Levi-Civita. In 1912, Einstein enlisted the UK; University of Greenwich, London help of his friend, the mathematician Marcel Grossman, to use this ‘tensor calculus’ Famously, the idea of quaternions came to to articulate his deep physical insights in the Irish mathematician William Rowan mathematical form. He employed Riemann Hamilton on 16 October 1843 as he was manifolds in four dimensions: three for walking over Brougham Bridge, Dublin. space and one for time (space-time). He marked the moment by carving the It was the custom at the time to assume equations into the stonework of the bridge. that the Universe is static. But Einstein soon Hamilton had been seeking a way to extend found that his field equations when applied the complex-number system into three to the whole Universe did not have any static dimensions: his insight on the bridge was solutions. In 1917, to make a static Universe that it was necessary instead to move to four possible, Einstein added the cosmological dimensions to obtain a consistent number constant to his original field equations. Rea- system. Whereas complex numbers take the sons for believing in an explosive origin to form a + ib, where a and b are real numbers the Universe, the Big Bang, were put forward and i is the square root of −1, quaternions by Aleksander Friedmann in his 1922 study have the form a + bi + cj + dk, where the rules of Einstein’s field equations in a cosmological are i2 = j2 = k2 = ijk = −1. context. Grudgingly accepting the irrefutable Hamilton spent the rest of his life promot- evidence of the expansion of the Universe, ing the use of quaternions, as mathematics Einstein deleted the constant in 1931, refer- both elegant in its own right and useful for ring to it as “the biggest blunder” of his life. 14 JULY 2011 | VOL 475 | NATURE | 167 © 2011 Macmillan Publishers Limited. All rights reserved COMMENT These proofs are simpler than the result for produce a game in which the expected out- three dimensions, and relate to two incred- come is positive. The term ‘Parrondo effect’ ibly dense packings of spheres, called the is now used to refer to an outcome of two E8 lattice in 8-dimensions and the Leech combined events being very different from lattice in 24 dimensions. the outcomes of the individual events. This is all quite magical, but is it A number of applications of the Parrondo useful? In the 1960s an engineer called effect are now being investigated in which Gordon Lang believed so. Lang was chaotic dynamics can combine to yield non- designing the systems for modems and chaotic behaviour. For example, the effect was busy harvesting all the can be used to model the population dynam- mathematics he could find. ics in outbreaks of viral diseases and offers He needed to send a prospects of reducing the risks of share-price signal over a noisy chan- volatility. Plus it plays a leading part in the nel, such as a phone plot of Richard Armstrong’s 2006 novel, God line.
Recommended publications
  • The Astronomers Tycho Brahe and Johannes Kepler
    Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose).
    [Show full text]
  • Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
    Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]
  • Simply-Riemann-1588263529. Print
    Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones.
    [Show full text]
  • On the Stability Conjecture for Geodesic Flows of Manifolds Without
    Annales Henri Lebesgue 4 (2021) 759-784 LUDOVICRIFFORD RAFAELRUGGIERO ONTHESTABILITY CONJECTUREFORGEODESIC FLOWSOFMANIFOLDSWITHOUT CONJUGATE POINTS SURLACONJECTUREDELASTABILITÉ POURLESFLOTSGÉODÉSIQUESSANS POINTSCONJUGUÉS Abstract. — We study the C2-structural stability conjecture from Mañé’s viewpoint for geodesics flows of compact manifolds without conjugate points. The structural stability conjecture is an open problem in the category of geodesic flows because the C1 closing lemma is not known in this context. Without the C1 closing lemma, we combine the geometry of manifolds without conjugate points and a recent version of Franks’ Lemma from Mañé’s viewpoint to prove the conjecture for compact surfaces, for compact three dimensional manifolds with quasi-convex universal coverings where geodesic rays diverge, and for n-dimensional, generalized rank one manifolds. Keywords: Geodesic flow, structural stability, closing lemma, conjugate points, quasi-convex space, Gromov hyperbolic space. 2020 Mathematics Subject Classification: 37C20, 37D40, 53C22, 20F65. DOI: https://doi.org/10.5802/ahl.87 (*) The research project was partially supported by CNPq, Programa de Estágio Sênior CAPES, CNRS, unité FR2291 FRUMAM. 760 L. RIFFORD & R. RUGGIERO Résumé. — Nous étudions la conjecture de stabilité en topologie C2 du point de vue de Mañé pour le flots géodésiques sans points conjugués sur les variétés compactes. La conjecture de stabilité en topologie C1 pour les flots géodésiques est un problème ouvert car le C1-Closing Lemma n’est pas connu dans ce contexte. Sans Closing Lemma, nous démontrons que la théorie des variétés sans points conjugués et une version récente du Lemme de Franks du point de vue de Mañé permettent d’obtenir une réponse positive à la conjecture dans le cas des variétés compactes sans points conjugués de dimension 2 et 3 ayant un revêtement universel quasi-convexe avec des rayons géodésiques divergents, ainsi que pour les variétés de dimension n de rank un généralisées.
    [Show full text]
  • Chapter 1 Chapter 2 Chapter 3
    Notes CHAPTER 1 1. Herbert Westren Turnbull, The Great Mathematicians in The World of Mathematics. James R. Newrnan, ed. New York: Sirnon & Schuster, 1956. 2. Will Durant, The Story of Philosophy. New York: Sirnon & Schuster, 1961, p. 41. 3. lbid., p. 44. 4. G. E. L. Owen, "Aristotle," Dictionary of Scientific Biography. New York: Char1es Scribner's Sons, Vol. 1, 1970, p. 250. 5. Durant, op. cit., p. 44. 6. Owen, op. cit., p. 251. 7. Durant, op. cit., p. 53. CHAPTER 2 1. Williarn H. Stahl, '' Aristarchus of Samos,'' Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 1, 1970, p. 246. 2. Jbid., p. 247. 3. G. J. Toorner, "Ptolerny," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 11, 1975, p. 187. CHAPTER 3 1. Stephen F. Mason, A History of the Sciences. New York: Abelard-Schurnan Ltd., 1962, p. 127. 2. Edward Rosen, "Nicolaus Copernicus," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 3, 1971, pp. 401-402. 3. Mason, op. cit., p. 128. 4. Rosen, op. cit., p. 403. 391 392 NOTES 5. David Pingree, "Tycho Brahe," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 2, 1970, p. 401. 6. lbid.. p. 402. 7. Jbid., pp. 402-403. 8. lbid., p. 413. 9. Owen Gingerich, "Johannes Kepler," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 7, 1970, p. 289. 10. lbid.• p. 290. 11. Mason, op. cit., p. 135. 12. Jbid .. p. 136. 13. Gingerich, op. cit., p. 305. CHAPTER 4 1.
    [Show full text]
  • Henri Lebesgue and the Development of the Integral Concept
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Analysis Mathematics via Primary Historical Sources (TRIUMPHS) Summer 2016 Henri Lebesgue and the Development of the Integral Concept Janet Heine Barnett Colorado State University-Pueblo, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_analysis Part of the Analysis Commons, Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Barnett, Janet Heine, "Henri Lebesgue and the Development of the Integral Concept" (2016). Analysis. 2. https://digitalcommons.ursinus.edu/triumphs_analysis/2 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Analysis by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. Henri Lebesgue and the Development of the Integral Concept Janet Heine Barnett∗ May 5, 2021 In an important text published in 1853, the celebrated German mathematician Bernhard Riemann (1826–1866) presented the approach to integration that is still known by his name today. In fact, Riemann devoted only a small portion (5–6 pages) of his text to the question of how to define the integral. Over two decades later, the French mathematician Gaston Darboux (1842–1917), an admirer of Riemann’s ideas, provided the rigorous reformulation of the Riemann integral which is learned in most undergraduate level analysis courses in his publication Mémoire sur les fonctions discontinues [Darboux, 1875].
    [Show full text]
  • Deriving Kepler's Laws of Planetary Motion
    DERIVING KEPLER’S LAWS OF PLANETARY MOTION By: Emily Davis WHO IS JOHANNES KEPLER? German mathematician, physicist, and astronomer Worked under Tycho Brahe Observation alone Founder of celestial mechanics WHAT ABOUT ISAAC NEWTON? “If I have seen further it is by standing on the shoulders of Giants.” Laws of Motion Universal Gravitation Explained Kepler’s laws The laws could be explained mathematically if his laws of motion and universal gravitation were true. Developed calculus KEPLER’S LAWS OF PLANETARY MOTION 1. Planets move around the Sun in ellipses, with the Sun at one focus. 2. The line connecting the Sun to a planet sweeps equal areas in equal times. 3. The square of the orbital period of a planet is proportional to the cube of the semimajor axis of the ellipse. INITIAL VALUES AND EQUATIONS Unit vectors of polar coordinates (1) INITIAL VALUES AND EQUATIONS From (1), (2) Differentiate with respect to time t (3) INITIAL VALUES AND EQUATIONS CONTINUED… Vectors follow the right-hand rule (8) INITIAL VALUES AND EQUATIONS CONTINUED… Force between the sun and a planet (9) F-force G-universal gravitational constant M-mass of sun Newton’s 2nd law of motion: F=ma m-mass of planet r-radius from sun to planet (10) INITIAL VALUES AND EQUATIONS CONTINUED… Planets accelerate toward the sun, and a is a scalar multiple of r. (11) INITIAL VALUES AND EQUATIONS CONTINUED… Derivative of (12) (11) and (12) together (13) INITIAL VALUES AND EQUATIONS CONTINUED… Integrates to a constant (14) INITIAL VALUES AND EQUATIONS CONTINUED… When t=0, 1.
    [Show full text]
  • Gravity, Orbital Motion, and Relativity
    Gravity, Orbital Motion,& Relativity Early Astronomy Early Times • As far as we know, humans have always been interested in the motions of objects in the sky. • Not only did early humans navigate by means of the sky, but the motions of objects in the sky predicted the changing of the seasons, etc. • There were many early attempts both to describe and explain the motions of stars and planets in the sky. • All were unsatisfactory, for one reason or another. The Earth-Centered Universe • A geocentric (Earth-centered) solar system is often credited to Ptolemy, an Alexandrian Greek, although the idea is very old. • Ptolemy’s solar system could be made to fit the observational data pretty well, but only by becoming very complicated. Copernicus’ Solar System • The Polish cleric Copernicus proposed a heliocentric (Sun centered) solar system in the 1500’s. Objections to Copernicus How could Earth be moving at enormous speeds when we don’t feel it? . (Copernicus didn’t know about inertia.) Why can’t we detect Earth’s motion against the background stars (stellar parallax)? Copernicus’ model did not fit the observational data very well. Galileo • Galileo Galilei - February15,1564 – January 8, 1642 • Galileo became convinced that Copernicus was correct by observations of the Sun, Venus, and the moons of Jupiter using the newly-invented telescope. • Perhaps Galileo was motivated to understand inertia by his desire to understand and defend Copernicus’ ideas. Orbital Motion Tycho and Kepler • In the late 1500’s, a Danish nobleman named Tycho Brahe set out to make the most accurate measurements of planetary motions to date, in order to validate his own ideas of planetary motion.
    [Show full text]
  • Johannes Kepler by Sharon Fabian
    Johannes Kepler By Sharon Fabian elliptical fastest copernicus earth asteroid brightness galilec interesting revolve outermost scientist scientific system launch religious Directions: Fill in each blank with the word that best completes the reading comprehension. Johannes Kepler grew up in an exciting time for scientists. During his lifetime, the way people looked at the heavens was changing. In the old way of understanding the universe, or the solar system as we call it today, the earth was at the center. The planets were believed to (1) around the earth, and the stars never changed. Some scientists pictured the heavens as a series of crystal spheres that turned slowly around the (2) . The planets were fastened to these spheres. and that is how they moved. This was not just the (3) position of that time; it was also the (4) position. The Church taught that the arrangement of the solar system was part of God's plan. God was known as the Prime Mover of the spheres, and Heaven was located in the (5) sphere. This had been the accepted view of the solar system for nearly 2,000 years. In the 1 500s and 1600s, some scientists were beginning to question all or part of this theory. (6) had already stated that the sun, not the earth, was at the center of the solar system. (7) had been condemned by the Church for publishing similar views. Another scientist, Tycho Brahe, had built an observatory and begun to take careful measurements of the objects in the sky. Johannes Kepler went to work for Tycho Brahe as his assistant.
    [Show full text]
  • Henri Lebesgue and the End of Classical Theories on Calculus
    Henri Lebesgue and the End of Classical Theories on Calculus Xiaoping Ding Beijing institute of pharmacology of 21st century Abstract In this paper a novel calculus system has been established based on the concept of ‘werden’. The basis of logic self-contraction of the theories on current calculus was shown. Mistakes and defects in the structure and meaning of the theories on current calculus were exposed. A new quantity-figure model as the premise of mathematics has been formed after the correction of definition of the real number and the point. Basic concepts such as the derivative, the differential, the primitive function and the integral have been redefined and the theories on calculus have been reestablished. By historical verification of theories on calculus, it is demonstrated that the Newton-Leibniz theories on calculus have returned in the form of the novel theories established in this paper. Keywords: Theories on calculus, differentials, derivatives, integrals, quantity-figure model Introduction The combination of theories and methods on calculus is called calculus. The calculus, in the period from Isaac Newton, Gottfried Leibniz, Leonhard Euler to Joseph Lagrange, is essentially different from the one in the period from Augustin Cauchy to Henri Lebesgue. The sign for the division is the publication of the monograph ‘cours d’analyse’ by Cauchy in 1821. In this paper the period from 1667 to 1821 is called the first period of history of calculus, when Newton and Leibniz established initial theories and methods on calculus; the period after 1821 is called the second period of history of calculus, when Cauchy denied the common ideas of Newton and Leibniz and established new theories on calculus (i.e., current theories on calculus) using the concept of the limit in the form of the expression invented by Leibniz.
    [Show full text]
  • The Mass of the Sun
    Name Date The Mass of the Sun Orbits The planets in our Solar System all orbit the Sun in elliptical orbits. Most planetary orbits are, however, almost circular. Since the planets are moving in circles they must be experiencing a centripetal acceleration. We know that the centripetal acceleration on an orbiting body (e.g. a planet) is given by: = where r is the distance from the central body (e.g. the Sun), and v is the velocity it is moving at. The centripetal acceleration is caused by the gravitational attraction of the two bodies, which is given by: = where M is the mass of the central body, m is the mass of the orbiting body, and G is Newton’s Gravitational constant and is equal to 6.67 x 10-11 m3 s-2 kg-1 Since the centripetal acceleration is caused by the gravitational force, we use Newton's 2nd law: = Putting the first two equations into the third one we therefore know that: = We can then work out a relationship between the velocity, the mass of the central object, and the orbital radius: = The Mass of the Sun Name Date Kepler's Laws of Planetary Motion In 1605 Johannes Kepler wrote down three laws of planetary orbits: 1. The orbit of every planet is an ellipse with the Sun at a focus. 2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time. 3. The square of the orbital period of a planet is directly proportional to the cube of the semi- major axis of its orbit.
    [Show full text]