The Enamel-Dentine Junction of Human and Macaca Irus Teeth: a Light and Electron Microscopic Study

Total Page:16

File Type:pdf, Size:1020Kb

The Enamel-Dentine Junction of Human and Macaca Irus Teeth: a Light and Electron Microscopic Study J. Anat. (1978), 125, 2, pp. 323-335 323 With 27 figures Printed in Great Britain The enamel-dentine junction of human and Macaca irus teeth: a light and electron microscopic study D. K. WHITTAKER Department of Oral Biology, Welsh National School of Medicine, Dental School, Heath, Cardiff (Accepted 20 January 1977) INTRODUCTION Junctional zones, particularly those between tissues ofdiffering physical properties, present problems to the histologist and this may explain the rather sparse literature on the structure of the enamel-dentine junction. An early description of the junction was given by Tomes (1898), who implied that all enamel is festooned towards the dentine surface. Few workers have questioned this concept although Rywkind (1931) noted that in some teeth the scallops are irregular in size and distribution and are sometimes absent. Gustafson (1961) con- firmed the basic arcade-shaped appearance of the junction, but agreed that the de- velopment of the scallops varies from tooth to tooth, and suggested that the pattern may be characteristic of the individual. She noted that the arcades were more pro- nounced in fluorosed teeth. Falin (1961) described the junction in Bronze Age teeth as being flat or slightly festooned in premolars and molars, and scalloped in canines and incisors. No comparable study appears to have been carried out in teeth of modern origin. More recently Scott & Symons (1974) commented upon the varia- tion in size of the dome-shaped scallops, which are usually most marked in the cuspal region, but are occasionally absent. Their views are at variance with those of Schour (1960), who claimed that scalloping is more marked in the gingival third of teeth. No general agreement exists as to the size of the scallops (Nylen & Scott, 1958; Masukawa, 1959; Nakamura, 1959), and there has also been debate concerning the relationship of the crystals of enamel and dentine at the junction (Helmcke, 1953; Heuser, 1961; Nalbandian & Frank, 1962; Takuma, 1967; Watson & Avery, 1954). A further controversy has concerned the details of the development of the junction, which was originally thought to be produced by resorption of the dentine surface (Walkhoff, 1924). The central issue of the current debate is whether or not scallops are produced during the soft tissue stage of tooth formation (Schour, 1960) or only at a later stage (Provenza, 1964). The present study on both human and animal teeth seeks to resolve some of these problems. MATERIALS AND METHODS The enamel-dentine junction (EDJ) was studied in non-carious teeth from both deciduous and permanent human dentitions and those of Macaca irus monkeys. The macaques were obtained as preserved post mortqm specimens from the Medical Research Council Laboratories, London. In addition human fetal teeth were examined. The specimens were fixed in 10 % formol saline and prepared for light microscopy using the following techniques: 2I-2 324 D. K. WHITTAKER Table 1. Techniques and numbers ofspecimens studied Deciduous Permanent Preparation r A A Specimens technique Anterior Posterior Anterior Posterior Human fetal Araldite embedded 9 Human (a) Decalcified and sectioned 3 6 4 8 non-carious (b) Ground 3 6 4 8 (c) SEM of decalcified dentine 3 5 3 7 (d) Fractured through ADJ (i) Embedded 4 4 (ii) Not embedded 6 1 6 (e) Ground, etched and SEM 6 - 4 (f) Separated at ADJ and - 4 - 4 SEM Monkey (a) Decalcified and sectioned 4 4 4 4 Macaca irus (b) Ground 3 2 3 3 (c) SEM of decalcified dentine 4 4 4 4 (d) Ground, etched and SEM 3 2 3 3 Total 32 49 26 55-162 (1) Teeth were decalcified in formic acid with continuous agitation until radio- graphic examination indicated total removal of inorganic material. The specimens were ultrasonicated to ensure removal of enamel matrix debris, dehydrated and embedded in paraffin wax. 5 ,um sections cut at right angles to the junction in both transverse and longitudinal planes were prepared and stained with either haematoxy- lin and eosin or Schmorl's picrothionin. (2) Undecalcified human fetal teeth were embedded in Araldite, sectioned at 1 4am and stained with toluidine blue. (3) Ground sections in longitudinal and transverse planes were prepared and mounted in Canada balsam. Specimens prepared by all these techniques were examined in a Leitz Wetzlar microscope with a x 100 objective and fitted with a camera lucida attachment. Drawings were made at standard magnification of representative zones of the junction from each specimen. Further specimens of human and monkey teeth were prepared for electron microscopy as follows: (1) Ground sections in longitudinal and transverse planes were prepared. The polished surfaces were etched with 0-25N HCl for 15 seconds and then washed and de- hydrated. Positive replicas of the EDJ region were obtained using a two stage cellu- lose acetate and carbon technique (Bradley, 1957). Cellulose acetate strips were softened in acetone, pressed on to the etched tooth sections and allowed to dry. They were gently peeled off and vertically coated with carbon in an AEl Metrovac Type 12 vacuum coating unit. The acetate strips were dissolved by floating on acetone, and the carbon replica picked up from the surface of the solvent on copper grids. These replicas were examined in an AEl EM6B transmission electron microscope (TEM). The etched sections were mounted on aluminium stubs and coated by evaporation of gold in a Polaron E500 diode sputtering system at a vacuum of 0-07 Torr. Coating was continued for 2 minutes in an Argon gas atmosphere. Specimens were examined at various magnifications in an ISI Super Mini SEM. (2) Undecalcified teeth were embedded in Araldite, cut through from the dentine to within 1 mm of the EDJ, and then fractured through the junction. The fractured Structure of the enamel-dentine junction 325 surfaces were ultrasonicated to remove debris, coated with gold and examined in the SEM. (Mortimer & Tranter, 1971). (3) The dentine surfaces of decalcified teeth were gold coated and examined in the SEM. (4) Enamel and dentine were separated at the EDJ by preparing 1 mm sections at right angles to the junction and desiccating them until splitting occurred. Both the exposed enamel and dentine surfaces were gold coated and examined in the SEM. Enamel was also separated from dentine by prolonged immersion of 1 mm tooth sections in sodium hypochlorite until dentine could be carefully dissected away from the enamel. Enamel surfaces exposed in this way were examined in the SEM. The number of teeth examined by these techniques is shown in Table 1. RESULTS Contour of the junction in developing teeth In the monkey material the junction showed concavities which were approxi- mately 5 ,am in diameter, and each was related to a prism end (Fig. 1). Apart from these small concavities the junction was not scalloped. The junction in human teeth varied in appearance with the stage of development. Before hard tissue formation some evidence of scalloping was visible at the basement membrane adjacent to the internal enamel epithelium (Fig. 2). Shortly after dentine and enamel formation began but before maturity was reached, evidence of scallops was rare and the junction usually appeared flat (Fig. 3). Contour of the junction in mature teeth In the human material the contour varied with the particular tooth examined, and also within the same tooth (Fig. 4). Scalloping was present in all the teeth in some sites (Fig. 5), but the amplitude and depth varied, and scalloping was absent or markedly reduced near the enamel-cement junction of most teeth (Fig. 6). Small scallops were seen in the permanent premolars and molars, deciduous molars and anterior teeth. The largest scallops were seen in the permanent anteriors. The depth of the scallops appeared to be less in the deciduous than in the perma- nent teeth, and the pattern of scalloping varied according to the tooth examined. Permanent and deciduous molars had the largest size of scallops in the cuspal region. In deciduous anteriors the distribution of the scallops appeared to be random, whilst in the permanent anteriors the largest scallops were seen in the cingulum and approximal portions of the teeth (Fig. 7). In the monkey material true scalloping was rare, and usually found only in approxi- mal surfaces of the teeth. Elsewhere the junction was grossly flat, but undulated in 5 4tm concavities apparently related to the prism ends (Figs. 8 and 9). The larger true scallops were less well developed than in human teeth and appeared to be shallower. Surface features of the dentine SEM examination of the dentine surface in decalcified teeth enabled the morph- ology of the junction to be studied (Fig. 10). The variation in size of the scallops between teeth and within the same tooth was confirmed in the human material. The scallops consisted of crater-like depressions in the dentine surface (Fig. 11), the floor of which was composed of a dense network of fibrous-like material per- forated by holes of varying size and having a roughened irregular texture. The 326 D. K. WHITTAKER 'io X ' i Fig. 1. Developing monkey permanent molar. Scallops at junction (arrowed) are 4-5 ,um in size and associated with enamel prisms seen in enamel matrix. H & E. x 300. Fig. 2. Developing human tooth before calcification. Note the slight scalloping of the future enamel-dentine junction (arrowed). H & E. x 300. Fig. 3. Developing human tooth after initial dentine (D) and enamel (E) formation. Note absence of scallops at junction (arrowed). H & E. x 300. Fig. 5. Ground section of a typical human permanent tooth. Note scallops at the junction. Ground section. x 300. Fig. 6. Human tooth showing junction near enamel-cement margin. Note absence of scallops.
Recommended publications
  • Enamel Lamellae ** Thin Leaf Like Structure, Extend from the Enamel Surface to a Considerable Distance in the Enamel Till DEJ , Sometimes Extend Into the Dentin
    Objectives: 1-Understand the Physical and Chemical characteristic features of enamel 2-Recognize the surface and histological structure of enamel. (1) Definition; Enamel is the hardest mineralized tissue in the human body that covers the anatomical crown of teeth. It forms a protective covering of teeth to resist the stresses and forces of mastication. (2) Origin ectodermal in origin from the IEE. Formative cells: Ameloblasts which are lost as the tooth erupts and hence enamel can not renew itself. Oral ectoderm *It is a mineralized epithelial tissue that is totally acellular. Dental *Inert. lamina *Non-vital. *Insensitive. Inner *If wear or Caries, it can’t replaced enamel Or regenerated (can’t renew itself). epithelium *Permeable. *Unique crystalline structure. *Unique matrix protein. (3) Physical properties of enamel: A)Color: Yellowish white to grayish white (according to thickness, degree of translucency, degree of calcification & homogeneity of enamel). B)Thickness: Variable (max. on cusp tips {2-2.5mm.}& kinfe edge at cervical margin). C)Hardness: Hardest calcified tissue in the body due to: [↑↑content of mineral salts & its crystalline arrangement]. Hardness of permanent teeth ˃ deciduous. Hardness at the surface ˃ DEJ. Hardness at cusp & incisal edge ˃ hardness at cervical line. D)Brittleness: Enamel is brittle, especially when looses its elastic foundation of healthy dentin (i.e. undermind enamel). E)Permeability: Enamel can act as semipermeable membrane, permitting complete or partial slow passage of certain ions & dyes. Mainly from the saliva to the outer layer of enamel, but to a lesser degree from the pulp to the inner enamel layer across the dentin. GROUND SECTION DECALCIFIED SECTION Methods of Studying ” hard tissues” HISTOLOGICAL PREPARATION OF TEETH GROUND SECTIONS ENAMEL Show enamel, dentin and bone.
    [Show full text]
  • Jci.Org Volume 124 Number 12 December 2014 5219 Brief Report the Journal of Clinical Investigation
    The Journal of Clinical Investigation BRIEF REPORT Hair keratin mutations in tooth enamel increase dental decay risk Olivier Duverger,1 Takahiro Ohara,1 John R. Shaffer,2 Danielle Donahue,3 Patricia Zerfas,4 Andrew Dullnig,5 Christopher Crecelius,5 Elia Beniash,6,7 Mary L. Marazita,2,6,8 and Maria I. Morasso1 1Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA. 2Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. 3Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA. 4Office of Research Services, Division of Veterinary Resources, NIH, Bethesda, Maryland, USA. 5National Capital Consortium Oral and Maxillofacial Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA. 6Department of Oral Biology, 7Center for Craniofacial Regeneration, and 8Center for Craniofacial and Dental Genetics, and Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. Tooth enamel is the hardest substance in the human body and has a unique combination of hardness and fracture toughness that protects teeth from dental caries, the most common chronic disease worldwide. In addition to a high mineral content, tooth enamel comprises organic material that is important for mechanical performance and influences the initiation and progression of caries; however, the protein composition of tooth enamel has not been fully characterized. Here, we determined that epithelial hair keratins, which are crucial for maintaining the integrity of the sheaths that support the hair shaft, are expressed in the enamel organ and are essential organic components of mature enamel. Using genetic and intraoral examination data from 386 children and 706 adults, we found that individuals harboring known hair disorder–associated polymorphisms in the gene encoding keratin 75 (KRT75), KRT75A161T and KRT75E337K, are prone to increased dental caries.
    [Show full text]
  • Enamel Spindles
    LECTURE V 1 Learning Objective • At the end of this lecture, the students will be able to know about the; Ultrastructure of Enamel Rods Enamel Cuticle Enamel Lamellae Enamel Tufts Dentinoenamel Junction (DEJ) Enamel Spindles 2 ENAMEL CUTICLE • Primary enamel cuticle or the Nasmyth’s membrane • A typical basal lamina under electron microscope • Probably visible with the light microscope - wavy course • Apparently secreted by the ameloblasts 3 Enamel Cuticle Cont’d… • Function of the enamel cuticle • Afibrillar cementum • Pellicle 4 ENAMEL LAMELLAE • Thin, leaf-like structures • May extend to, and sometimes penetrate into, the dentin • Consist of organic material with little mineral content • May be confused with cracks 5 Enamel Lamellae Cont’d… • Types of Lamellae Type A: composed of poorly calcified rod segments Type B: consisting of degenerated cells Type C: filled with organic matter, presumably originating from saliva • Lamellae can be observed better in horizontal sections 6 Enamel Lamellae Cont’d… • Lamellae may develop in planes of tension Where rods cross such a plane, a short segment of the rod may not fully calcify • If the disturbance is more severe, a crack may develop Unerupted tooth: filled by surrounding cells After eruption: filled by organic substances from the oral cavity 7 ENAMEL TUFTS • Arise at the dentinoenamel junction and reach into the enamel to about one fifth to one third of its thickness • Resemble tufts of grass - erroneous • Does not spring from a single small area but is a narrow, ribbon-like structure
    [Show full text]
  • Conservation and Variation in Enamel Protein Distribution During Vertebrate Tooth Development PAUL G
    JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 294:91–106 (2002) Conservation and Variation in Enamel Protein Distribution During Vertebrate Tooth Development PAUL G. SATCHELL,1 XOCHITL ANDERTON,1 OKHEE H. RYU,2 XIANGHONG LUAN,1,7 ADAM J. ORTEGA,3 RENE OPAMEN,1 BRETT J. BERMAN,4,6 DAVID E. WITHERSPOON,1 JAMES L. GUTMANN,1 AKIRA YAMANE,5 MARGERITA ZEICHNER-DAVID,6 2 6 JAMES P. SIMMER, CHARLES F. SHULER, AND THOMAS G.H. DIEKWISCH1,6,7* 1Baylor College of Dentistry/Texas A&M University System, Dallas, Texas 2Department of Pediatric Dentistry, The University of Texas Health Sciences Center at San Antonio, Texas 3Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 4The Department of Medicine, The University of California, San Diego, California 5Department of Pharmacology, School of Dental Medicine, Tsurumi University, Japan 6Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, California 7Allan G. Brodie Laboratory for Craniofacial Genetics, University of Illinois College of Dentistry, Chicago, Illinois ABSTRACT Vertebrate enamel formation is a unique synthesis of the function of highly specialized enamel proteins and their effect on the growth and organization of apatite crystals. Among tetrapods, the physical structure of enamel is highly conserved, while there is a greater variety of enameloid tooth coverings in fish. In the present study, we postulated that in enamel microstructures of similar organization, the principle components of the enamel protein matrix would have to be highly conserved. In order to identify the enamel proteins that might be most highly conserved and thus potentially most essential to the process of mammalian enamel formation, we used immunoscreening with enamel protein antibodies as a means to assay for degrees of homology to mammalian enamel proteins.
    [Show full text]
  • Diagnosis of Occlusal Tooth Wear Using 3D Imaging of Optical Coherence Tomography Ex Vivo
    sensors Article Diagnosis of Occlusal Tooth Wear Using 3D Imaging of Optical Coherence Tomography Ex Vivo Misa Kashiwa 1, Yasushi Shimada 1,2,* , Alireza Sadr 1,3 , Masahiro Yoshiyama 2, Yasunori Sumi 4 and Junji Tagami 1 1 Department of Cariology and Operative Dentistry Department, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; [email protected] (M.K.); [email protected] (A.S.); [email protected] (J.T.) 2 Department of Operative Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; [email protected] 3 Biomimetics Biomaterials Biophotonics Biomechanics & Technology Laboratory, Department of Restorative Dentistry, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-7456, USA 4 Center of Advanced Medicine for Dental and Oral Diseases, Department for Advanced Dental Research, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-86-235-6671 Received: 21 September 2020; Accepted: 21 October 2020; Published: 23 October 2020 Abstract: The aim of this study was to assess the utility of 3D imaging of optical coherence tomography (OCT) for the diagnosis of occlusal tooth wear ex vivo. Sixty-three extracted human molars with or without visible tooth wear were collected to take digital intraoral radiography and 3D OCT images. The degree of tooth wear was evaluated by 12 examiners and scored using 4-rank scale: 1—slight enamel wear; 2—distinct enamel wear; 3—tooth wear with slight dentin exposure; 4—tooth wear with distinct involvement of dentin.
    [Show full text]
  • Fabrication and Characterisation of a Novel Biomimetic Anisotropic Ceramic/Polymer- Infiltrated Composite Material
    Al-Jawoosh, S., Ireland, A., & Su, B. (2018). Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer- infiltrated composite material. Dental Materials, 34(7), 994-1002. https://doi.org/10.1016/j.dental.2018.03.008 Peer reviewed version Link to published version (if available): 10.1016/j.dental.2018.03.008 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0109564117310357?via%3Dihub. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material Abstract Objective. To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Method. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerized tomography (Micro-CT). Results. Three-dimensional aligned honeycomb-like ceramic structure were produced and full interpenetration of the polymer phase was observed using micro-CT.
    [Show full text]
  • Imaging Hard – Inside the Skeleton Timothy G
    Imaging hard – inside the skeleton Timothy G. Bromage, Santiago Gomez, Alan Boyde Vertebrate hard tissue biologists study the surface and below-surface microanatomical features and compositional characteristics of bones and teeth of the skeleton (fish scales also deposit calcium phosphate and calcium carbonate into their structure, and we include them among the tissues we study). The variability in bone and tooth histology rivals that of all other organ systems, making it an ideal tissue for understanding the development, function, and physiology of organisms. What is more, in deference to soft tissues, bones and teeth survive as fossils, permitting all that we can know from the skeleton about an organism living today to be extrapolated to animals living millions of years ago. Bromage TG, Gomez S, Boyde A. Imaging hard – inside the skeleton. Royal Microscopy Society infocus 49: 4-31, 2018. 4 ISSUE 49 MARCH 2018 5 By and large, hard tissues are formed by cells that Bright-field microscopy two axes furthest from the maximum transmission air present themselves as superior surface reflection secrete an organic matrix, which then mineralises. Bright-field is the simplest yet most versatile form axes of the two filters. Brightness in images derived instruments for metrology. In addition to this, by But in some cases they may be made from soft tissues of microscopy. Specimens imaged by bright-field from linear polarising microscopes is thus not easily using an immersion objective lens or by placing a such as cartilage or ligament that subsequently microscopy - usually histological sections - are quantifiable nor always fully interpretable because of glass coverslip with a medium onto the specimen mineralise.
    [Show full text]
  • Fracture in Teeth—A Diagnostic for Inferring Bite Force and Tooth Function Paul J
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Spring 4-20-2011 Fracture in teeth—a diagnostic for inferring bite force and tooth function Paul J. Constantino Biological Sciences, [email protected] Brian R. Lawn James J.-W. Lee Peter W. Lucas Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Structures Commons, Biological and Physical Anthropology Commons, Biology Commons, and the Dentistry Commons Recommended Citation Lee JJ-W, Constantino PJ, Lucas PW, Lawn BR. Fracture in teeth – a diagnostic for inferring tooth function and diet. Biological Reviews 86: 959-974. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Biol. Rev. (2011), 86, pp. 959–974. 959 doi: 10.1111/j.1469-185X.2011.00181.x Fracture in teeth—a diagnostic for inferring bite force and tooth function James J.-W. Lee1∗,PaulJ.Constantino2,3, Peter W. Lucas2,andBrianR.Lawn1,2 1 Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 2 Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA 3 Department of Biology, Marshall University, Huntington, WV 25755, USA ABSTRACT Teeth are brittle and highly susceptible to cracking. We propose that observations of such cracking can be used as a diagnostic tool for predicting bite force and inferring tooth function in living and fossil mammals.
    [Show full text]
  • Fine Structure of the Inner Enamel in Human Permanent Teeth
    Scanning Microscopy Volume 4 Number 4 Article 12 9-16-1990 Fine Structure of the Inner Enamel in Human Permanent Teeth T. Kodaka Showa University M. Kuroiwa Showa University M. Abe Showa University Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Kodaka, T.; Kuroiwa, M.; and Abe, M. (1990) "Fine Structure of the Inner Enamel in Human Permanent Teeth," Scanning Microscopy: Vol. 4 : No. 4 , Article 12. Available at: https://digitalcommons.usu.edu/microscopy/vol4/iss4/12 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 4, No. 4, 1990 (Pages 975-985) 0891-7035/90$3.00+.00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA FINE STRUCTURE OF THE INNER ENAMEL IN HUMAN PERMANENT TEETH T. Kodaka*, M. Kuroiwa and M. Abe The Second Department of Oral Anatomy, School of Dentistry, Showa University, Tokyo 142, Japan (Received for publication June 24, 1990, and in revised form September 16, 1990) Introduction Abstract In human permanent teeth, Gustafson Using SEM after EDTA etching, the and Gustafson [1967] reported that it mid-corona 1 inner ename 1 of human was often impossible to distinguish permanent teeth was classified into individual prisms in the innermost three regions of the 1st, 2nd, and 3rd enamel which had therefore a more or zones. The 1st zone showing a highly less homogeneous structure by polarized negative birefringence was the innermost light.
    [Show full text]
  • Measurement on the Diameter of Crevices in Enamel, Especially in Diameter Sizes of Enamel Crevices As Compared with Those of Enamel Lamellae
    Measurement on the Diameter of Crevices in Enamel, especially in Diameter Sizes of Enamel Crevices as Compared with Those of Enamel Lamellae by Yasuyuki A WAZA WA * The nature of the enamel lamella has been one of the controversial matters in dental histology. The present author is engaged for a long time in this study to throw new light on the diverse points connected with enamel lamella. As the result of his studies, it is believed that his major contribution is in discovering a fact that surface aspects of lamellae (distribution behaviors of lamellae on the crown enamel surface) possess features peculiar to different animal species [ 1 ] . In connection with this, a collaborator of the author revealed in detail that various fishes have different distribution behaviors of lamellae characteristic of their species [ 2 ] . His attempt at histometric study on lamellae reached the conclusion that lamellae of different mammals have their definite sizes in diameter peculiar to their own species, and he pointed out that lamellae are apparently different from enamel tufts in view of locality, this being true of size in particular. In other words, the former's size usually varies according to species to which an animal belongs, while the latter's is always a matter of several microns irrespective of animal species [ 3 ] . As a matter of much interest, the author could observe enamel lamellae also in the crown enamel of the tooth from an ovarian dermoid cyst [ 4 ] . Since 1959, examination have been made of their histological nature through optical- and electron microscopy, and he has revealed in detail by means of the electron micro- scope that lamella consists of hypomineralized enamel -both of enamel rods and interrod substance of a markedly poor mineralization [5, 6, 7, 8, 9, 10, 11] .
    [Show full text]
  • Hair Keratin Mutations in Tooth Enamel Increase Dental Decay Risk
    Hair keratin mutations in tooth enamel increase dental decay risk Olivier Duverger, … , Mary L. Marazita, Maria I. Morasso J Clin Invest. 2014;124(12):5219-5224. https://doi.org/10.1172/JCI78272. Brief Report Genetics Tooth enamel is the hardest substance in the human body and has a unique combination of hardness and fracture toughness that protects teeth from dental caries, the most common chronic disease worldwide. In addition to a high mineral content, tooth enamel comprises organic material that is important for mechanical performance and influences the initiation and progression of caries; however, the protein composition of tooth enamel has not been fully characterized. Here, we determined that epithelial hair keratins, which are crucial for maintaining the integrity of the sheaths that support the hair shaft, are expressed in the enamel organ and are essential organic components of mature enamel. Using genetic and intraoral examination data from 386 children and 706 adults, we found that individuals harboring known hair disorder– associated polymorphisms in the gene encoding keratin 75 (KRT75), KRT75A161T and KRT75E337K, are prone to increased dental caries. Analysis of teeth from individuals carrying the KRT75A161T variant revealed an altered enamel structure and a marked reduction of enamel hardness, suggesting that a functional keratin network is required for the mechanical stability of tooth enamel. Taken together, our results identify a genetic locus that influences enamel structure and establish a connection between hair disorders and susceptibility to dental caries. Find the latest version: https://jci.me/78272/pdf The Journal of Clinical Investigation BRIEF REPORT Hair keratin mutations in tooth enamel increase dental decay risk Olivier Duverger,1 Takahiro Ohara,1 John R.
    [Show full text]
  • Program of the 85Th Annual Meeting of the American Association of Physical Anthropologists April 12 – 16, 2016
    1 Program of the 85th Annual Meeting of the American Association of Physical Anthropologists April 12 – 16, 2016 To be held at the Atlanta Marriott Marquis 265 Peachtree Center Avenue Atlanta, GA 30303 AAPA Scientific Program Committee: M. Anne Katzenberg, Chair Jonathan Bethold Sang-Hee Lee Abby Bigham Kristi Lewton Deborah Bolnick Andrew Marshall Carola Borries Elizabeth M. Miller Scott Burnett Charles Musiba Michelle Buzon Herman Pontzer Troy Case Tracy Prowse David Cooper Terry Ritzman Susanne Cote Theodore Schurr Dan Eisenberg Mary Silcox Masako Fujita Julie Teichroebe Tracey Galloway Dan Temple Lee Gettler Claire Terhune Lesley Gregorika Christina Torres-Rouff Lauren Halenar Ben Trumble Geoff Hayes Amy Rector Verrelli Laurie Kauffman Julie Wieczkowski John Krigbaum Kim Edwards, Program Assistant Local Arrangements Committee Frank L’Engle Williams and John Redmond, Co-chairs Georgia State University, Kennesaw State University, University of Alaska-Fairbanks, University of Georgia, Auburn University and Emory University Alice Fazlollah Susan Kirkpatrick Smith Kara Hoover Susan Tanner Laurie Reitsema Jessica Thompson Kristina Schuler Bethany Turner-Livermore 2 Message from the Program Chair organized by Melanie A. Martin and Lisa McAllister. The joint AAPA-AAAG session, held on Thursday afternoon, Welcome to the 85th Annual Meeting of the American is an invited podium symposium titled: Ancient Alleles in Association of Physical Anthropologists in Atlanta 2016! Modern Populations: Ancient structure, introgression Our meeting officially
    [Show full text]