Re-Evaluating Macroscopic Dental Age Estimation Standards in Egypt

Total Page:16

File Type:pdf, Size:1020Kb

Re-Evaluating Macroscopic Dental Age Estimation Standards in Egypt Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-23-2019 1:00 PM Getting Better All The Time: Re-evaluating Macroscopic Dental Age Estimation Standards In Egypt Casey Kirkpatrick The University of Western Ontario Supervisor Molto, Joseph E. The University of Western Ontario Graduate Program in Anthropology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Casey Kirkpatrick 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biological and Physical Anthropology Commons Recommended Citation Kirkpatrick, Casey, "Getting Better All The Time: Re-evaluating Macroscopic Dental Age Estimation Standards In Egypt" (2019). Electronic Thesis and Dissertation Repository. 6472. https://ir.lib.uwo.ca/etd/6472 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract This dissertation investigates the use of dental anthropological methods for estimating chronological age-at-death in ancient Egypt, and determines whether these methods can be improved. Tooth calcification, emergence and eruption standards are time honoured in their ability to accurately age subadults though they are compromised by the fact that populations and the sexes vary in their developmental timing. Determining sex in subadults, particularly in the infant and child cohorts, in all populations is not possible, though advances in ancient DNA methods hold promise. This dissertation provides a feasible and ethical model for developing a sex-and region-specific standard for age estimation of subadults for use on ancient Egyptian samples.This method rectifies methodological errors affecting the accuracy of pre-existing standards; and thus, demonstrates that macroscopic subadult dental age estimation methods can be improved. Moreover, using a photographic sample of occlusal dentition from the Kellis 2 cemetery population in Roman Period Egypt, a new method for adult dental age estimation is designed and tested. To this end, the percentages of exposed occlusal dentine in first and second molars were calculated through photogrammetry, in a technique shown to have little intra- and inter-observer error. These data showed a strong linear correlation with skeletal age estimates, and varied significantly from the popular Brothwell (1963a) standard for age estimation based on dental wear. Dental caries and antemortem tooth loss were similarly tested for correlation with skeletal age, with only antemortem tooth loss showing a strong correlation. As a result, linear regression models were designed and tested for quantified first and second molar wear as well as antemortem tooth loss. Multiple regression models for all combinations of these dental indicators of age were also designed and tested. Although it is also recommended that these models are revised with expanded reference samples, these standards improve the ability to estimate age in individuals from the Kellis 2 cemetery population. It is recommended that these standards are tested and modified for use on geographically- and temporally-diverse populations to determine the boundaries of its application beyond a single population sample. In summary, this study rejects the null hypothesis (Ho): ‘Current dental age estimation standards cannot be improved’. Consequently, this dissertation serves to encourage the creation of more accurate and precise subadult and adult macroscopic dental age estimation standards. Keywords Age estimation, senescence, dental age estimation, dental development, dental attrition, dental wear, primary and permanent teeth, subadult, adult, public oral health, Egypt, North Africa, Middle East, physical anthropology, forensics, archaeology, dentistry, orthodontics, population studies. ii Lay Abstract This dissertation investigates the use of dental anthropological methods for estimating age-at- death in subadult and adult ancient Egyptians, and their potential for improvement. Dental developmental standards are time honoured in their ability to accurately age subadults. Unfortunately, they are compromised by the fact that developmental timing can vary among populations and between the sexes. This dissertation presents an improved method for developing a region- and sex-specific standard for age estimation of subadult Egyptians. This feasible and ethical method rectifies methodological errors affecting the accuracy of pre- existing subadult dental aging standards. This demonstrates potential for improved age estimation in subadults. Using a photographic sample of occlusal dentition from the Roman Period Kellis 2 cemetery in Egypt, a new method for adult dental age estimation is also designed and tested. To this end, dental wear is quantified through photogrammetry in first and second molars. These data were used to create linear regression models that can be used to predict age based on dental wear. These models vary significantly from the popular Brothwell (1963a) standard for age estimation based on dental wear. Dental caries and antemortem tooth loss were similarly tested for correlation with skeletal age, with only antemortem tooth loss showing a strong correlation. Consequently, linear regression models were also designed and tested for antemortem tooth loss. Multiple regression models were also created to incorporate all combinations of these dental indicators of age in an effort to increase accuracy. Unfortunately, in some cases, the small sample sizes applicable to multiple regression models indicate that these models should be revised with expanded reference samples. Nevertheless, these standards improve the ability to age adults from Kellis 2 cemetery population. In future, it is recommended that these standards are tested and modified for use on geographically- and temporally-diverse populations to test its applicability beyond a single cemetery population. In summary, this dissertation rejects the null hypothesis (Ho): ‘Current dental age estimation standards cannot be improved’. Consequently, this dissertation serves to encourage the creation of more accurate and precise user-friendly subadult and adult macroscopic dental age estimation standards. iii Epigraph “While we agree that the current status of age estimation in paleodemography is largely that of an “art,” we see no apparent reason why we should not strive to make it a science.” ~ Lyle Konigsberg and Susan Frankenberg (1992: 253) ~ iv Dedication For those who give me strength. v Acknowledgments I would like to thank Dr. El Molto for his continuous support and excellent supervision during my time as a doctoral student. If it weren’t for his inspirational undergraduate lectures, I would not have found my passion in bioarchaeology. Thanks also go to Mary Denvir for wonderful editing skills. I am also grateful to the Egyptian dentists, radiologist, and school superintendent, as well as my dear friends and colleagues (Mohamed Hakim, Ahmed Mokhtar, Hassan Demrdash, Ali Hassan, and Tayyib Hassan), who helped me with various practical aspects of the dental development project. I am also indebted to Dr. Scott Haddow for the photographs on which my dental wear study is based. My sincere thanks also go to several institutions: the Egyptian Ministry for State of Antiquities, the Egyptian Ministry of Health, the Dakhleh Oasis Project, BYU’s Egypt Excavation Project, the Ontario Graduate Scholarship, and the University of Western Ontario’s Department of Anthropology. In particular, I would like to thank UWO’s Dr. Andrew Nelson, Dr. Ian Colquhoun, Dr. Alexis Dolphin (now at UW), Dr. Matt Teeter, Dr. Karyn Olsen, Dr. Kim Clark, Diane Belleville, and Christine Wall for their help throughout this journey. Although I have had the pleasure of learning from some of the greatest minds at UWO, I would also like to thank the many brilliant people from outside of UWO who have mentored me and/or provided some amazing opportunities along the way (in chronological order); Dr. Henry Choi, Dr. Kasia Szpakowska, Dr. Daniel Antoine, Dr. Hourig Sourouzian, Dr. Janice Kamrin, Dr. Don Ryan, Dr. Joel Irish, Dr. Greg Nelson, Dr. G. Richard Scott, Dr. Loren Lease, Dr. Kerry Muhlestein, Dr. Peter Sheldrick, Dr. Jessica Kaiser, Dr. Jane Buikstra, Dr. Bruce Ragsdale, Dr. Suzanne Onstine, Dr. Sabine Huebner, and Dr. Spyros Retsas. I have been truly privileged by knowing all of you. I am also grateful to Dr. Brenda Baker, Dr. Jerome Rose and Dr. Lyle Konigsberg - thank you for your thoughtful suggestions and for enduring methodological discussions of my dissertation. Special thanks are also due to Dr. Larry Sawchuk and Dr. Dan Shrubsole for their thoughtful questions and suggestions while serving on my dissertation defense committee. I would be remiss if I didn’t mention my inspiring colleagues in the Paleo-oncology Research Organization, Dr. Rose Campbell, Kathryn Hunt, and Khrystyne Tschinkel, who inspire me to keep going and enjoy geeking out at conferences just as much as I do. As an honorary member of PRO, Amr Shahat has also been invaluable for his support and enthusiasm. Given that a few years of this degree were significantly affected by health troubles, I am also indebted to Kate and Matt Vlemmix for always having an open door so that I didn’t have to risk falling asleep at the wheel driving to and from London. My
Recommended publications
  • Enamel Lamellae ** Thin Leaf Like Structure, Extend from the Enamel Surface to a Considerable Distance in the Enamel Till DEJ , Sometimes Extend Into the Dentin
    Objectives: 1-Understand the Physical and Chemical characteristic features of enamel 2-Recognize the surface and histological structure of enamel. (1) Definition; Enamel is the hardest mineralized tissue in the human body that covers the anatomical crown of teeth. It forms a protective covering of teeth to resist the stresses and forces of mastication. (2) Origin ectodermal in origin from the IEE. Formative cells: Ameloblasts which are lost as the tooth erupts and hence enamel can not renew itself. Oral ectoderm *It is a mineralized epithelial tissue that is totally acellular. Dental *Inert. lamina *Non-vital. *Insensitive. Inner *If wear or Caries, it can’t replaced enamel Or regenerated (can’t renew itself). epithelium *Permeable. *Unique crystalline structure. *Unique matrix protein. (3) Physical properties of enamel: A)Color: Yellowish white to grayish white (according to thickness, degree of translucency, degree of calcification & homogeneity of enamel). B)Thickness: Variable (max. on cusp tips {2-2.5mm.}& kinfe edge at cervical margin). C)Hardness: Hardest calcified tissue in the body due to: [↑↑content of mineral salts & its crystalline arrangement]. Hardness of permanent teeth ˃ deciduous. Hardness at the surface ˃ DEJ. Hardness at cusp & incisal edge ˃ hardness at cervical line. D)Brittleness: Enamel is brittle, especially when looses its elastic foundation of healthy dentin (i.e. undermind enamel). E)Permeability: Enamel can act as semipermeable membrane, permitting complete or partial slow passage of certain ions & dyes. Mainly from the saliva to the outer layer of enamel, but to a lesser degree from the pulp to the inner enamel layer across the dentin. GROUND SECTION DECALCIFIED SECTION Methods of Studying ” hard tissues” HISTOLOGICAL PREPARATION OF TEETH GROUND SECTIONS ENAMEL Show enamel, dentin and bone.
    [Show full text]
  • Download Full Article in PDF Format
    Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade David R. BEGUN University of Toronto, Department of Anthropology, 19 Russell Street, Toronto, ON, M5S 2S2 (Canada) [email protected] Begun R. D. 2009. — Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade. Geodiversitas 31 (4) : 789-816. ABSTRACT Darwin famously opined that the most likely place of origin of the common ancestor of African apes and humans is Africa, given the distribution of its liv- ing descendents. But it is infrequently recalled that immediately afterwards, Darwin, in his typically thorough and cautious style, noted that a fossil ape from Europe, Dryopithecus, may instead represent the ancestors of African apes, which dispersed into Africa from Europe. Louis de Bonis and his collaborators were the fi rst researchers in the modern era to echo Darwin’s suggestion about apes from Europe. Resulting from their spectacular discoveries in Greece over several decades, de Bonis and colleagues have shown convincingly that African KEY WORDS ape and human clade members (hominines) lived in Europe at least 9.5 million Mammalia, years ago. Here I review the fossil record of hominoids in Europe as it relates to Primates, Dryopithecus, the origins of the hominines. While I diff er in some details with Louis, we are Hispanopithecus, in complete agreement on the importance of Europe in determining the fate Rudapithecus, of the African ape and human clade. Th ere is no doubt that Louis de Bonis is Ouranopithecus, hominine origins, a pioneer in advancing our understanding of this fascinating time in our evo- new subtribe.
    [Show full text]
  • The Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Jci.Org Volume 124 Number 12 December 2014 5219 Brief Report the Journal of Clinical Investigation
    The Journal of Clinical Investigation BRIEF REPORT Hair keratin mutations in tooth enamel increase dental decay risk Olivier Duverger,1 Takahiro Ohara,1 John R. Shaffer,2 Danielle Donahue,3 Patricia Zerfas,4 Andrew Dullnig,5 Christopher Crecelius,5 Elia Beniash,6,7 Mary L. Marazita,2,6,8 and Maria I. Morasso1 1Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA. 2Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. 3Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA. 4Office of Research Services, Division of Veterinary Resources, NIH, Bethesda, Maryland, USA. 5National Capital Consortium Oral and Maxillofacial Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA. 6Department of Oral Biology, 7Center for Craniofacial Regeneration, and 8Center for Craniofacial and Dental Genetics, and Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. Tooth enamel is the hardest substance in the human body and has a unique combination of hardness and fracture toughness that protects teeth from dental caries, the most common chronic disease worldwide. In addition to a high mineral content, tooth enamel comprises organic material that is important for mechanical performance and influences the initiation and progression of caries; however, the protein composition of tooth enamel has not been fully characterized. Here, we determined that epithelial hair keratins, which are crucial for maintaining the integrity of the sheaths that support the hair shaft, are expressed in the enamel organ and are essential organic components of mature enamel. Using genetic and intraoral examination data from 386 children and 706 adults, we found that individuals harboring known hair disorder–associated polymorphisms in the gene encoding keratin 75 (KRT75), KRT75A161T and KRT75E337K, are prone to increased dental caries.
    [Show full text]
  • Taxonomic Tapestries the Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • Middle Miocene Fossil Apes from Abocador De Can Mata: Implications for the Origin and Early Radiation of the Great Apes and Humans Clade (Primates: Homindae)
    077 MIDDLE MIOCENE FOSSIL APES FROM ABOCADOR DE CAN MATA: IMPLICATIONS FOR THE ORIGIN AND EARLY RADIATION OF THE GREAT APES AND HUMANS CLADE (PRIMATES: HOMINDAE). S. Moyà-Solà1, D.M. Alba2, S. Almécija2 1ICREA at Institut Català de Paleontologia and Unitat d'Antropologia Biològica (Dept. BABVE) UAB, 2Institut Català de Paleontologia, UAB, Edifici ICP, Campus UAB s/n, 08193. Cerdanyola del Vallès, Barcelona, Spain. Presenter’s Email: [email protected] Deciphering the time and place where the great-ape-and-human clade (Hominidae) emerged and experienced its initial adaptive radiation remains a contentious issue in paleoprimatology. Among stem hominoids, the kenyapithecine afropithecids have been proposed as the sister taxon of hominids on the basis of the scarce available evidence. The recent description of Anoiapithecus brevirostris from the Middle Miocene (ca. 11.9 Ma) of Abocador de Can Mata C3-Aj (Catalonia, Spain) permits to further test this hypothesis. Thus, besides some autapomorphic features (such as a strongly reduced facial prognathism) and several hominid synapomorphies (high face and zygomatic root, wide nasal aperture widest at the base, etc.), Anoiapithecus further shares several derived features with afropithecids (e.g., thick enamel) and, more specifically, with kenyapithecins; these include an extreme reduction of the maxillary sinus (also displayed by Pierolapithecus), a very deep canine fossa, and a reduced mandibular length with anteriorly placed rami. The presence of kenyapithecins (Kenyapithecus and Griphopithecus) in Eurasia during the Middle Miocene (ca. 14-15 Ma), together with the retention of kenyapithecin features in the somewhat later stem hominids from Spain, supports a sister-group relationship between the Kenyapithecini and the Hominidae.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Enamel Spindles
    LECTURE V 1 Learning Objective • At the end of this lecture, the students will be able to know about the; Ultrastructure of Enamel Rods Enamel Cuticle Enamel Lamellae Enamel Tufts Dentinoenamel Junction (DEJ) Enamel Spindles 2 ENAMEL CUTICLE • Primary enamel cuticle or the Nasmyth’s membrane • A typical basal lamina under electron microscope • Probably visible with the light microscope - wavy course • Apparently secreted by the ameloblasts 3 Enamel Cuticle Cont’d… • Function of the enamel cuticle • Afibrillar cementum • Pellicle 4 ENAMEL LAMELLAE • Thin, leaf-like structures • May extend to, and sometimes penetrate into, the dentin • Consist of organic material with little mineral content • May be confused with cracks 5 Enamel Lamellae Cont’d… • Types of Lamellae Type A: composed of poorly calcified rod segments Type B: consisting of degenerated cells Type C: filled with organic matter, presumably originating from saliva • Lamellae can be observed better in horizontal sections 6 Enamel Lamellae Cont’d… • Lamellae may develop in planes of tension Where rods cross such a plane, a short segment of the rod may not fully calcify • If the disturbance is more severe, a crack may develop Unerupted tooth: filled by surrounding cells After eruption: filled by organic substances from the oral cavity 7 ENAMEL TUFTS • Arise at the dentinoenamel junction and reach into the enamel to about one fifth to one third of its thickness • Resemble tufts of grass - erroneous • Does not spring from a single small area but is a narrow, ribbon-like structure
    [Show full text]