Metabolism of Halogenated Compounds by Rhodococcus Ukmp-5M

Total Page:16

File Type:pdf, Size:1020Kb

Metabolism of Halogenated Compounds by Rhodococcus Ukmp-5M METABOLISM OF HALOGENATED COMPOUNDS BY RHODOCOCCUS UKMP-5M JAYASUDHA NAGARAJAN A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AND DIPLOMA OF IMPERIAL COLLEGE LONDON DEPARTMENT OF CHEMISTRY FACULTY OF NATURAL SCIENCES IMPERIAL COLLEGE LONDON 2014 DECLARATION I certify that this thesis represents my own work, unless otherwise stated. All external contributions and any information derived from other sources have been acknowledged accordingly. JAYASUDHA NAGARAJAN The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work 2 In living memory of my late granny, Madam Thanalaetchumi Appadurai… Dedicated to Dr. Judit Nagy, an outstanding scientist and the most inspirational woman I have ever met, without whom my PhD journey would have not been possible....may your soul rest in peace… Dedicated to my dad and mom Mr. & Mrs. Nagarajan Sarujuny, the most precious gift in my life. For their endless support, love and encouragement through all my walks of life…. Thank you pa & ma. & To my lovely sister, Jayesree Nagarajan, the little diamond in the family which never fails to shine.. Thank you so much for being there for me whenever I need you.. May you also be motivated to achieve great heights in life… 3 ACKNOWLEDGEMENT First and foremost, I’d like to express my deepest gratitude to Professor Tony Cass for accepting me in his research team and for all his patience and valuable inputs to successfully drive this project. I’d like to also thank my co-supervisor, Professor David Leak for his continued support and guidance throughout the project. Thanks to the Malaysian Ministry of Science, Technology and Innovation for sponsoring my PhD studies in Imperial College London and for giving me an opportunity to be among the best brains in the world! My heartfelt gratitude goes to Dr. Lok Hang Mak for all the guidance, knowledge, ideas and friendship that helped carry me through. To the members, past and present, of Cass Group; Dr. Sanjiv, Dr. Muthu, Dr. Thao, Dr. Chris, Achi, Orada, Sasinee, Ben, Dan, Mahsan, Ascanio and Hannah- thank you for your support encouragement and the ‘giggles’. Sarah, Tami and Nawal – thank you so much girls, you are more like sisters to me and thanks a lot for all the ‘fun’ we had together..I’ll cherish those moments forever~ Very special thanks to my family and friend in London, my best friend Hazeeq. You have been a great support to me in many ways especially during all those time when I was down. You made my life in London, very colourful and I do have really great memories to bring back home! BFF forever. To all my other friends in UK, esp. Raja, Joe, Shahrul, Mus and Roobini - thanks guys for the motivation and enlightening words from all of you especially when I need them the most! Keep in touch all…Not forgetting, friends and colleagues in Malaysia esp. Prof. Latif and Dr. Maegala for all the valuable inputs throughout my PhD. Finally, thank you to my family members, relatives and friends for being there for me. Last but not least, to the Almighty for giving me the strength and perseverance to complete my studies within the stipulated time frame and for keeping me surrounded by these beautiful people! 4 ABSTRACT Members of the genus Rhodococcus are well known for their high metabolic capabilities to degrade wide range of organic compounds ranging from simple hydrocarbons to more recalcitrant compounds such as polychlorinated biphenyls. Their ability to display novel enzymatic capabilities for the transformation of many hazardous contaminants in the environment makes them a potential candidate for bioremediation. Rhodococcus UKMP-5M, an actinomycete isolated in Peninsular Malaysia shows great potential towards degradation of cyanide, hydrocarbons and phenolic compounds. In the present study, the capacity of this strain to degrade halogenated compounds was explored. Preliminary investigations have proven that R. UKMP-5M was not able to utilise any of the halogenated compounds tested as sole carbon and energy source, but the resting cells of R. UKMP-5M was able to dechlorinate several compounds which include chloroalkanes, chloroalcohols and chloroacids and the activity was three fold higher when the cells were grown in the presence of 1-Chlorobutane (1-CB). Therefore, 1-CB was chosen as a substrate to unravel the mechanism of dehalogenation in R. UKMP-5M. In contrast to the classic hydrolytic route for the assimilation of 1-CB in many organisms, R. UKMP-5M was able to metabolise and release chloride from 1-CB, but is unable to use the product from 1-CB metabolism as growth substrate. On comparing the protein profiles of the induced and non-induced cells of R. UKMP- 5M, two types of monooxygenases were identified in the induced condition, which were not present in the uninduced sample. The strict oxygen requirement for dechlorination of 1-CB and the identification of monooxygenases in the induced protein extract suggests that 1-CB dehalogenation is likely to be catalysed by a monooxygenase. In addition to these monooxygenases, a protein that was later identified as amidohydrolase (Ah) was also found to be induced when the cells were exposed to 1-CB. Therefore, Ah from R. UKMP-5M was cloned and expressed in E. coli to test the ability of the purified Ah to release chloride from 5 1-CB. The heterologous expression of Ah in E. coli resulted in the formation of inclusion bodies and the western blot analyses further confirmed that no soluble form of Ah was present. Multiple attempts to obtain a soluble and functionally active Ah were not successful. Therefore, on-column refolding was carried out to obtain a biologically active Ah. A 3D model based on structural homology was predicted as a preliminary step to characterize this protein. However, when assayed with 1-CB, Ah was found not to catalyze dehalogenation. All results of this thesis suggest that metabolism of 1-CB by R. UKMP-5M is via γ-butyrolactone which acts as a potent intracellular electrophile that covalently modifies proteins and nucleic acids. The findings from this research are important to determine the metabolic capacity of a Malaysian Rhodoccoccus in dehalogenation of halogenated compounds and its potential application in bioremediation. 6 LIST OF FIGURES Figure 1.1 Concept of bioremediation 21 Figure 1.2 The most frequently detected organic compounds in the European ground 24 water reported in Environmental Agency Database Figure 1.3 The common routes of horizontal gene transfer 28 Figure 1.4 Degradability of some halogenated compounds by microorganism 31 Figure 1.5 Reaction of hydrolytic dehalogenation 32 Figure 1.6 Mechanism of thiolytic dehalogenation 33 Figure 1.7 Dehalogenation of halomethane catalysed by methyltransferase 34 Figure 1.8 Mechanism of dehalogenation through hydration 34 Figure 1.9 Mechanism of oxidative dehalogenation 35 Figure 1.10 Dehalogenation of lindane by dehydrohalogenase 36 Figure 1.11 Mechanism of dehalogenation through intramolecular substitution reaction 37 Figure 1.12A Mechanism of reductive dehalogenation of tetrachlorohydroquinone (TCHQ) 38 Figure 1.12B Reductive dehalogenation of tetrachloroethylene (PCE) 39 Figure 1.13 The increasing pattern of number of publications concerned with 40 degradation of nitriles, aromatic and halogenated compounds by Rhodococci Figure 1.14 Different morphological forms of Rhodococcus 42 Figure 2.1 Growth of two Rhodococcus strains monitored spectrophotometrically at 12 56 hours interval for 60 hours Figure 2.2 Growth of R. UKMP-5M in minimal media containing 1-CB supplemented 58 with other primary substrates Figure 2.3 Growth of R. UKMP-5M in minimal media supplemented with 20 mM of 59 various carbon sources Figure 2.4 Calibration curve for chloride assay 60 Figure 2.5 Chloride release from 1-CB by resting cells of R. UKMP-5M grown in 61 different carbon sources 7 Figure 2.6 Chloride release from 1-CB by resting cells of R. UKMP-5M grown in 20 mM 64 glucose and 20 mM glucose supplemented with 1-CB Figure 2.7 Chloride release from 1-CB by resting cells of R. UKMP-5M grown in LB and 65 LB supplemented with 1-CB Figure 2.8 Chloride release from 1-CB by resting cells of R. UKMP-5M grown in 66 glucose and glucose supplemented with each component of LB Figure 2.9 Effect of manipulating physical parameters on the degradation of 1-CB by R. 67 UKMP-5M Figure 2.10A Chloride release from 1-CB by resting cells of R. UKMP-5M monitored in the 71 presence and absence of oxygen Figure 2.10B Cells monitored in the absence of oxygen were aerated and re-incubated 71 with 1-CB for their activity recovery Figure 2.11 Chloride release from 1-CB by resting cells of R. UKMP-5M monitored in the 73 presence of carbon monoxide Figure 2.12A Possible metabolic routes for the dehalogenation of 1-CB in R. NCIMB 74 13064 Figure 2.12B Dehalogenation of 1-CB via internal hydroxylation 75 Figure 2.13 Cell density of R. UKMP-5M grown on several potential intermediates of 1- 76 CB degradation Figure 2.14 Growth recovery patterns of R. UKMP-5M unexposed and exposed to 1-CB 77 Figure 3.1 The schematic workflow of two-dimensional gel electrophoresis 80 Figure 3.2 Calibration curve for protein assay 91 Figure 3.3 The non-reproducibility of 2D GE 92 Figure 3.4 1D GE of protein samples prepared from R.
Recommended publications
  • Interplay Between Epigenetics and Metabolism in Oncogenesis: Mechanisms and Therapeutic Approaches
    OPEN Oncogene (2017) 36, 3359–3374 www.nature.com/onc REVIEW Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches CC Wong1, Y Qian2,3 and J Yu1 Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer. Oncogene (2017) 36, 3359–3374; doi:10.1038/onc.2016.485; published online 16 January 2017 INTRODUCTION metabolic genes have also been identified as driver genes It has been appreciated since the early days of cancer research mutated in some cancers, such as isocitrate dehydrogenase 1 16 17 that the metabolic profiles of tumor cells differ significantly from and 2 (IDH1/2) in gliomas and acute myeloid leukemia (AML), 18 normal cells. Cancer cells have high metabolic demands and they succinate dehydrogenase (SDH) in paragangliomas and fuma- utilize nutrients with an altered metabolic program to support rate hydratase (FH) in hereditary leiomyomatosis and renal cell 19 their high proliferative rates and adapt to the hostile tumor cancer (HLRCC).
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • TETRAHYDROBIOPTERIN DEFICIENCY and BRAIN NITRIC OXIDE METABOLISM by Michael Peter Brand
    TETRAHYDROBIOPTERIN DEFICIENCY AND BRAIN NITRIC OXIDE METABOLISM By Michael Peter Brand A thesis submitted as partial fulfilment for the degree of Doctor of Philosophy in the Faculty of Science at the University of London. March 1997 Institute of Neurology Department of Neurochemistry Queen Square London WCIN 3BG ProQuest Number: 10055824 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10055824 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract. Tetrahydrobiopterin is an essential cofactor for the aromatic amino acid mono­ oxygenase group of enzymes. Inborn errors of tetrahydrobiopterin metabolism result in hyperphenylalaninaemia and impaired catecholamine and serotonin turnover. Tetrahydrobiopterin is also a cofactor for all known isoforms of nitric oxide synthase (NOS). The effect of tetrahydrobiopterin deficiency on brain nitric oxide metabolism has to date been given little consideration. In this thesis the effect of tetrahydrobiopterin deficiency on brain nitric oxide metabolism has been studied using a mouse model of tetrahydrobiopterin deficiency, the hph-1 mouse. Tetrahydrobiopterin was measured in 10 and 30 day old mice in whole brain and cerebellum.
    [Show full text]
  • The Histone Deacetylase HDA15 Interacts with MAC3A and MAC3B to Regulate Intron
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.386672; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The histone deacetylase HDA15 interacts with MAC3A and MAC3B to regulate intron 2 retention of ABA-responsive genes 3 4 Yi-Tsung Tu1#, Chia-Yang Chen1#, Yi-Sui Huang1, Ming-Ren Yen2, Jo-Wei Allison Hsieh2,3, 5 Pao-Yang Chen2,3*and Keqiang Wu1* 6 7 1Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan 8 2 Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan 9 3 Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan 10 University, Taipei, Taiwan 11 12 # These authors contributed equally to this work. 13 * Corresponding authors: Keqiang Wu ([email protected], +886-2-3366-4546) and Pao-Yang 14 Chen ([email protected], +886-2-2787-1140) 15 16 Short title: HDA15 and MAC3A/MAC3B coregulate intron retention 17 One sentence summary: HDA15 and MAC3A/MAC3B coregulate intron retention and reduce 18 the histone acetylation level of the genomic regions near ABA-responsive retained introns. 19 20 The author responsible for distribution of materials integral to the findings presented in this 21 article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) 22 is: Keqiang Wu ([email protected]) 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.386672; this version posted November 17, 2020.
    [Show full text]
  • Distinct Contributions of DNA Methylation and Histone Acetylation to the Genomic Occupancy of Transcription Factors
    Downloaded from genome.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Research Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors Martin Cusack,1 Hamish W. King,2 Paolo Spingardi,1 Benedikt M. Kessler,3 Robert J. Klose,2 and Skirmantas Kriaucionis1 1Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom; 2Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom; 3Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, United Kingdom Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly under- stood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are inte- grated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at ret- rotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced ad- ditive effect of HDAC inhibition in DNA methylation–deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.
    [Show full text]
  • Pan-Histone Deacetylase Inhibitors Regulate Signaling Pathways
    Majumdar et al. BMC Genomics 2012, 13:709 http://www.biomedcentral.com/1471-2164/13/709 RESEARCH ARTICLE Open Access Pan-histone deacetylase inhibitors regulate signaling pathways involved in proliferative and pro-inflammatory mechanisms in H9c2 cells Gipsy Majumdar1, Piyatilake Adris1, Neha Bhargava1, Hao Chen2 and Rajendra Raghow1,2* Abstract Background: We have shown previously that pan-HDAC inhibitors (HDACIs) m-carboxycinnamic acid bis-hydroxamide (CBHA) and trichostatin A (TSA) attenuated cardiac hypertrophy in BALB/c mice by inducing hyper-acetylation of cardiac chromatin that was accompanied by suppression of pro-inflammatory gene networks. However, it was not feasible to determine the precise contribution of the myocytes- and non-myocytes to HDACI-induced gene expression in the intact heart. Therefore, the current study was undertaken with a primary goal of elucidating temporal changes in the transcriptomes of cardiac myocytes exposed to CBHA and TSA. Results: We incubated H9c2 cardiac myocytes in growth medium containing either of the two HDACIs for 6h and 24h and analyzed changes in gene expression using Illumina microarrays. H9c2 cells exposed to TSA for 6h and 24h led to differential expression of 468 and 231 genes, respectively. In contrast, cardiac myocytes incubated with CBHA for 6h and 24h elicited differential expression of 768 and 999 genes, respectively. We analyzed CBHA- and TSA-induced differentially expressed genes by Ingenuity Pathway (IPA), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Core_TF programs and discovered that CBHA and TSA impinged on several common gene networks. Thus, both HDACIs induced a repertoire of signaling kinases (PTEN-PI3K-AKT and MAPK) and transcription factors (Myc, p53, NFkB and HNF4A) representing canonical TGFβ, TNF-α, IFNγ and IL-6 specific networks.
    [Show full text]
  • Advances in Biotechnology July 10-12, 2017 Dubai, UAE
    Yu-Chen Hu, Adv Biochem Biotehcnol 2017, 02: 05 (Suppl) http://dx.doi.org/10.29011/2574-7258.C1-003 International Conference on Advances in Biotechnology July 10-12, 2017 Dubai, UAE Baculovirus-mediated MIR-214 suppression shifts osteoporotic ASCS differentiation towards osteogenesis and improves osteoporotic bone defects repair Yu-Chen Hu*, Kuei-Chang Li, Mu-Nung Hsu and Mei-Wei Lin National Tsing Hua University, Hsinchu, Taiwan Osteoporotic patients often suffer from bone fracture but its healing is compromised due to impaired osteogenesis potential of bone marrow-derived mesenchymal stem cells (BMSCs). Here we aimed to exploit adipose-derived stem cells from ovariectomized (OVX) rats (OVX-ASCs) for bone healing. We unraveled that OVX-ASCs highly expressed miR-214 and identified 2 miR-214 targets: CTNNB1 (b-catenin) and TAB2. We demonstrated that miR-214 targeting of these two genes blocked the Wnt pathway, led to preferable adipogenesis and attenuated osteogenesis, undermined the osteogenesis of co- cultured OVX-BMSCs, enhanced exosomal miR-214 release and altered cytokine secretion. As a result, OVX-ASCs implantation into OVX rats failed to heal critical-size metaphyseal bone defects. However, using hybrid baculoviruses expressing miR-214 sponges to transduce OVX-ASCs, we successfully suppressed miR-214 levels, activated the Wnt pathway, upregulated osteogenic factors -catenin/Runx2, downregulated adipogenic factors PPAR-g and C/EBP-a, shifted the differentiation propensity towards osteogenic lineage, enhanced the osteogenesis of co-cultured OVX-BMSCs, elevated BMP7/osteoprotegerin secretion and hindered exosomal miR-214/osteopontin release. Consequently, implanting the miR-214 sponge-expressing OVX-ASCs tremendously improved bone healing in OVX rats.
    [Show full text]
  • Histone Deacetylase Inhibitors Synergizes with Catalytic Inhibitors of EZH2 to Exhibit Anti-Tumor Activity in Small Cell Carcinoma of the Ovary, Hypercalcemic Type
    Author Manuscript Published OnlineFirst on September 19, 2018; DOI: 10.1158/1535-7163.MCT-18-0348 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Histone deacetylase inhibitors synergizes with catalytic inhibitors of EZH2 to exhibit anti- tumor activity in small cell carcinoma of the ovary, hypercalcemic type Yemin Wang1,2,*, Shary Yuting Chen1,2, Shane Colborne3, Galen Lambert2, Chae Young Shin2, Nancy Dos Santos4, Krystal A. Orlando5, Jessica D. Lang6, William P.D. Hendricks6, Marcel B. Bally4, Anthony N. Karnezis1,2, Ralf Hass7, T. Michael Underhill8, Gregg B. Morin3,9, Jeffrey M. Trent6, Bernard E. Weissman5, David G. Huntsman1,2,10,* 1Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada 2Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada. 3Michael Smith Genome Science Centre, British Columbia Cancer Agency, Vancouver, BC, Canada. 4Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC, Canada. 5Department of Pathology and Laboratory Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA. 6Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA. 7Department of Obstetrics and Gynecology, Hannover Medical School, D-30625 Hannover, Germany. 8Department of Cellular and Physiological Sciences and Biomedical Research Centre, University 1 Downloaded from mct.aacrjournals.org on September 26, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 19, 2018; DOI: 10.1158/1535-7163.MCT-18-0348 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Phosphate Availability and Ectomycorrhizal Symbiosis with Pinus Sylvestris Have Independent Effects on the Paxillus Involutus Transcriptome
    This is a repository copy of Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/168854/ Version: Published Version Article: Paparokidou, C., Leake, J.R. orcid.org/0000-0001-8364-7616, Beerling, D.J. et al. (1 more author) (2020) Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. Mycorrhiza. ISSN 0940- 6360 https://doi.org/10.1007/s00572-020-01001-6 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Mycorrhiza https://doi.org/10.1007/s00572-020-01001-6 ORIGINAL ARTICLE Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome Christina Paparokidou1 & Jonathan R. Leake1 & David J. Beerling1 & Stephen A. Rolfe1 Received: 16 June 2020 /Accepted: 29 October 2020 # The Author(s) 2020 Abstract Many plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi).
    [Show full text]
  • SET-Induced Calcium Signaling and MAPK/ERK Pathway Activation Mediate Dendritic Cell-Like Differentiation of U937 Cells
    Leukemia (2005) 19, 1439–1445 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu SET-induced calcium signaling and MAPK/ERK pathway activation mediate dendritic cell-like differentiation of U937 cells A Kandilci1 and GC Grosveld1 1Department of Genetics and Tumor Cell Biology, Mail Stop 331, St Jude Children’s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA Human SET, a target of chromosomal translocation in human G1/S transition by allowing cyclin E–CDK2 activity in the leukemia encodes a highly conserved, ubiquitously expressed, presence of p21.11 Second, SET interacts with cyclin B–CDK1.19 nuclear phosphoprotein. SET mediates many functions includ- ing chromatin remodeling, transcription, apoptosis and cell Overexpression of SET inhibits cyclin B-CDK1 activity, which in cycle control. We report that overexpression of SET directs turn, blocks the G2/M transition; this finding suggests a negative 13 differentiation of the human promonocytic cell line U937 along regulatory role for SET in G2/M transition. Overexpression of the dendritic cell (DC) pathway, as cells display typical cell division autoantigen-1 (CDA1), another member of the morphologic changes associated with DC fate and express NAP/SET family, inhibits proliferation and decreases bromo- the DC surface markers CD11b and CD86. Differentiation occurs deoxyuridine uptake in HeLa cells.20 Acidic and basic domains via a calcium-dependent mechanism involving the CaMKII and 20 MAPK/ERK pathways. Similar responses are elicited by inter- of CDA1 show 40% identity and 68% similarity to SET. feron-c (IFN-c) treatment with the distinction that IFN-c signaling We have recently shown that overexpression of SET in the activates the DNA-binding activity of STAT1 whereas SET human promonocytic cell line U937 causes G0/G1 arrest and overexpression does not.
    [Show full text]
  • Active Site Tyrosine Is Essential for Amidohydrolase but Not for Esterase
    Active site tyrosine is essential for amidohydrolase but not for esterase activity of a class 2 histone deacetylase-like bacterial enzyme Kristin Moreth, Daniel Riester, Christian Hildmann, René Hempel, Dennis Wegener, Andreas Schober, Andreas Schwienhorst To cite this version: Kristin Moreth, Daniel Riester, Christian Hildmann, René Hempel, Dennis Wegener, et al.. Ac- tive site tyrosine is essential for amidohydrolase but not for esterase activity of a class 2 histone deacetylase-like bacterial enzyme. Biochemical Journal, Portland Press, 2006, 401 (3), pp.659-665. 10.1042/BJ20061239. hal-00478649 HAL Id: hal-00478649 https://hal.archives-ouvertes.fr/hal-00478649 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 12 Oct 2006 as manuscript BJ20061239 Active site tyrosine is essential for amidohydrolase but not for esterase activity of a class 2 histone deacetylase-like bacterial enzyme Kristin Moreth¶, Daniel Riester¶, Christian Hildmann¶, René Hempel¶, Dennis Wegener¶,§,‡,
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]