Epitope Similarity Cannot Explain the Pre-Formed T Cell Immunity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"Epitope Mapping: B-Cell Epitopes". In: Encyclopedia of Life Sciences
Epitope Mapping: B-cell Advanced article Epitopes Article Contents . Introduction GE Morris, Wolfson Centre for Inherited Neuromuscular Disease RJAH Orthopaedic Hospital, . What Is a B-cell Epitope? . Epitope Mapping Methods Oswestry, UK and Keele University, Keele, Staffordshire, UK . Applications Immunoglobulin molecules are folded to present a surface structure complementary to doi: 10.1002/9780470015902.a0002624.pub2 a surface feature on the antigen – the epitope is this feature of the antigen. Epitope mapping is the process of locating the antibody-binding site on the antigen, although the term is also applied more broadly to receptor–ligand interactions unrelated to the immune system. Introduction formed of highly convoluted peptide chains, so that resi- dues that lie close together on the protein surface are often Immunoglobulin molecules are folded in a way that as- far apart in the amino acid sequence (Barlow et al., 1986). sembles sequences from the variable regions of both the Consequently, most epitopes on native, globular proteins heavy and light chains into a surface feature (comprised of are conformation-dependent and they disappear if the up to six complementarity-determining regions (CDRs)) protein is denatured or fragmented. Sometimes, by acci- that is complementary in shape to a surface structure on the dent or design, antibodies are produced against linear antigen. These two surface features, the ‘paratope’ on the (sequential) epitopes that survive denaturation, though antibody and the ‘epitope’ on the antigen, may have a cer- such antibodies usually fail to recognize the native protein. tain amount of flexibility to allow an ‘induced fit’ between The simplest way to find out whether an epitope is confor- them. -
A Human Coronavirus Evolves Antigenically to Escape Antibody Immunity
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423313; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A human coronavirus evolves antigenically to escape antibody immunity Rachel Eguia1, Katharine H. D. Crawford1,2,3, Terry Stevens-Ayers4, Laurel Kelnhofer-Millevolte3, Alexander L. Greninger4,5, Janet A. Englund6,7, Michael J. Boeckh4, Jesse D. Bloom1,2,# 1Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 2Department of Genome Sciences, University of Washington, Seattle, WA, USA 3Medical Scientist Training Program, University of Washington, Seattle, WA, USA 4Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 5Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA 6Seattle Children’s Research Institute, Seattle, WA USA 7Department of Pediatrics, University of Washington, Seattle, WA USA 8Howard Hughes Medical Institute, Seattle, WA 98109 #Corresponding author. E-mail: [email protected] Abstract There is intense interest in antibody immunity to coronaviruses. However, it is unknown if coronaviruses evolve to escape such immunity, and if so, how rapidly. Here we address this question by characterizing the historical evolution of human coronavirus 229E. We identify human sera from the 1980s and 1990s that have neutralizing titers against contemporaneous 229E that are comparable to the anti-SARS-CoV-2 titers induced by SARS-CoV-2 infection or vaccination. -
Epstein-Barr Virus Epitope-Major Histocompatibility Complex
University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2020-03-17 Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor alpha and beta Repertoires Anna Gil University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Hemic and Lymphatic Diseases Commons, Immune System Diseases Commons, Immunology and Infectious Disease Commons, Infectious Disease Commons, Microbiology Commons, Virus Diseases Commons, and the Viruses Commons Repository Citation Gil A, Kamga L, Chirravuri-Venkata R, Aslan N, Clark FG, Ghersi D, Luzuriaga K, Selin LK. (2020). Epstein- Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor alpha and beta Repertoires. Open Access Articles. https://doi.org/10.1128/mBio.00250-20. Retrieved from https://escholarship.umassmed.edu/ oapubs/4191 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. RESEARCH ARTICLE Host-Microbe Biology crossm Epstein-Barr Virus Epitope–Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Downloaded from Selection of Diverse T Cell Receptor ␣ and  Repertoires Anna Gil,a Larisa Kamga,b Ramakanth Chirravuri-Venkata,c Nuray Aslan,a Fransenio Clark,a Dario Ghersi,c Katherine Luzuriaga,b Liisa K. -
Epitope Spreading: Lessons from Autoimmune Skin Diseases
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW Epitope Spreading: Lessons From Autoimmune Skin Diseases Lawrence S. Chan,*† Carol J. Vanderlugt,‡ Takashi Hashimoto,§ Takeji Nishikawa,¶ John J. Zone,** Martin M. Black,†† Fenella Wojnarowska,‡‡ Seth R. Stevens,§§ Mei Chen,† Janet A. Fairley,¶¶ David T. Woodley,*† Stephen D. Miller,‡ and Kenneth B. Gordon†‡ *Medicine Service, Section of Dermatology, Lakeside Division, VA Chicago Health Care System, Chicago, Illinois, U.S.A.; Departments of †Dermatology and ‡Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, U.S.A.; ¶¶Department of Dermatology, Kurume University School of Medicine, Kurume, Japan; ¶Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; **Medicine Service, Section of Dermatology, Salt Lake City VA Medical Center, Salt Lake City, Utah, U.S.A.; ††Department of Dermatopathology, Guy’s and St. Thomas Medical and Dental School, London, U.K.; ‡‡Department of Dermatology, The Oxford Radcliffe Hospital, Oxford, U.K.; §§Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, U.S.A.; ¶¶Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A. Autoimmune diseases are initiated when patients develop In experimental autoimmune animal diseases, ‘‘epitope aberrant T and/or B cell responses against self proteins. spreading’’ seems to have significant physiologic impor- These responses -
A Murine CD8+ T Cell Epitope Identified in the Receptor-Binding
Article A Murine CD8+ T Cell Epitope Identified in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein Jihyun Yang 1,† , Eunjin Kim 1,2,†, Jong-Soo Lee 2 and Haryoung Poo 1,* 1 Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; [email protected] (J.Y.); [email protected] (E.K.) 2 Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-860-4157 † These authors contributed equally to this study. Abstract: The ongoing COVID-19 pandemic caused by SARS-CoV-2 has posed a devastating threat worldwide. The receptor-binding domain (RBD) of the spike protein is one of the most important antigens for SARS-CoV-2 vaccines, while the analysis of CD8 cytotoxic T lymphocyte activity in preclinical studies using mouse models is critical for evaluating vaccine efficacy. Here, we immunized C57BL/6 wild-type mice and transgenic mice expressing human angiotensin-converting enzyme 2 (ACE2) with the SARS-CoV-2 RBD protein to evaluate the IFN-γ-producing T cells in the splenocytes of the immunized mice using an overlapping peptide pool by an enzyme-linked immunospot assay and flow cytometry. We identified SARS-CoV-2 S395–404 as a major histocompatibility complex (MHC) class I-restricted epitope for the RBD-specific CD8 T cell responses in C57BL/6 mice. Keywords: SARS-CoV-2; cell-mediated immunity; CD8 cytotoxic T lymphocyte; epitope; vaccine Citation: Yang, J.; Kim, E.; Lee, J.-S.; Poo, H. -
Human Coronavirus in the 2014 Winter Season As a Cause of Lower Respiratory Tract Infection
Original Article Yonsei Med J 2017 Jan;58(1):174-179 https://doi.org/10.3349/ymj.2017.58.1.174 pISSN: 0513-5796 · eISSN: 1976-2437 Human Coronavirus in the 2014 Winter Season as a Cause of Lower Respiratory Tract Infection Kyu Yeun Kim1, Song Yi Han1, Ho-Seong Kim1, Hyang-Min Cheong2, Sung Soon Kim2, and Dong Soo Kim1 1Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul; 2Division of Respiratory Viruses, Center for Infectious Diseases, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Korea. Purpose: During the late autumn to winter season (October to December) in the Republic of Korea, respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract infections (LRTIs). Interestingly, in 2014, human coronavirus (HCoV) caused not only upper respiratory infections but also LRTIs more commonly than in other years. Therefore, we sought to determine the epidemiology, clinical characteristics, outcomes, and severity of illnesses associated with HCoV infections at a sin- gle center in Korea. Materials and Methods: We retrospectively identified patients with positive HCoV respiratory specimens between October 2014 and December 2014 who were admitted to Severance Children’s Hospital at Yonsei University Medical Center for LRTI. Charts of the patients with HCoV infection were reviewed and compared with RSV infection. Results: During the study period, HCoV was the third most common respiratory virus and accounted for 13.7% of infections. Co- infection was detected in 43.8% of children with HCoV. Interestingly, one patient had both HCoV-OC43 and HCoV-NL63. -
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater
water Review On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater Adrian Wartecki 1 and Piotr Rzymski 2,* 1 Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Pozna´n,Poland; [email protected] 2 Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Pozna´n,Poland * Correspondence: [email protected] Received: 24 April 2020; Accepted: 2 June 2020; Published: 4 June 2020 Abstract: The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it. -
Heteroclitic CD8 T Cell Epitopes Enhanced Antiviral Immunity
Structural and Functional Correlates of Enhanced Antiviral Immunity Generated by Heteroclitic CD8 T Cell Epitopes This information is current as Jonathan A. Trujillo, Stephanie Gras, Kelly-Anne Twist, of September 30, 2021. Nathan P. Croft, Rudragouda Channappanavar, Jamie Rossjohn, Anthony W. Purcell and Stanley Perlman J Immunol 2014; 192:5245-5256; Prepublished online 2 May 2014; doi: 10.4049/jimmunol.1400111 Downloaded from http://www.jimmunol.org/content/192/11/5245 References This article cites 56 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/192/11/5245.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 30, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Structural and Functional Correlates of Enhanced Antiviral Immunity Generated by Heteroclitic CD8 T Cell Epitopes Jonathan A. Trujillo,*,1 Stephanie Gras,†,1 Kelly-Anne Twist,† Nathan P. -
Vacuolating Encephalitis in Mice Infected by Human Coronavirus OC43
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com R Virology 315 (2003) 20–33 www.elsevier.com/locate/yviro Vacuolating encephalitis in mice infected by human coronavirus OC43 He´le`ne Jacomy and Pierre J. Talbot* Laboratory of Neuroimmunovirology, INRS-Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Que´bec, Canada H7V 1B7 Received 27 January 2003; returned to author for revision 5 March 2003; accepted 1 April 2003 Abstract Involvement of viruses in human neurodegenerative diseases and the underlying pathologic mechanisms remain generally unclear. Human respiratory coronaviruses (HCoV) can infect neural cells, persist in human brain, and activate myelin-reactive T cells. As a means of understanding the human infection, we characterized in vivo the neurotropic and neuroinvasive properties of HCoV-OC43 through the development of an experimental animal model. Virus inoculation of 21-day postnatal C57BL/6 and BALB/c mice led to a generalized infection of the whole CNS, demonstrating HCoV-OC43 neuroinvasiveness and neurovirulence. This acute infection targeted neurons, which underwent vacuolation and degeneration while infected regions presented strong microglial reactivity and inflammatory reactions. Damage to the CNS was not immunologically mediated and microglial reactivity was instead a consequence of direct virus-mediated neuronal injury. Although this acute encephalitis appears generally similar to that induced -
Exploring Epitope and Functional Diversity of Anti-SARS-Cov2 Antibodies Using AI-Based Methods
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424199; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exploring epitope and functional diversity of anti-SARS-CoV2 antibodies using AI-based methods. Dumet C1., Jullian Y.1, Musnier A.1, Rivière Ph.2, Poirier N.3, Watier H.4, Bourquard T.1, Poupon A.1,5,* 1: MAbSilico SAS, 1 impasse du Palais, 37000 Tours, France. 2: VisionsCarto, France. 3: OSE Immunotherapeutics, Nantes, France. 4: EA7501, Université de Tours, et laboratoire d'immunologie, CHU de Tours. 5: PRC, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France ; Inria, Inria Saclay-Île-de-France, 91120 Palaiseau, France *: corresponding author. Summary Since the beginning of the COVID19 pandemics, an unprecedented research effort has been conducted to analyze the antibody responses in patients, and many trials based on passive immunotherapy — notably monoclonal antibodies — are ongoing. Twenty-one antibodies have entered clinical trials, 6 having reached phase 2/3, phase 3 or having received emergency authorization. These represent only the tip of the iceberg, since many more antibodies have been discovered and represent opportunities either for diagnosis purposes or as drug candidates. The main problem facing laboratories willing to develop such antibodies is the huge task of analyzing them and choosing the best candidate for exhaustive experimental validation. In this work we show how artificial intelligence-based methods can help in analyzing large sets of antibodies in order to determine in a few hours the best candidates in few hours. -
S312 • OFID 2017:4 (Suppl 1) • Poster Abstracts Turkey, 3Department of Infectious Diseases and Clinical Microbiology, Recep Tayyip Results
Session: 139. Adult Viral Infection 1031. PCR Array Profiling of Antiviral Genes in Human Embryonic Kidney Cells Friday, October 6, 2017: 12:30 PM Expressing Human Coronavirus OC43 Structural and Accessory Proteins Meshal Beidas, MSc and Wassim Chehadeh, PhD; Microbiology, Kuwait University, Background. Human coronaviruses (HCoV) OC43, 229E, NL63 and HKU1 Kuwait, Kuwait commonly cause upper respiratory tract infections, but can also cause severe lower respiratory tract disease. Increased use of diagnostic assays for respiratory viruses has Session: 139. Adult Viral Infection facilitated detection and, since 2014, voluntary reporting of HCoV to the National Friday, October 6, 2017: 12:30 PM Respiratory and Enteric Virus Surveillance System (NREVSS). Background. Human coronavirus OC43 (HCoV-OC43) causes common cold, Methods. We reviewed weekly aggregate test results for HCoV OC43, 229E, and is associated with severe respiratory symptoms in infants, elderly and immu- NL63 and HKU1 voluntarily reported to NREVSS by U.S. hospital and clinical lab- nocompromised patients. HCoV-OC43 is a member of Betacoronavirus genus that oratories from July 1, 2014‒April 30, 2017. Laboratories reporting any HCoV result includes also the Severe Acute Respiratory Syndrome (SARS) and the Middle East using PCR were included, and the weekly percentage of positive HCoV tests by type Respiratory Syndrome (MERS) coronaviruses. Both SARS-CoV and MERS-CoV were was calculated. For a subset of HCoV detections reported to NREVSS via the Public shown to express proteins with the potential to evade early innate immune responses. Health laboratory Interoperability Project (PHLIP), which collects individual-level However, the ability of HCoV-OC43 to antagonise the intracellular antiviral defences demographic data, we described age distribution and sex. -
HDX-MS for Epitope Characterization of a Therapeutic ANTIBODY Candidate on the Calcium-Binding Protein Annexin-A1
antibodies Article HDX-MS for Epitope Characterization of a Therapeutic ANTIBODY Candidate on the Calcium-Binding Protein Annexin-A1 Marius Gramlich 1, Henry C. W. Hays 2, Scott Crichton 2, Philipp D. Kaiser 1, Anne Heine 1, Nicole Schneiderhan-Marra 1, Ulrich Rothbauer 1,3, Dieter Stoll 1,4, Sandra Maier 1 and Anne Zeck 1,* 1 NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; [email protected] (M.G.); [email protected] (P.D.K.); [email protected] (A.H.); [email protected] (N.S.-M.); [email protected] (U.R.); [email protected] (D.S.); [email protected] (S.M.) 2 Medannex Ltd., 1 Lochrin Square, Fountainbridge, Edinburgh EH3 9QA, UK; [email protected] (H.C.W.H.); [email protected] (S.C.) 3 Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Geschwister-Scholl-Platz, 72074 Tuebingen, Germany 4 Department of Life Sciences, University of Applied Sciences Albstadt-Sigmaringen, Anton-Guentherstr. 51, 72488 Sigmaringen, Germany * Correspondence: [email protected]; Tel.: +49-7121-51530-0; Fax: +49-7121-51530-816 Abstract: Annexin-A1 (ANXA1) belongs to a class of highly homologous Ca2+-dependent phospholipid- binding proteins. Its structure consists of a core region composed of four homologous repeats ar- ranged in a compact, hydrolysis-resistant structure and an N-terminal region with a Ca2+-dependent conformation. ANXA1 is involved in several processes, including cell proliferation, apoptosis, Citation: Gramlich, M.; Hays, metastasis, and the inflammatory response. Therefore, the development of antibodies blocking H.C.W.; Crichton, S.; Kaiser, P.D.; selected regions on ANXA1 holds great potential for the development of novel therapeutics treating Heine, A.; Schneiderhan-Marra, N.; inflammatory and cancer diseases.