Space Weather Effects on the Middle and Upper Atmosphere by Joshua M

Total Page:16

File Type:pdf, Size:1020Kb

Space Weather Effects on the Middle and Upper Atmosphere by Joshua M Space Weather Effects on the Middle and Upper Atmosphere by Joshua M. Pettit B.S., Cornell University, 2012 M.S., University of Colorado Boulder, 2014 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Atmospheric and Oceanic Sciences 2019 i This thesis entitled: Space Weather Effects on the Middle and Upper Atmosphere written by Joshua M. Pettit has been approved for the Department of Atmospheric and Oceanic Sciences _______________________________ Cora E. Randall _______________________________ V. Lynn Harvey Date _______________ The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. ii Pettit, Joshua M. (Ph.D., Atmospheric and Oceanic Sciences) Space Weather Effects on the Middle and Upper Atmosphere Thesis directed by Prof. Cora E. Randall Abstract: Impulsive solar events (ISEs) have a pronounced impact on the middle and upper atmosphere. Solar flares emit copious amounts of x-ray and EUV radiation that can ionize the D, E, and F regions of the ionosphere. Coronal mass ejections and geomagnetic storms can cause energetic particle precipitation. This creates nitrogen oxides and hydrogen oxides, which catalytically destroy ozone. Most global climate models exclude both radiation from solar flares and particles from geomagnetic storms and as a result, does not capture the atmospheric effects from these events. The work presented here improves modeling of ISEs by including high-energy photons from solar flares and energetic electrons from geomagnetic storms in the Whole Atmosphere Community Climate Model (WACCM). This is necessary in order to simulate accurately chemistry changes during and after ISEs. We found significant impacts on the D and lower E-regions of the ionosphere from WACCM simulations of the September 2005 solar flares. Effects from the flares were confined to the dayside of Earth but persisted a few days below the thermosphere. Large increases in electron densities were found from the lower D-region through the top of the model (~140 km). Moderate production of odd nitrogen in the mesosphere and lower thermosphere occurred during the larger flare events of the time period. We showed that differences in flare spectrum had a distinct impact on the intensity, length and location of the effects. This investigation also targeted the influence of electron precipitation during the 2003 SH polar winter. Two different energetic electron data sets were included in simulations using the WACCM model with D-region chemistry. Both electron data sets contained electrons >30 keV using the Medium Energy Proton and Electron Detector (MEPED), however only one uses both telescopes onboard MEPED. Both simulations that included electrons >30 keV compared better with observations than the baseline simulation. The simulation that included both telescopes iii agreed better with observations than the other simulations. The results confirm that including both telescopes during geomagnetically active time periods leads to better agreement with observations in the precipitation effects, particularly at sub-polar latitudes. iv Acknowledgements Thank you to Cora E. Randall for the immense amount of time and effort she spent attempting to turn me into a productive scientist. Thank you to V. Lynn Harvey for her help in improving my scientific programming. Thank you to Jeff France, Ethan Peck, Laura Holt, Susanne Benze, Matthias Brakebusch, Adrianna Hackett, Colby Brabec, and Ryan Ligon for sitting through endless group meetings listening to me ramble. I would also like to thank my close friends and all my old roommates for trying to keep me grounded over the past few years. Thank you to Karlsruhe Institute for Technology for their contribution of MIPAS data. Thank you to Phil Chamberlin for access and support of the FISM data. This research has been funded by the NASA Living With a Star program, grant NNX14AH54G, the NSF Frontiers of Earth System Dynamics program, grant AGS 1135432, and the NSF Coupling, Energetics and Dynamics of Atmospheric Regions, grant AGS 1651428. The CESM project is supported by the National Science Foundation and the Office of Science of the U.S. Department of Energy. NCAR is sponsored by the National Science Foundation. The NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center provided resources supporting this work. v Table of Contents Chapter 1. Introduction .................................................................................................................................. 1 1.1 Goals and Motivation ...................................................................................................... 1 1.2 Energetic Particle Sources ............................................................................................... 2 1.3 Particle Precipitation ..................................................................................................... 12 1.4 Middle Atmosphere Chemistry ..................................................................................... 22 1.5 Middle Atmosphere Meteorology ................................................................................ 30 1.6 Whole Atmosphere Community Climate Model ........................................................... 34 1.6.1 Model Description ................................................................................................ 34 1.6.2 Ionization from protons ........................................................................................ 36 1.6.3 Ionization from electrons ...................................................................................... 37 1.6.4 Ionization from photons ....................................................................................... 42 2. Effects of the September 2005 Solar Flares and Solar Proton Events on the Middle Atmosphere in WACCM ................................................................................................................. 46 2.1 Introduction ................................................................................................................. 46 2.2 Model Description....................................................................................................... 52 2.3 Numerical Experiments ............................................................................................... 54 2.4 Results and Discussion ............................................................................................... 57 2.5 Conclusions ................................................................................................................ 57 3. Atmospheric Effects of >30 keV Energetic Electron Precipitation in the Southern Hemisphere Winter of 2003 ................................................................................................................................ 76 3.1 Introduction ................................................................................................................. 76 3.2 Model and Datasets ..................................................................................................... 80 3.3 Results and Discussion ............................................................................................... 87 3.4 Conclusions ............................................................................................................... 102 4. Overall summary and conclusions and future work ............................................................... 106 Bibliography ..................................................................................................................................... 111 Appendix ........................................................................................................................................... 128 Appendix A List of Acronyms ....................................................................................................... 128 vi Tables Table 1.1 HOx Production from Ionization in WACCM ............................................................... 37 2.1 WACCM Model Simulations ........................................................................................ 54 vii Figures Figure 1.7 Schematic of Sun’s Interior ............................................................................................. 4 1.8 Sunspot butterfly diagram and sunspot area .................................................................... 5 1.9 Schematic of charged particle motion ........................................................................... 11 1.10 Schematic of ionization profiles of particles ............................................................... 14 1.11 Disposition altitudes of XUV and EUV energy .......................................................... 23 1.12 Lifetime of NO ............................................................................................................ 30 1.13 Middle atmosphere zonal wind circulation ................................................................. 32 1.14 Middle atmosphere meridional wind circulation ........................................................ 33 2.1 SPE ionization production rate ...................................................................................... 55 2.2 FISM 1.3
Recommended publications
  • Global Ionosphere-Thermosphere-Mesosphere (ITM) Mapping Across Temporal and Spatial Scales a White Paper for the NRC Decadal
    Global Ionosphere-Thermosphere-Mesosphere (ITM) Mapping Across Temporal and Spatial Scales A White Paper for the NRC Decadal Survey of Solar and Space Physics Andrew Stephan, Scott Budzien, Ken Dymond, and Damien Chua NRL Space Science Division Overview In order to fulfill the pressing need for accurate near-Earth space weather forecasts, it is essential that future measurements include both temporal and spatial aspects of the evolution of the ionosphere and thermosphere. A combination of high altitude global images and low Earth orbit altitude profiles from simple, in-the-medium sensors is an optimal scenario for creating continuous, routine space weather maps for both scientific and operational interests. The method presented here adapts the vast knowledge gained using ultraviolet airglow into a suggestion for a next-generation, near-Earth space weather mapping network. Why the Ionosphere, Thermosphere, and Mesosphere? The ionosphere-thermosphere-mesosphere (ITM) region of the terrestrial atmosphere is a complex and dynamic environment influenced by solar radiation, energy transfer, winds, waves, tides, electric and magnetic fields, and plasma processes. Recent measurements showing how coupling to other regions also influences dynamics in the ITM [e.g. Immel et al., 2006; Luhr, et al, 2007; Hagan et al., 2007] has exposed the need for a full, three- dimensional characterization of this region. Yet the true level of complexity in the ITM system remains undiscovered primarily because the fundamental components of this region are undersampled on the temporal and spatial scales that are necessary to expose these details. The solar and space physics research community has been driven over the past decade toward answering scientific questions that have a high level of practical application and relevance.
    [Show full text]
  • First Results from the Solar Mesosphere Explorer
    N_A_ru_RE_v_o_L_JOS_I _SEPTE__ MB_E_R_I_98_3 ---------- NEWSANDVIEWS------------------15 and changes in environmental variables demonstrating the complementarity of the getic particles - caused by a solar proton (such as food density) are well known. two approaches. 0 event4, for example. The largest event in Previously, comparative studies and op­ the current solar cycle occurred on 13 July timality theory have addressed rather dif­ 1982, and the notable decrease of ozone ferent kinds of ethological issue. The ap­ Paul H. Harvey is a lecturer in the School of concentration it caused was measured by plication of optimal foraging models to Biological Sciences, University of Sussex, SME. Proton events of this kind inject large data on interspecies differences in territory BrightonBN19RH, andGeorginaM. Mace is a research associate at London Zoo and at the numbers of high-energy protons into the size may throw light on the precise form of Department of Anthropology, University Col­ middle atmosphere, changing the concen­ cross-species relationships, as well as lege ofLondon, London WCIE 6BT. trations of ionized hydrogen, nitrogen and oxygen, and thus the ozone destruction rate and density. SME's near-infrared Atmospheric chemistry spectrometer observed ozone depletion reaching 70 per cent at 65° latitude, 78 km altitude, on the morning side and 10-20 per First results from the cent on the afternoon side. All the observations, including those of Solar Mesosphere Explorer the proton event, have been satisfactorily from Guy Brasseur compared with a particularly elaborate two-dimensional model which takes into THE first results from the Solar Meso­ foreseen by the Chapman theory in 1930, account most chemical reactions related to sphere Explorer (SME), a satellite designed and show that atmospheric temperature is the mesosphere and the fundamental specially to study atmospheric ozone, are the principal cause of changes in ozone dynamical mechanisms5•6 • now becoming available (Geophys.
    [Show full text]
  • Industry at the Edge of Space Other Springer-Praxis Books of Related Interest by Erik Seedhouse
    IndustryIndustry atat thethe EdgeEdge ofof SpaceSpace ERIK SEEDHOUSE S u b o r b i t a l Industry at the Edge of Space Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 E r i k S e e d h o u s e Suborbital Industry at the Edge of Space Dr Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-03484-3 ISBN 978-3-319-03485-0 (eBook) DOI 10.1007/978-3-319-03485-0 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013956603 © Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • Global Lidar Exploration of the Mesosphere
    GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. Avdikos ABSTRACT: The Space Programmes Unit of the ATHENA Research Center (ATHENA-SPU) in Greece has lead a study towards the development of a spaceborne lidar mission designed to study mesospheric dynamics and chemistry. Determination of small scale waves in the mesosphere is the primary motivation and science focus of this mission and has driven the preliminary mission design. The mission concept proposed herein, called GLEME (Global Lidar Exploration of the Mesosphere), is designed to obtain temperature and horizontal winds in the mesosphere with the highest ever spatial and temporal resolution, allowing the determination of gravity wave characteristics, heat and momentum wave flux, and their effects on the background atmosphere. As part of this study a novel measurement scheme has been developed, and details of the instrument and mission concepts have been outlined. WHY STUDY THE MESOSPHERE? Even with new advances from remote- sensing measurements from spacecraft missions dedicated to mesospheric studies, the mesosphere remains an under-sampled region with many open questions. Being the “gateway” that connects Earth’s environment and space, the mesosphere is a region of great importance in energy balance processes and a link in vertical energy transfer, as it is in these layers that great surges of energy meet: solar radiation and particles contribute to downward energy transfer, whereas atmospheric tides and waves contribute to upward energy transfer from the stratosphere.
    [Show full text]
  • Associations Between Space Weather Events and the Incidence of Acute Myocardial Infarction and Deaths from Ischemic Heart Disease
    atmosphere Article Associations between Space Weather Events and the Incidence of Acute Myocardial Infarction and Deaths from Ischemic Heart Disease Vidmantas Vaiˇciulis 1,2,*, Jone˙ Vencloviene˙ 3,4, Abdonas Tamošiunas¯ 5,6, Deivydas Kiznys 3, Dalia Lukšiene˙ 1,5, Daina Kranˇciukaite-Butylkinien˙ e˙ 5,7 and RiˇcardasRadišauskas 1,5 1 Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; [email protected] (D.L.); [email protected] (R.R.) 2 Health Research Institute, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania 3 Department of Environmental Sciences, Vytautas Magnus University, LT-44248 Kaunas, Lithuania; [email protected] (J.V.); [email protected] (D.K.) 4 Laboratory of Clinical Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50103 Kaunas, Lithuania 5 Laboratory of Population Studies, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50103 Kaunas, Lithuania; [email protected] (A.T.); [email protected] (D.K.-B.) 6 Department of Preventive Medicine, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania 7 Department of Family Medicine, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania * Correspondence: [email protected]; Tel.: +370-678-34506 Abstract: The effects of charged solar particles hitting the Earth’s magnetosphere are often harmful Citation: Vaiˇciulis,V.; Vencloviene,˙ J.; and can be dangerous to the human organism. The aim of this study was to analyze the associations Tamošiunas,¯ A.; Kiznys, D.; Lukšiene,˙ of geomagnetic storms (GSs) and other space weather events (solar proton events (SPEs), solar flares D.; Kranˇciukaite-Butylkinien˙ e,˙ D.; (SFs), high-speed solar wind (HSSW), interplanetary coronal mass ejections (ICMEs) and stream Radišauskas, R.
    [Show full text]
  • TIMED Mission Science Overview
    J-H. YEE TIMED Mission Science Overview Jeng-Hwa Yee The Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) mission is a low-cost NASA Sun-Earth Connections mission designed to provide a basic understanding of the least explored and least understood region of the Earth’s environ- ment—the mesosphere, lower thermosphere, and ionosphere (MLTI). The MLTI region is located approximately 60 to 180 km above the surface and is a gateway between the Earth’s lower atmosphere, in which we live, and space. The TIMED suite of four remote sensing instruments measures energy inputs and outputs in the MLTI region as well as its basic structure, including seasonal and latitudinal variations. Over its 2-year mission, TIMED is investigating the relative importance of various radiative, chemical, electro- dynamic, and dynamic processes that govern the structure and variability of the MLTI region. This article presents an overview of TIMED mission science and objectives. BACKGROUND Although our knowledge of the near-Earth space program designed to quantitatively understand the environment has increased enormously since the start of energetics and dynamics of Earth’s mesosphere, lower the Space Age, many signifi cant gaps still exist, and our thermosphere, and ionosphere (MLTI), a region of ability to model the variability of the system as a whole the atmosphere about 60 and 180 km above the sur- remains rudimentary at best. The Sun, its atmosphere and face. (Complete information on the TIMED mission, heliosphere, and the Earth’s magnetosphere and atmo- including participants, status, science, etc., may be sphere are coupled by important physical processes that found at http://www.timed.jhuapl.edu/mission/.) The are only partially known (NASA Strategic Plan, 1994, MLTI is a transition region between the Sun and the http://umbra.nascom.nasa.gov/solar_connections.html).
    [Show full text]
  • Penetration of Mev Electrons Into the Mesosphere Accompanying Pulsating Aurorae Y
    www.nature.com/scientificreports OPEN Penetration of MeV electrons into the mesosphere accompanying pulsating aurorae Y. Miyoshi1*, K. Hosokawa2, S. Kurita3, S.‑I. Oyama1,4,5, Y. Ogawa4,16,17, S. Saito6, I. Shinohara7, A. Kero8, E. Turunen8, P. T. Verronen8,9, S. Kasahara10, S. Yokota11, T. Mitani7, T. Takashima7, N. Higashio7, Y. Kasahara12, S. Matsuda7, F. Tsuchiya13, A. Kumamoto13, A. Matsuoka14, T. Hori1, K. Keika10, M. Shoji1, M. Teramoto15, S. Imajo14, C. Jun1 & S. Nakamura1 Pulsating aurorae (PsA) are caused by the intermittent precipitations of magnetospheric electrons (energies of a few keV to a few tens of keV) through wave‑particle interactions, thereby depositing most of their energy at altitudes ~ 100 km. However, the maximum energy of precipitated electrons and its impacts on the atmosphere are unknown. Herein, we report unique observations by the European Incoherent Scatter (EISCAT) radar showing electron precipitations ranging from a few hundred keV to a few MeV during a PsA associated with a weak geomagnetic storm. Simultaneously, the Arase spacecraft has observed intense whistler‑mode chorus waves at the conjugate location along magnetic feld lines. A computer simulation based on the EISCAT observations shows immediate catalytic ozone depletion at the mesospheric altitudes. Since PsA occurs frequently, often in daily basis, and extends its impact over large MLT areas, we anticipate that the PsA possesses a signifcant forcing to the mesospheric ozone chemistry in high latitudes through high energy electron precipitations. Therefore, the generation of PsA results in the depletion of mesospheric ozone through high‑energy electron precipitations caused by whistler‑mode chorus waves, which are similar to the well‑known efect due to solar energetic protons triggered by solar fares.
    [Show full text]
  • Timed: from Concept to Realization
    TIMED: FROM CONCEPT TO REALIZATION TIMED: From Concept to Realization Mary M. Mellott and Victoria H. Elsbernd The Earth is an island in the universe where life has developed and fl ourished. This has been possible because of the interaction between our nearest star, the Sun, which bathes the entire solar system in a dynamic outfl ow of energy, and the shielding provided by the Earth’s magnetic fi eld and atmosphere. It is the goal of NASA’s Sun-Earth Connection Division in the Offi ce of Space Sci- ence to understand how the Sun, the region of space infl uenced by the Sun (the “helio- sphere”), and planetary environs are connected in a single system. The primary vehicle for achieving this goal is the Solar Terrestrial Probes (STP) program, a series of strategic missions confi gured to study the fundamental physical processes associated with the Sun- heliosphere-Earth system. STP missions will provide critical knowledge to better under- stand the Sun’s variability and the effects of that variability on the Earth’s atmosphere. The fi rst Space Physics Strategic Implementation Study, conducted in 1990, placed the highest priority within the STP program on a mission to study the mesosphere/lower thermosphere/ionosphere (MLTI) region where the upper atmosphere interfaces with the near-Earth space environment. The Thermosphere, Ionosphere, Mesosphere Ener- getics and Dynamics (TIMED) mission evolved from this initial vision and is now using advances in remote sensing technology to study the infl uences of the Sun and humans on the MLTI, the least explored region of Earth’s atmosphere.
    [Show full text]
  • Energy Budget of the Mesosphere and Lower Thermosphere from SABER Observations
    Energy Budget of the Mesosphere and Lower Thermosphere from SABER Observations Linda Hunt Marty Mlynczak SABER Science Team 6/17/19 CEDAR 2019 1 Outline • Overview • Methodology • Infrared Cooling • Solar Heating • Chemical Heating • Totals • Thermosphere • Summary 6/17/19 CEDAR 2019 2 Overview 6/17/19 CEDAR 2019 3 Overview Launched Dec 2001 625 km circular orbit 74 degree inclination 17 + years of operation 6/17/19 CEDAR 2019 4 Methodology • SABER measures the vertical distribution of infrared radiation emitted by various atmospheric gases (ozone, water vapor, nitric oxide, and carbon dioxide), providing important information about the radiation budget in the upper atmosphere. • From the SABER radiances, we determine the radiative cooling by CO2, solar heating by O3 and O2, and chemical heating from a suite of exothermic reactions over the vertical range of 65-100 km. These measurements, combined with accurate determination of the temperatures allow the radiative and chemical contributions to the heat budget to be assessed and the net effect of dynamics to be inferred. • SABER measurements also support the inference of atomic species, including atomic oxygen and atomic hydrogen. 6/17/19 CEDAR 2019 5 Infrared Cooling The three major cooling sources in the mesosphere are • carbon dioxide at 15 μm • ozone (9.6 μm) • water vapor at 6.7 μm and in the far-IR (> 20 μm). CO2 radiative cooling in the fundamental, isotopic and hot bands at 15 μm is the dominant source of cooling in the 65-100 km altitude range. 6/17/19 CEDAR 2019 6 Solar Heating O2 Heating The predominant solar heating mechanisms in the upper mesosphere involving photolysis of molecular oxygen are in the Schumann-Runge bands (175-205 nm), the Schumann-Runge continuum (122-175 nm) ,the Lyman-alpha line (121.5 nm) and the O2 A-band 6/17/19 CEDAR 2019 7 Solar Heating O3 Heating • The Hartley band region (~240-310 nm) is of primary importance for heating by photodissociation of ozone in the mesosphere.
    [Show full text]
  • Large-Scale Waves in the Mesosphere and Lower Thermosphere Observed by SABER
    4384 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 62 Large-Scale Waves in the Mesosphere and Lower Thermosphere Observed by SABER ROLANDO R. GARCIA National Center for Atmospheric Research,* Boulder, Colorado RUTH LIEBERMAN Colorado Research Associates, Boulder, Colorado JAMES M. RUSSELL III Hampton University, Hampton, Virginia MARTIN G. MLYNCZAK NASA Langley Research Center, Hampton, Virginia (Manuscript received 31 December 2004, in final form 10 May 2005) ABSTRACT Observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board NASA’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite have been processed using Salby’s fast Fourier synoptic mapping (FFSM) algorithm. The mapped data provide a first synoptic look at the mean structure and traveling waves of the mesosphere and lower thermosphere (MLT) since the launch of the TIMED satellite in December 2001. The results show the presence of various wave modes in the MLT, which reach largest amplitude above the mesopause and include Kelvin and Rossby–gravity waves, eastward-propagating diurnal oscillations (“non-sun- synchronous tides”), and a set of quasi-normal modes associated with the so-called 2-day wave. The latter exhibits marked seasonal variability, attaining large amplitudes during the solstices and all but disappearing at the equinoxes. SABER data also show a strong quasi-stationary Rossby wave signal throughout the middle atmosphere of the winter hemisphere; the signal extends into the Tropics and even into the summer hemisphere in the MLT, suggesting ducting by westerly background zonal winds. At certain times of the year, the 5-day Rossby normal mode and the 4-day wave associated with instability of the polar night jet are also prominent in SABER data.
    [Show full text]
  • Ionizing Radiation in Earth's Atmosphere and in Space Near Earth May 2011 6
    Federal Aviation Administration DOT/FAA/AM-11/9 Office of Aerospace Medicine Washington, DC 20591 Ionizing Radiation in Earth’s Atmosphere and in Space Near Earth Wallace Friedberg Kyle Copeland Civil Aerospace Medical Institute Federal Aviation Administration Oklahoma City, OK 73125 May 2011 Final Report OK-11-0024-JAH NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. ___________ This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: www.faa.gov/library/reports/medical/oamtechreports Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-11/9 4. Title and Subtitle 5. Report Date Ionizing Radiation in Earth's Atmosphere and in Space Near Earth May 2011 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Friedberg W, Copeland K 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) FAA Civil Aerospace Medical Institute P.O. Box 25082 11. Contract or Grant No. Oklahoma City, OK 73125 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W. Washington, DC 20591 14. Sponsoring Agency Code 15. Supplemental Notes 16. Abstract The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in commercial human space travel.
    [Show full text]
  • Response of the Mesosphere-Thermosphere- Ionosphere System to Global Change - CAWSES-II Contribution Jan Laštovička1*, Gufran Beig2 and Daniel R Marsh3
    Laštovička et al. Progress in Earth and Planetary Science 2014, 1:21 http://www.progearthplanetsci.com/content/1/1/21 REVIEW Open Access Response of the mesosphere-thermosphere- ionosphere system to global change - CAWSES-II contribution Jan Laštovička1*, Gufran Beig2 and Daniel R Marsh3 Abstract Long-term trends in the mesosphere, thermosphere, and ionosphere are areas of research of increasing importance both because they are sensitive indicators of climatic change and because they affect satellite-based technologies which are increasingly important to modern life. Their study was an important part of CAWSES-II project, as they were a topic of Task Group 2 (TG-2) ‘How Will Geospace Respond to Changing Climate’. Three individual projects of TG-2 were focused on important problems in trend investigations. Significant progress was reached in several areas such as understanding and quantifying the role of stratospheric ozone changes in trends in the upper atmosphere, reaching reasonable agreement between observed and simulated trends in mesospheric temperatures and polar mesospheric clouds, or understanding of why the thermospheric density trends are much stronger under solar cycle minimum conditions. The TG-2 progress that is reviewed in this paper together with some results reached outside CAWSES-II so as to have the full context of progress in trends in the upper atmosphere and ionosphere. Keywords: Mesosphere; Thermosphere; Ionosphere; Long-term trends; Climatic change Review Laštovička et al. 2012). The thermosphere is the operating Introduction environment of many satellites, including the Inter- The anthropogenic emissions of greenhouse gases carbon national Space Station, and thousands of pieces of danger- dioxide (CO2), methane (CH4), and nitrous oxide (N2O) ous space debris, the orbital lifetime of which depends on influence the troposphere, weather, and particularly cli- long-term changes of thermospheric density.
    [Show full text]