Pollution by Mud of Great Barrier Reef Coastal Waters Eric Wolanski and Simon Spagnol

Total Page:16

File Type:pdf, Size:1020Kb

Pollution by Mud of Great Barrier Reef Coastal Waters Eric Wolanski and Simon Spagnol Journal ofCoastal Research 1151-1156 West Palm Beach, Florida Fall 2000 Pollution by Mud of Great Barrier Reef Coastal Waters Eric Wolanski and Simon Spagnol Australian Institute of Marine Science PMB No.3 Townsville Me, Qld. 4810, Australia ABSTRACT _ WOLANSKI, E. and SPAGNOL, S., 2000. Pollution by mud of Great Barrier Reef coastal waters. Journal ofCoastal Research, 16(4), 1151-1156. West Palm Beach (Florida), ISSN 0749-0208. Oceanographic data from the coastal waters of the Great Barrier Reef near Cairns were obtained for two months in the 1997 dry season when river runoff was negligible. A muddy coastal zone was found with suspended sediment concentration reaching 1000 mg/L during trade winds. These high turbidity events are very stressful conditionsfor coral reefs and were caused by resuspension of sediment by wind waves. In calm weather a nepheloidlayer prevailed, extending about 30 km offshore and carrying coastal mud toward offshore coral reefs. In this layer, muddy marine snow with floes exceeding 1000 urn in diameter was found inshore, while only small floes < 100 urn were found offshore. Near-surface visibilitymay have decreased by 50% in the last 70 years. High turbidity appears to be due to man and ultimately threatens the main bodyof the Great Barrier Reef. ADDITIONAL INDEX WORDS: Mud, turbidity, siltation, resuspension, nepheloid layer, Great Barrier Reef. INTRODUCTION METHODS Most of our knowledge of the historical, physical properties For six weeks, in August and September 1997, six ocean­ of the waters ofthe Great Barrier reef (GBR) is derived from ographic moorings were maintained in a cross-shore transect the 1928-1929 British Museum Expedition. This pioneering at sites 1-6 shown in Figure 1 in depth varying from 3 m study was mostly carried out near Low Isles (16°23'S, inshore to 23 m offshore. Water depth and equipment de­ 145°34'E; see Figure 1 for a location map). MOORHOUSE ployed are summarised in Table 1. At sites 1-5 the moorings (1933) and ORR (1933 a and b) reported clear water (mean included Inter-Ocean model S4 current meters at about half­ visibility =11 m) during the South East trade wind season depth, a Dataflow salinometer and a total of 19 nephelome­ ters spread across the water column, the lowest one being from about April to October. Human impacts at that time located 0.5 m from the bottom. The units averaged data over were negligible. Since that time most of the forest and nat­ 1 min and recorded these data at 5 min intervals. ural vegetation that covered the land have been cleared and At site 6 near Pixie Reef an Inter-Ocean model S4 current much of it is now intensively farmed with usually no protec­ meter was deployed 6m from the bottom, and a Dataflow sa­ tive cover against soil erosion. This resulted in a large in­ linometer at 17m off the bottom in 25 m depth. During moor­ crease in mud discharged by rivers on the coast of the Great ing deployment and recovery, and also in December 1997 Barrier Reef (ANON, 1993; WOLANSKI, 1994, LARCOMBE et when dry weather conditions prevailed, vertical profiles of al., 1996, WACHENFELD et al., 1997). Historical photographs salinity, temperature and suspended solid concentration and navigation maps of the Cairns waterfront (see location (SSC) were obtained using a CTD equipped with an Analite in Figure 1) suggest that what was largely a sandy coast is backscatterance nephelometer. The nephelometers were cal­ now buried under 1.5 m of mud (WOLANSKI and DUKE,2000). ibrated in-situ for suspended solid concentration. In-situ pho­ The increased muddiness of the coast has been reported also tographs of the suspended matter were obtained using the at other locations along the coast of the Great Barrier Reef method of AYUKAI and WOLANSKI (1997). following European settlement. For instance, WOLANSKI Suspended solids were collected at 2.5 m from the bottom (1994) reported an invasion by mud of a sandy beach flat at every 2 days at site 5 using a McLane automated suspended Townsville (19.3°S). Large areas of mangrove forests that act­ sediment trap and the samples were was analyzed in the lab­ ed as efficient sediment traps (FURUKAWA et al., 1997), have oratory following the techniques described by WOLANSKI et also been removed by farming. Many estuaries essentially ai. (1999). have become drains bringing all the eroded, fine sediment Wind and rainfall data were obtained from meteorological directly to the sea. In view of this man-made increased mud­ stations at Green Island and Cairns. diness of coastal waters, oceanographic data were collected to assess the offshore extent of the dispersion of the mud and RESULTS the potential threat it poses to the Great Barrier Reef. Southeast trade winds peaking at 15 m S-1 prevailed throughout the study period, occasionally interrupted by 99050 received 17 May 1999; accepted in revision 22 December 1999. short periods of calm weather (Figure 2). The tides were 1152 Wolanski and Spagnol Table 1. Mooring details. ,~. '·'i~'·\,··f Depth of ~ Site Water current Depth of Low Isles ;~BallRf. number depth (m) meter (m) nephelometer (rn) 1 2 N/A 0.25,1 2 4 2.5 1,2,3,3.5 Pixie Rf. 3 6 4.5 3,4,5,5.5 6 '~ 4 11 6 6, 8, 10, 10.5 -f 5 18 12 14, 17, 17.5 6 25 19 N/A made of mucus, plankton detritus as well as other biological detritus. Offshore the suspended solids were present as in­ organic mud floes < 60 J.Lm in diameter. The spectrum of sea level (not shown) revealed that the semi-diurnal tides contained most of the energy. On the other hand the alongshore currents and wind showed negligible en­ ergy at diurnal and semi-diurnal tidal frequencies; most of the energy was contained at low-frequencies with period> 3 days with no apparent peak in the spectra. The wind showed a weak peak at diurnal frequency, an indication of a sea­ Figure 1. General location map showing the mooring sites. breeze effect. The spectra of SSC at stations 1 and 2 were weakly energetic at the diurnal frequency, possibly an effect of the sea-breeze, but not at all at the dominant tidal semi­ mostly semi-diurnal with a strong diurnal inequality, peak­ diurnal frequency. Highest energy in the spectra was at ing at about 3 m peak-to-trough at spring tides and 0.5 m at about 10 days period. This period is the same for the peak in neap tides (Figure 2). Freshwater runoff and associated riv­ the wind and current spectra, it is also the maximum period erine sediment inflow was negligible during the study be­ for which the spectrum can be reliably calculated from this cause it was carried out in the dry season. time series. The currents were mostly alongshore, alternating north­ Alongshore wind offshore (at Green Island) and currents ward and southward at periods of several days, the tidal var­ were significantly correlated with a lag increasing with dis­ iations were small and the low-frequency currents were dom­ tance offshore, the wind preceding the current (R = 0.8 at 2 inant (Figure 2). The currents were southward with speed of h lag at site 2; R = 0.6 at 8 h lag for site 3 and R =0.8 at 16 about 0.2 m S-l during calm weather and northward with a h lag at sites 5 and 6). speed of about 0.4 m S-l during strong trade winds and fluc­ The alongshore currents and the SSC were also signifi­ tuated very little with the tides. cantly correlated, the current preceding SSC, R = 0,.7 at 2 The suspended solid concentration (SSC) fluctuated widely hr lag at site 2, R = 0.45 at 6 hr lag at site 3, R = 0.5 at 13 in coastal waters (Figure 2). Maximum SSC was about 1,000 h lag at site 4. A negative and significant correlation between mg 1-\ at which time the visibility as reported by divers at wind and current occurred at site 5 located further offshore, site 1 was zero (it was pitch black at 2 m depth and the divers R = -0.5 at zero lag. No correlation (lRI < 0.2) between cur­ could not see their hand against the face mask). The SSC was rents and SSC prevailed at site 5. smaller further offshore. The SSC did not vary with the tides. For sites 1 and 2 a significant correlation also existed be­ Inshore, high SSC occurred frequently, but only during tween alongshore wind velocity and SSC; at site 1 R = 0.7 strong wind; at these times SSC was uniform throughout the at zero lag and 0.9 at 14 h lag; at site 2 R = 0.7 at 2 h lag. water column. Offshore, high SSC events (>50 mg 1-1 peak­ For site 3, no strong correlation was apparent (R < 0.4). At ing in one event at 200 mg 1-1) occurred occasionally. At these site 4 the correlation was negative and significant, R = -0.45 times the high SSC events were limited to near the bottom at zero lag. At site 5 no correlation was found between the (Figure 3a). During strong winds, suspended solids consisted wind velocity and the SSC (lRI < 0.2). of fine terrigenous mud forming floes typically 30-60 J.Lm in The SSC fluctuated coherently with distance offshore be­ diameter (not shown). tween sites 1-4. Between sites 1 and 2, R = 0.75 at 0.4 h lag; In calm weather a near-bottom nepheloid layer was ob­ between sites 1 and 3, R = 0.73 at 2.3 h lag and between served apparently cascading down the slope (Figure 3b).
Recommended publications
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Sediments, Fauna and the Dispersal O Radionuclides at the N.E. Atlantic Dumpsite for Low-Level Radioactive Wast
    NETHERLANDS INSTITUTE FOR SEA RESEARC Sediments, fauna and the dispersal o radionuclides at the N.E. Atlantic dumpsite for low-level radioactive wast INIS-mf--11394 Report of the Dutch DORA program **? M.M. Rutgers van der Loeff & M.S.S. Lavaleye Front cover: Physiographic Diagram of the North Atlantic by B. C. Heezen and M. Tharp, Copyrighted © 1984 by Marie Thpro, published by permission of Marie Tharp. The posi- tion of the dumpsite is indicated. Tl.e deep water in the eastern basin is ventilated from the south. Back cover: Rat-tail fish Coryphaenoides armatus caught at the dumpsite. Sediments, fauna, and the dispersal of radionuclides at the N.E. Atlantic dumpsite for low-level radioactive waste Report of the Dutch DORA program M.M. Rutgers van der Loeff & M.S.S. Lavaleye Netherlands Institute for Sea Research, P.O. Box 59,NL 1790 AB DEN BURG, TEXEL 1986 SEDIMENTS, FAUNA, AND THE DISPERSAL OF RADIONUCLIDES AT THE NE ATLANTIC DUMPSITE FOR LOW-LEVEL RADIOACTIVE WASTE Final report of the Dutch DORA program MM. RUTGERS VAN DER LOEFF AND M.S.S. LAVALEYE NIOZ, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands. CONTENTS 1. Introduction 1.1. Research at the NEA dumpsite: CRESP and the DORA project 1.2. Acknowledgments 1.3. Source term: the radionuclides of interest 2. Material and methods 2.1. Cruises to the dumpsite 2.2. Sampling scheme 3. Geochemistry 3.1. Introduction 3.2. Methods 3.3. Recent sedimentological history 3.4. Elemental and mineralogical composition of the sediment 3.4.1.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 5
    30. LITHOLOGIC SUMMARY Oscar E. Weser, Chevron Oil Field Research Company, La Habra, California INTRODUCTION Using this added distinction, one can account for the seeming contradiction that some pelagic sediments A broad spectrum of terrigenous and pelagic sedi- had a higher sedimentation rate than some terrigenous ments was encountered on Leg 5. The terrigenous sediments. The former contained significant amounts sediments occur only in those sites drilled closest to (up to 95 per cent) of siliceous and/or calcareous tests land masses. The more distant drill sites penetrated of planktonic microorganisms. It is obvious that when pelagic sediments. Pelagic deposits were also found in employing a system of dividing sediments into pelagic two nearshore sites at Holes 32 and 36. The distribu- and terrigenous deposits based on the rate continental tion of these two classes of sediment for the Leg 5 detritus accumulates, the products of plankton pro- drill sites is shown on Figure 1. duction act as a biasing diluent. By compensating for the biogenous constituents, one can generalize that Of the 1808 meters1 of sediment penetrated on Leg 5, most terrigenous sediments found on Leg 5 did have a 1344 meters (75 per cent) are terrigenous2 and 464 higher sedimentation rate than the pelagic sediments. meters (25 per cent) are pelagic. Table 1 lists the sedimentary constituents encountered In this inquiry, the main criterion used to differentiate in the terrigenous and pelagic deposits of the various pelagic from terrigenous deposits was color: pelagic holes on Leg 5. This table includes only those con- sediments typically were red, brown or yellow; green, stituents which were recognized while making visual blue and black characterized the terrigenous sediments.
    [Show full text]
  • Particle Size Distribution and Estimated Carbon Flux Across the Arabian Sea Oxygen Minimum Zone François Roullier, L
    Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone François Roullier, L. Berline, Lionel Guidi, Xavier Durrieu de Madron, M. Picheral, Antoine Sciandra, Stephane Pesant, Lars Stemman To cite this version: François Roullier, L. Berline, Lionel Guidi, Xavier Durrieu de Madron, M. Picheral, et al.. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences, European Geosciences Union, 2014, 11, pp.4541-4557. 10.5194/bg-11-4541-2014. hal-01059610 HAL Id: hal-01059610 https://hal.archives-ouvertes.fr/hal-01059610 Submitted on 30 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Biogeosciences, 11, 4541–4557, 2014 www.biogeosciences.net/11/4541/2014/ doi:10.5194/bg-11-4541-2014 © Author(s) 2014. CC Attribution 3.0 License. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone F. Roullier1,2, L. Berline1,2, L. Guidi1,2,
    [Show full text]
  • Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting
    OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 Editors Melanie McKay Copy Editor Judith Nides Production Editor Debra Vigil Editor Prepared under MMS Contract 1435-00-01-CA-31060 by University of New Orleans Office of Conference Services New Orleans, Louisiana 70814 Published by New Orleans U.S. Department of the Interior Minerals Management Service October 2001 Gulf of Mexico OCS Region iii DISCLAIMER This report was prepared under contract between the Minerals Management Service (MMS) and the University of New Orleans, Office of Conference Services. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with MMS editorial standards. REPORT AVAILABILITY Extra copies of this report may be obtained from the Public Information Office (Mail Stop 5034) at the following address: U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region Public Information Office (MS 5034) 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394 Telephone Numbers: (504) 736-2519 1-800-200-GULF CITATION This study should be cited as: McKay, M., J. Nides, and D. Vigil, eds. 2001. Proceedings: Twentieth annual Gulf of Mexico information transfer meeting, December 2000.
    [Show full text]
  • Patterns of Suspended Particulate Matter Across the Continental Margin in the Canadian Beaufort Sea Jens K
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-261 Manuscript under review for journal Biogeosciences Discussion started: 21 June 2018 c Author(s) 2018. CC BY 4.0 License. Patterns of suspended particulate matter across the continental margin in the Canadian Beaufort Sea Jens K. Ehn1, Rick A. Reynolds2, Dariusz Stramski2, David Doxaran3, and Marcel Babin4 1Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada. 2Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, U.S.A. 3Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefanche, Villefranche-sur-mer 06230, France. 4Joint International ULaval-CNRS Laboratory Takuvik, Québec-Océan, Département de Biologie, Université Laval, Québec, Québec, Canada. Correspondence: Jens K. Ehn ([email protected]) Abstract. The particulate beam attenuation coefficient at 660 nm, cp(660), was measured in conjunction with properties of suspended particle assemblages in August 2009 within the Canadian Beaufort Sea continental margin, a region heavily influenced by sediment discharge from the Mackenzie River. The suspended particulate matter mass concentration (SPM) 3 ranged from 0.04 to 140 g m− , its composition varied from mineral to organic-dominated, and the median particle diameter 5 ranged determined over the range 0.7–120 µm varied from 0.78 to 9.45 µm, with the fraction of particles < 1 µm highest in surface layers influenced by river water or ice melt. A relationship between SPM and cp(660) was developed and used to determine SPM distributions based on measurements of cp(660) taken during summer seasons of 2004, 2008 and 2009, as well as fall 2007.
    [Show full text]
  • Particulate Organic Carbon Fluxes on the Slope of the Mackenzie Shelf
    Available online at www.sciencedirect.com Journal of Marine Systems 68 (2007) 39–54 www.elsevier.com/locate/jmarsys Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): Physical and biological forcing of shelf-basin exchanges ⁎ Alexandre Forest a, , Makoto Sampei a, Hiroshi Hattori b, Ryosuke Makabe c, Hiroshi Sasaki c, Mitsuo Fukuchi d, Paul Wassmann e, Louis Fortier a a Québec-Océan, Université Laval, Québec, QC, Canada, G1K 7P4 b Hokkaido Tokai University, Minamisawa, Minamiku Sapporo, Hokkaido 005-8601, Japan c Senshu University of Ishinomaki, Ishinomaki, Miyagi 986-8580, Japan d National Institute of Polar Research, 9-10, Kaga 1-chome, Itabashi-ku, Tokyo 173-8515, Japan e Norwegian College of Fishery Science, University of Tromsø, N-9037, Tromsø, Norway Received 27 July 2006; received in revised form 25 October 2006; accepted 27 October 2006 Available online 12 December 2006 Abstract To investigate the mechanisms underlying the transport of particles from the shelf to the deep basin, sediment traps and oceanographic sensors were moored from October 2003 to August 2004 over the 300- and 500-m isobaths on the slope of the Mackenzie Shelf (Beaufort Sea, Arctic Ocean). Seasonal variations in the magnitude and nature of the vertical particulate organic carbon (POC) fluxes were related to sea-ice thermodynamics on the shelf and local circulation. From October to April, distinct increases in the POC flux coincided with the resuspension and advection of shelf bottom particles by thermohaline convection, windstorms, and/or current surges and inversions. Once resuspended and incorporated into the Benthic Nepheloid Layer (BNL), particles of shelf origin were transported over the slope by the isopycnal intrusion of the BNL into the Polar-Mixed Layer off-shelf.
    [Show full text]
  • Quantifying the Impact of Watershed Urbanization on a Coral Reef: Maunalua Bay, Hawaii
    Estuarine, Coastal and Shelf Science 84 (2009) 259–268 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Quantifying the impact of watershed urbanization on a coral reef: Maunalua Bay, Hawaii Eric Wolanski a,b,*, Jonathan A. Martinez c,d, Robert H. Richmond c a ACTFR and Department of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4810, Australia b AIMS, Cape Ferguson, Townsville, Queensland 4810, Australia c Kewalo Marine Laboratory, University of Hawaii at Manoa, 41 Ahui Street, Honolulu, HI 96813, USA d Department of Botany, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 96822, USA article info abstract Article history: Human activities in the watersheds surrounding Maunalua Bay, Oahu, Hawaii, have lead to the degra- Received 27 April 2009 dation of coastal coral reefs affecting populations of marine organisms of ecological, economic and Accepted 26 June 2009 cultural value. Urbanization, stream channelization, breaching of a peninsula, seawalls, and dredging on Available online 8 July 2009 the east side of the bay have resulted in increased volumes and residence time of polluted runoff waters, eutrophication, trapping of terrigenous sediments, and the formation of a permanent nepheloid layer. Keywords: The ecosystem collapse on the east side of the bay and the prevailing westward longshore current have urbanization resulted in the collapse of the coral and coralline algae population on the west side of the bay. In turn this river plume fine sediment has lead to a decrease in carbonate sediment production through bio-erosion as well as a disintegration nepheloid layer of the dead coral and coralline algae, leading to sediment starvation and increased wave breaking on the herbivorous fish coast and thus increased coastal erosion.
    [Show full text]
  • Deep-Sea Sediment Resuspension by Internal Solitary Waves in The
    www.nature.com/scientificreports Corrected: Author Correction OPEN Deep-sea Sediment Resuspension by Internal Solitary Waves in the Northern South China Sea Received: 14 January 2019 Yonggang Jia1,2,7, Zhuangcai Tian1,2, Xuefa Shi2,3, J. Paul Liu4, Jiangxin Chen2,5, Xiaolei Liu 1,2,7, Accepted: 6 June 2019 Ruijie Ye2,6, Ziyin Ren1,2 & Jiwei Tian2,6 Published online: 20 August 2019 Internal solitary waves (ISWs) can cause strong vertical and horizontal currents and turbulent mixing in the ocean. These processes afect sediment and pollutant transport, acoustic transmissions and man- made structures in the shallow and deep oceans. Previous studies of the role of ISWs in suspending seafoor sediments and forming marine nepheloid layers were mainly conducted in shallow-water environments. In summer 2017, we observed at least four thick (70–140 m) benthic nepheloid layers (BNLs) at water depths between 956 and 1545 m over continental slopes in the northern South China Sea. We found there was a good correlation between the timing of the ISW packet and variations of the deepwater suspended sediment concentration (SSC). At a depth of 956 m, when the ISW arrived, the near-bottom SSC rapidly increased by two orders of magnitude to 0.62 mg/l at 8 m above the bottom. At two much deeper stations, the ISW-induced horizontal velocity reached 59.6–79.3 cm/s, which was one order of magnitude more than the seafoor contour currents velocity. The SSC, 10 m above the sea foor, rapidly increased to 0.10 mg/l (depth of 1545 m) and 1.25 mg/l (depth of 1252 m).
    [Show full text]
  • Comparison of the Bottom Nepheloid Layer and Late Holocene Deposition on Nitinat Fan: Implications for Lutite Dispersal and Deposition
    Comparison of the bottom nepheloid layer and late Holocene deposition on Nitinat Fan: Implications for lutite dispersal and deposition PER R. STOKKE* I Department of Geological Sciences, Center for Marine and Environmental Studies, Lehigh University, BOBB CARSON J Bethlehem, Pennsylvania 18015 EDWARD T. BAKER* Department of Oceanography, University of Washington, Seattle, Washington 98195 ABSTRACT Suggested emplacement mechanisms for these lutites include ac- cumulation from low-density turbidity flows (Moore, 1967; A study of 56 sediment cores and 121 nephelometer profiles from Shepard and others, 1969; Piper, 1970; Nelson and Kulm, 1973), Nitinat deep-sea fan shows variations in late Holocene accumula- particle-by-particle (hemipelagic) deposition from the overlying tion rates and sediment texture which parallel variations in thick- water column (Huang and Goodell, 1970; Piper, 1970; Lisitzin, ness and suspended sediment load of the bottom nepheloid layer. 1972; Nelson and Kulm, 1973; Bouma and Hollister, 1973), or re- Furthermore, accumulation rates, sediment texture, and nepheloid deposition of winnowed sediments (Piper, 1970; Huang and layer variables all show a substantial degree of correlation with fan Goodell, 1970; Lisitzin, 1972; Bouma and Hollister, 1973; Biscaye topography. In general, the nepheloid layer thickens (>100 m) and and Eittreim, 1974). To date, no preference can be give:n to any one suspended sediment loads increase (>100 /ug/cm2) above Cascadia of these processes on modern deep-sea fans, nor is it clear what role Channel (the major channel crossing the fan) as well as above the the bottom nepheloid layer plays in the depositional process. northern flank of the fan. Over levees and the western portion of In part, the problem stems from our ignorance of the relationship the fan, the nepheloid layer thins to <50 m, and suspended sedi- between suspended matter and lutite accumulation.
    [Show full text]
  • Deep-Water Contourite System: Modern Drifts and Ancient Series
    The Greater Antilles Outer Ridge: development of a distal sedimentary drift by deposition of fine-grained contourites BRIAN E. TUCHOLKE Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA (e-mail: [email protected]) Abstract: The Greater Antilles Outer Ridge, located north and northwest of the Puerto Rico Trench, is a deep (>5100 m), distal sediment drift more than 900 km long and up to 1 km thick. It has been isolated from sources of downslope sedimen- tation throughout its history and is formed of clay- to fine silt-size terrigenous sediments that have been deposited from suspended load carried in the Western Boundary Undercurrent, together with 0-30% pelagic foraminiferal carbonate. Because of the fine, relatively uniform grain size of the sediments, the outer ridge consists of sediments that are seismically transparent in low-frequency reflection profiles. Sediment tracers (chlorite in sediments and suspended particulate matter, reddish clays in cores) indicate that at least a portion of the ridge sediments has been transported more than 2000 km from the eastern margin of North America north of 40°N. The outer ridge began to develop as early as the beginning of Oligocene time when strong, deep thermohaline circulation developed in the North Atlantic and the trough initiating the present Puerto Rico Trench had cut off downslope sedimentation from the Greater Antilles. The fastest growth of the outer ridge probably occurred beginning in the early Miocene, about the same time that large drifts such as the Blake Outer Ridge were initiated along the North American margin. Since that time, the most rapid sedimentation has been along the crest of the northwest- ern outer ridge where suspended load is deposited in a shear zone between opposing currents on the two ridge flanks.
    [Show full text]
  • Articles by Tidal Mix- Mounds Were Overgrown by Sponges and Bryozoans, While Ing
    Biogeosciences, 16, 4337–4356, 2019 https://doi.org/10.5194/bg-16-4337-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Environmental factors influencing benthic communities in the oxygen minimum zones on the Angolan and Namibian margins Ulrike Hanz1, Claudia Wienberg2, Dierk Hebbeln2, Gerard Duineveld1, Marc Lavaleye1, Katriina Juva3, Wolf-Christian Dullo3, André Freiwald4, Leonardo Tamborrino2, Gert-Jan Reichart1,5, Sascha Flögel3, and Furu Mienis1 1Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, 1797SH, the Netherlands 2MARUM–Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany 3GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany 4Department for Marine Research, Senckenberg Institute, 26382 Wilhelmshaven, Germany 5Faculty of Geosciences, Earth Sciences Department, Utrecht University, Utrecht, 3512JE, the Netherlands Correspondence: Ulrike Hanz ([email protected]) Received: 7 February 2019 – Discussion started: 25 February 2019 Revised: 3 October 2019 – Accepted: 10 October 2019 – Published: 15 November 2019 Abstract. Thriving benthic communities were observed in of food supply. A nepheloid layer observed above the cold- the oxygen minimum zones along the southwestern African water corals may constitute a reservoir of organic matter, fa- margin. On the Namibian margin, fossil cold-water coral cilitating a constant supply of food particles by tidal mix- mounds were overgrown by sponges and bryozoans, while ing. Our data suggest that the benthic fauna on the Namib- the Angolan margin was characterized by cold-water coral ian margin, as well as the cold-water coral communities on mounds covered by a living coral reef.
    [Show full text]