Methane-Generating Ammonia Oxidizing Nitrifiers Within Bio-Filters in Aquaculture Tanks

Total Page:16

File Type:pdf, Size:1020Kb

Methane-Generating Ammonia Oxidizing Nitrifiers Within Bio-Filters in Aquaculture Tanks Kamira et al. AMB Expr (2018) 8:140 https://doi.org/10.1186/s13568-018-0668-2 ORIGINAL ARTICLE Open Access Methane‑generating ammonia oxidizing nitrifers within bio‑flters in aquaculture tanks Barry Kamira1,2,4, Lei Lei Shi1,2, Li Min Fan2,3, Cong Zhang2,3, Yao Zheng2,3, Chao Song2,3, Shun Long Meng1,2,3, Geng Dong Hu2,3, Xu Wen Bing1,2,3, Zhang Jia Chen1,2,3* and Pao Xu1,2,3* Abstract The discovery of aerobic and anammox bacteria capable of generating methane in bio-flters in freshwater aquacul- ture systems is generating interest in studies to understand the activity, diversity, distribution and roles of these envi- ronmental bacteria. In this study, we used microbial enrichment of bio-flters to assess their efect on water quality. Profles of ammonia-oxidizing bacterial communities generated using nested PCR methods and DGGE were used to assess the expression of 16S rRNA genes using DNA sequencing. Five dominant ammonia-oxidizing bacterial strains– clones; KB.13, KB.15, KB.16, KB.17 and KB.18—were isolated and identifed by phylogenetic analysis as environmental samples closely related to genera Methylobacillus, Stanieria, Nitrosomonas, and Heliorestis. The methyl ammonia-oxi- dizing microbes thereby found suggest a biochemical pathway involving electron donors and carbon sources, and all strains were functional in freshwater aquaculture systems. Environmental parameters including TN (2.69–20.43); COD (9.34–31.47); ­NH4+-N (0.44–11.78); ­NO2−N (0.00–3.67); ­NO3−N (0.05–1.82), mg/L and DO (1.47–10.31 µg/L) assessed varied in the ranges in the diferent tanks. Principal component analysis revealed that these water quality param- eters signifcantly infuenced the ammonia oxidizing microbial community composition. Temperature rises to about 40 °C signifcantly afected environmental characteristics—especially DO, TN and ­NH4+-N—and directly or indirectly afected the microbial communities. Although the nested PCR design was preferred due to its high sensitivity for amplifying specifc DNA regions, a more concise method is recommended, as an equimolar mixture of degenerate PCR primer pairs, CTO189f-GC and CTO654r, never amplifed only 16S rRNA of ammonia-oxidizing bacteria. Keywords: Bio-flters, AOB, DGGE, 16S rRNA, Methyl ammonia oxidizing nitrifers, Environmental characteristics Introduction can facilitate decomposition of chemical pollutants and Maintenance of optimal water quality and removal of improve water quality (Ibekwe et al. 2007). nitrogen compounds poses challenges to aquaculture Pioneering studies of the ammonia oxidizing bacte- (van Kessel et al. 2010). Bio-fltration is an important ria (AOB) have suggested that these nitrifers fall within separation process employed to convert toxic nitro- the beta- and gamma-Proteobacteria sub-divisions. gen metabolites into less toxic forms (Crab et al. 2007), Tus, most molecular studies are limited to and focus although the identity of the micro-organisms responsible on understanding of the two phylogenetic groups (Egli for this conversion has not been well characterized (Tal et al. 2001; Konneke et al. 2005). Denitrifcation through et al. 2003; van Kessel et al. 2010). In bio-fltration sys- facultative anaerobic bacteria utilizing organic (hetero- tems, the pollutants are removed by biological degrada- trophic) or inorganic (autotrophic) compounds as elec- tion rather than physical fltration (Rijn 1996; Hargreaves tron sources to reduce nitrate to nitrogen gas, creates 1998). And diverse microbial community structures further challenges such as nitrous oxide release (Hui et al. 2014). Coupled with the requirement of an external elec- tron source, this has prevented the full-scale commercial *Correspondence: [email protected]; [email protected] application of the process. Anaerobic ammonia oxidation 1 Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu, People’s Republic of China (anammox) is another pathway that allows oxidation of Full list of author information is available at the end of the article ammonia into nitrite under anoxic conditions, yielding © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Kamira et al. AMB Expr (2018) 8:140 Page 2 of 15 molecular nitrogen (Kowalchuk et al. 1997). Although 1.5 respectively. For the latter two, production feed anammox has been considered economically viable, with accounts for, on average, 87% of total GHG emissions limited oxygen requirement for the process (Jetten et al. (Pelletier and Tyedmers 2007, 2010). 2001) and responsible for 30–50% nitrogen loss (Brandes In an anaerobic environment, carbon is converted et al. 2007; Lam et al. 2009), such fndings were obtained into methane (Heng et al. 2017). In aquaculture, meth- mainly in the marine sector (Tamdrup and Dalsgaard ane formation occurs mainly in mud layers in inten- 2002; Kuypers et al. 2003; Schmid et al. 2007). However, sive ponds, e.g. the anaerobic mud layer in pangasius our interests lie in freshwater aquaculture systems. As cultivation (Mascha et al. 2013). Methane emissions, suggested by Lahav et al. (2009), presence of anammox have not been widely covered, and an estimation made in waste treatment plants revealed that these microbes in the Mascha et al. study suggested around 5% of the could be present in freshwater aquaculture systems. fsh feed could be converted into manure. 50% of the Tus, the discovery of anammox bacteria in biologi- manure content existed as carbon that was converted cal flters in freshwater aquaculture generates interest in in totality of 3.3% CH4 in an anaerobe environment. In understanding the activity, diversity, and distribution their study, they observed that the use of fsh feed in of these microbes in the environment (Ward 2015). In the pangasius production estimated at 2.1 million tons, addition, methyl ammonia oxidation is a newly discov- resulted in 70 million kg of CH4 production. ered pathway which generates methane as a byproduct Furthermore, Burg van den et al. 2012, also revealed within the microbial nitrogen cycle. Tis pathway allows that nitrous oxide is released during microbial transfor- ammonia to be oxidized to nitrite or nitrate under anoxic mation of nitrogen in the soil or in manure (i.e. nitrif- − conditions (Zhu and Chen 1999; Saucier et al. 2000) per- cation of NH3 into NO3 and incomplete denitrifcation − turbing carbon sequestration. of NO3 into N2) are engulfed in nitrate fertilizer pro- Methane is known to play an important role in the car- duction for feed ingredients. bon cycle of freshwater and soil environments (Hanson Although methanogenic bacteria have been isolated 1980); dimictic lakes (Rudd and Hamilton 1975), tem- from marine sediment (Sower and Ferry 1983), oce- perate wetlands (Harriss et al. 1982; Bartlett et al. 1985), anic environment (Ward 1987), freshwater sediment and coastal sediments (Sansone and Martens 1981) that and sewer outfalls (Whittenbury et al. 1970) in the past, undergo partial or complete anoxia. In larger body water their occurrence is scarcely recorded in freshwater like lakes and oceans, the carbon cycle is fundamentally tanks and pond aquaculture systems. Considering evi- essential with similar diferences, such as they do not dence of the distribution of methane and nitrifcation undergo anoxia since re-mineralization proceeds aero- activities in intensive production systems, and related bically without producing methane, except in shallow similarities between nitrifers and methanotrophs, we sediment or enclosed basin environments (Ward 1987). hypothesized that some nitrifers in tank and inten- However, in shallow enclosed aquatic production systems sive pond production systems are involved in methane like ponds, and tanks, methane gas is highly observed cycles. Furthermore, the role of conventional methano- in the environments owing to the fact chemical oxygen trophs may be partially fulflled by other kinds of oxi- demand (COD) and biological oxygen demand (BOD) dizing bacteria, thereby justifying studies to understand within the intensive production cycles trigger produc- ammonia oxidizing (AO) nitrifer types involved in tion of methane (Fan et al. 2018). In Life Cycle Assess- methane metabolism. ment data: (LCA), several studies have been performed In this study, we aimed at using flters with attached on the green house gas (GHG)—emission of aquaculture biomass on the flter-media (bio-flter) that have granu- systems, although most data majorly covers energy use or lar activated carbon (GAC) to understand the dynamics global warming potential of large farms. Te impact on of freshwater fsh aquaculture water treatment together global warming on the production of specifc products with microbes (pro-biotic) in tank production from July has been assessed through quantifcation of emissions of: to October 2017 at the Freshwater Fisheries Research carbon dioxide (CO2), methane (CH4), and nitrous oxide Center (FFRC), Wuxi, China. Te objectives were to (N2O) (Mascha et al. 2013). characterize and identify the methane-generating AO For aquaculture production chains fsh feed is typi- nitrifer communities that allow ammonia oxidation cally the most dominant factor in GHG-emissions. under (1) aerobic and (2) anoxic conditions,
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Comparative Genomics Revealing Insights Into Niche Separation of the Genus Methylophilus
    microorganisms Article Comparative Genomics Revealing Insights into Niche Separation of the Genus Methylophilus Nana Lin 1,2, Ye Tao 2,3, Peixin Gao 2, Yan Xu 1 and Peng Xing 2,* 1 School of Civil Engineering, Southeast University, Nanjing 210096, China; [email protected] (N.L.); [email protected] (Y.X.) 2 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; [email protected] (Y.T.); [email protected] (P.G.) 3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-25-8688-2112; Fax: +86-25-5771-4759 Abstract: The genus Methylophilus uses methanol as a carbon and energy source, which is widely distributed in terrestrial, freshwater and marine ecosystems. Here, three strains (13, 14 and QUAN) related to the genus Methylophilus, were newly isolated from Lake Fuxian sediments. The draft genomes of strains 13, 14 and QUAN were 3.11 Mb, 3.02 Mb, 3.15 Mb with a G+C content of 51.13, 50.48 and 50.33%, respectively. ANI values between strains 13 and 14, 13 and QUAN, and 14 and QUAN were 81.09, 81.06 and 91.46%, respectively. Pan-genome and core-genome included 3994 and 1559 genes across 18 Methylophilus genomes, respectively. Phylogenetic analysis based on 1035 single-copy genes and 16S rRNA genes revealed two clades, one containing strains isolated from aquatic and the other from the leaf surface. Twenty-three aquatic-specific genes, such as 2OG/Fe(II) oxygenase and diguanylate cyclase, reflected the strategy to survive in oxygen-limited water and sediment.
    [Show full text]
  • APP201895 APP201895__Appli
    APPLICATION FORM DETERMINATION Determine if an organism is a new organism under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Application number APP201895 Applicant Neil Pritchard Key contact NPN Ltd www.epa.govt.nz 2 Application to determine if an organism is a new organism Important This application form is used to determine if an organism is a new organism. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This application form will be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0159 3 Application to determine if an organism is a new organism 1. Information about the new organism What is the name of the new organism? Briefly describe the biology of the organism. Is it a genetically modified organism? Pseudomonas monteilii Kingdom: Bacteria Phylum: Proteobacteria Class: Gamma Proteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: Pseudomonas Species: Pseudomonas monteilii Elomari et al., 1997 Binomial name: Pseudomonas monteilii Elomari et al., 1997. Pseudomonas monteilii is a Gram-negative, rod- shaped, motile bacterium isolated from human bronchial aspirate (Elomari et al 1997). They are incapable of liquefing gelatin. They grow at 10°C but not at 41°C, produce fluorescent pigments, catalase, and cytochrome oxidase, and possesse the arginine dihydrolase system.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • C1 Compounds Shape the Microbial Community of an Abandoned Century-Old Oil
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278820; this version posted September 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C1 compounds shape the microbial community of an abandoned century-old oil exploration well. 1 Diego Rojas-Gätjens1, Paola Fuentes-Schweizer2,3, Keilor Rojas-Jimenez,4, Danilo Pérez-Pantoja5, Roberto 2 Avendaño1, Randall Alpízar6, Carolina Coronado-Ruíz1 & Max Chavarría1,3,7* 3 4 1Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José 5 (Costa Rica). 2Centro de Investigación en electroquímica y Energía química (CELEQ), Universidad de 6 Costa Rica, 11501-2060 San José (Costa Rica). 3Escuela de Química, Universidad de Costa Rica, 11501- 7 2060 San José (Costa Rica). 4Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José 8 (Costa Rica). 5Programa Institucional de Fomento a la Investigación, Desarrollo, e Innovación (PIDi), 9 Universidad Tecnológica Metropolitana, Santiago (Chile). 6Hidro Ambiente Consultores, 202, San José 10 (Costa Rica), 7Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11 11501-2060 San José (Costa Rica). 12 Keywords: Methylotrophic bacteria, Methylobacillus, Methylococcus, Methylorubrum, Hydrocarbons, 13 Oil well, Methane, Cahuita National Park 14 *Correspondence to: Max Chavarría 15 Escuela de Química & Centro de Investigaciones en Productos Naturales (CIPRONA) 16 Universidad de Costa Rica 17 Sede Central, San Pedro de Montes de Oca 18 San José, 11501-2060, Costa Rica 19 Phone (+506) 2511 8520. Fax (+506) 2253 5020 20 E-mail: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278820; this version posted September 2, 2020.
    [Show full text]
  • SIP Metagenomics Identifies Uncultivated Methylophilaceae As Dimethylsulphide Degrading Bacteria in Soil and Lake Sediment
    SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. Eyice, Ö; Namura, M; Chen, Y; Mead, A; Samavedam, S; Schäfer, H http://www.nature.com/ismej/journal/v9/n11/full/ismej201537a.html doi:10.1038/ismej.2015.37 For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9962 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] The ISME Journal (2015) 9, 2336–2348 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment Özge Eyice1, Motonobu Namura2, Yin Chen1, Andrew Mead1,3, Siva Samavedam1 and Hendrik Schäfer1 1School of Life Sciences, University of Warwick, Coventry, UK and 2MOAC Doctoral Training Centre, University of Warwick, Coventry, UK Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP).
    [Show full text]
  • Structural and Functional Microbial Ecology of Denitrifying Bacteria Using Different Organic Carbon Sources
    Structural and Functional Microbial Ecology of Denitrifying Bacteria Using Different Organic Carbon Sources Huijie Lu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 © 2011 Huijie Lu All Rights Reserved ABSTRACT Structural and Functional Microbial Ecology of Denitrifying Bacteria Using Different Organic Carbon Sources Huijie Lu This dissertation research represents one of the first attempts to investigate the structural and functional microbial ecology of methanol, ethanol and glycerol fostered denitrification. The overarching goal of this research was to elucidate the link between the structure and function of denitrifying microbial populations grown on different carbon sources. Specific objectives were to: 1) diagnose bacteria specifically assimilating methanol and ethanol and determine denitrification kinetics induced by the two carbon sources; 2) investigate factors leading to nitrous oxide (N2O) and nitric oxide (NO) emissions from methanol and ethanol feeding denitrification reactors; 3) characterize glycerol assimilating populations that perform suspended- and biofilm-growth denitrification; 4) examine the potential of using alcohol dehydrogenase gene as a biomarker for methanol and glycerol induced denitrification activity; 5) evaluate the impact of different carbon sources (methanol and ethanol) on the transcript and proteome of a model facultative methylotroph, Methyloversatilis universalis FAM5. First, the technique of DNA stable isotope probing and quantitative polymerase chain reaction were adapted to diagnose and track methylotrophic denitrifying bacteria in activated sludge. Methanol assimilating populations in the methanol fed denitrifying sequencing batch reactor (SBR) were Methyloversatilis spp. and Hyphomicrobium spp. related species. Upon switching to ethanol, only Methyloversatilis spp.
    [Show full text]
  • Going from Microbial Ecology to Genome Data and Back: Studies on a Haloalkaliphilic Bacterium Isolated from Soap Lake, Washington State
    Missouri University of Science and Technology Scholars' Mine Biological Sciences Faculty Research & Creative Works Biological Sciences 01 Nov 2014 Going from Microbial Ecology to Genome Data and Back: Studies on a Haloalkaliphilic Bacterium Isolated from Soap Lake, Washington State Melanie R. Mormile Missouri University of Science and Technology, [email protected] Follow this and additional works at: https://scholarsmine.mst.edu/biosci_facwork Part of the Chemical Engineering Commons Recommended Citation M. R. Mormile, "Going from Microbial Ecology to Genome Data and Back: Studies on a Haloalkaliphilic Bacterium Isolated from Soap Lake, Washington State," Frontiers in Microbiology, vol. 5, Frontiers Media, Nov 2014. The definitive version is available at https://doi.org/10.3389/fmicb.2014.00628 This work is licensed under a Creative Commons Attribution 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Biological Sciences Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. ORIGINAL RESEARCH ARTICLE published: 19 November 2014 doi: 10.3389/fmicb.2014.00628 Going from microbial ecology to genome data and back: studies on a haloalkaliphilic bacterium isolated from Soap Lake, Washington State Melanie R. Mormile* Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA − Edited by: Soap Lake is a meromictic, alkaline (∼pH 9.8) and saline (∼14–140 g liter 1) lake Aharon Oren, The Hebrew University located in the semiarid area of eastern Washington State.
    [Show full text]
  • SIP Metagenomics Identifies Uncultivated Methylophilaceae As Dimethylsulphide Degrading Bacteria in Soil and Lake Sediment
    The ISME Journal (2015) 9, 2336–2348 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment Özge Eyice1, Motonobu Namura2, Yin Chen1, Andrew Mead1,3, Siva Samavedam1 and Hendrik Schäfer1 1School of Life Sciences, University of Warwick, Coventry, UK and 2MOAC Doctoral Training Centre, University of Warwick, Coventry, UK Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds.
    [Show full text]
  • Drivers of Bacterial Β-Diversity Depend on Spatial Scale
    Drivers of bacterial β-diversity depend on spatial scale Jennifer B. H. Martinya,1, Jonathan A. Eisenb, Kevin Pennc, Steven D. Allisona,d, and M. Claire Horner-Devinee aDepartment of Ecology and Evolutionary Biology, and dDepartment of Earth System Science, University of California, Irvine, CA 92697; bDepartment of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616; cCenter for Marine Biotechnology and Biomedicine, The Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093; and eSchool of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195 Edited by Edward F. DeLong, Massachusetts Institute of Technology, Cambridge, MA, and approved March 31, 2011 (received for review November 1, 2010) The factors driving β-diversity (variation in community composi- spatial scale (12). Fifty-years ago, Preston (13) noted that the tion) yield insights into the maintenance of biodiversity on the turnover rate (rate of change) of bird species composition across planet. Here we tested whether the mechanisms that underlie space within a continent is lower than that across continents. He bacterial β-diversity vary over centimeters to continental spatial attributed the high turnover rate across continents to evolu- scales by comparing the composition of ammonia-oxidizing bacte- tionary diversification (i.e., speciation) between faunas as a result ria communities in salt marsh sediments. As observed in studies of dispersal limitation and the lower turnover rates of bird spe- β of macroorganisms, the drivers of salt marsh bacterial -diversity cies within continents as a result of environmental variation. depend on spatial scale. In contrast to macroorganism studies, Here we investigate whether the mechanisms underlying β- fi however, we found no evidence of evolutionary diversi cation diversity in bacteria also vary by spatial scale.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Blankenship Publications Sept 2020
    Robert E. Blankenship Formerly at: Departments of Biology and Chemistry Washington University in St. Louis St. Louis, Missouri 63130 USA Current Address: 3536 S. Kachina Dr. Tempe, Arizona 85282 USA Tel (480) 518-2871 Email: [email protected] Google Scholar: https://scholar.google.com/citations?user=nXJkAnAAAAAJ&hl=en&oi=ao ORCID ID: 0000-0003-0879-9489 CITATION STATISTICS Google Scholar (September 2020) All Since 2015 Citations: 33,007 13,091 h-index: 81 43 i10-index: 319 177 Web of Science (September 2020) Sum of the Times Cited: 20,070 Sum of Times Cited without self-citations: 18,379 Citing Articles: 12,322 Citing Articles without self-citations: 11,999 Average Citations per Item: 43.82 h-index: 66 PUBLICATIONS: (441 total) B = Book; BR = Book Review; CP = Conference Proceedings; IR = Invited Review; R = Refereed; MM = Multimedia rd 441. Blankenship, RE (2021) Molecular Mechanisms of Photosynthesis, 3 Ed., Wiley,Chichester. Manuscript in Preparation. (B) 440. Kiang N, Parenteau, MN, Swingley W, Wolf BM, Brodderick J, Blankenship RE, Repeta D, Detweiler A, Bebout LE, Schladweiler J, Hearne C, Kelly ET, Miller KA, Lindemann R (2020) Isolation and characterization of a chlorophyll d-containing cyanobacterium from the site of the 1943 discovery of chlorophyll d. Manuscript in Preparation. 439. King JD, Kottapalli JS, and Blankenship RE (2020) A binary chimeragenesis approachreveals long-range tuning of copper proteins. Submitted. (R) 438. Wolf BM, Barnhart-Dailey MC, Timlin JA, and Blankenship RE (2020) Photoacclimation in a newly isolated Eustigmatophyte alga capable of growth using far-red light. Submitted. (R) 437. Chen M and Blankenship RE (2021) Photosynthesis.
    [Show full text]