Effect of Light Intensity on the Free-Radical Photopolymerization Kinetics of 2-Hydroxyethyl Methacrylate: Experiments and Simulations T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ink Jet Barrier Film for Resolving Narrow Ink Channels
Ink Jet Barrier Film For Resolving Narrow Ink Channels Karuppiah Chandrasekaran Dupont Ink Jet Enterprise, Towanda, Pennsylvania Abstract Non-Aqueous Development Ink Jet Barrier Film is a photoresist sandwiched between One of the stringent properties the Ink Jet Barrier film a polyester and a polyolefin. The unexposed photopoly- has to satisfy is ink resistance. Inks are aqueous solu- mer film instantly adheres to different types of substrates. tions containing colorant(s), biocide(s), organic solvents The film can be exposed with a photographic artwork, and optionally dispersion agents. Alcohols and Pyrro- and the unexposed area can be developed in lidones are the commonly used co-solvents2-4. pH of the non-halogenated solvents. The cured film on a substrate ink ranges from 5 to 9. Aqueous developable photopoly- can be laminated on to a top plate at elevated tempera- mer films contain acidic or basic functional groups. Dur- tures. The film is highly flexible and resists partially ing aqueous development, unexposed photopolymer non-aqueous high pH inks. Several factors affect the swells in the developer solvent and the swollen film is resolution of the Ink Jet Barrier Film. Chemical compo- dispersed using mechanical force. Developed film is ther- sition and process conditions that affect resolution have mally and/or photochemically cured to increase cross link been identified. It was possible to resolve 10 micron density. Even the cured photopolymer film contains a channels with 30 micron thick films. A modern high tech- significant number of acidic (basic) functional groups. nology clean room coater is used to manufacture the Ink The acidic (basic) functional groups tend to hydrate in Jet Barrier Films. -
Novacryl 10440 Interior Sign Specification Nova Polymers
Nova Polymers Novacryl 10440 Interior Sign Specification Nova Polymers Thank you for your interest in Nova Polymers. At Nova Polymers, we are committed to customer service, product development/ support and the continual development of progressive product solutions. Our goal is to provide the most creative and diverse range of photopolymer materials to the architectural design and sign fabrication industries. It is through these commitments, as well as our relationship with the architectural sign community that ensures we are fully capable of exceeding all of your design expectations. Nova continues to be at the forefront of ADA legislation by representing the ISA and SEGD on the International Code Council and is proud to be the industry leader as the focus continues to increase on green building initiatives and sustainable design materials in environmental graphic design. Whether it is innovative materials and equipment, workflow management software or consulting services that can make your process more efficient and profitable; we are there to help. Thank you for your time. If there are any questions, please feel free to contact us directly. Novacryl® Series Photopolymer 10440 Novacryl® Series Photopolymer Section 10440 Interior Signage Novacryl Series Photopolymer Display hidden notes to specifier. (Don't know how? Click Here) NOTE TO SPECIFIER ** This section is based on the products manufactured Nova Polymers, Inc., which is located at: 8 Evans St. Suite 201 Fairfield, NJ 07004 USA Tel: (888) 484-6682 Tel: (973) 882-7890 Fax: (973) 882-5614 Email: [email protected] Website: www.NovaPolymers.com Nova Polymers, Inc. (NPI) is the manufacturer and distributor of all Novacryl Series Photopolymer substrates. -
Photopolymers in 3D Printing Applications
Photopolymers in 3D printing applications Ramji Pandey Degree Thesis Plastics Technology 2014 DEGREE THESIS Arcada Degree Programme: Plastics Technology Identification number: 12873 Author: Ramji Pandey Title: Photopolymers in 3D printing applications Supervisor (Arcada): Mirja Andersson Commissioned by: Abstract: 3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photo- polymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particular focus on photopolymer based sys- tems. The thesis includes extensive literature research on 3D printing and photopolymer systems, which was supported by visit to technology fair and demo experiments. Further, useful information about recent technological advancements in 3D printing and materials was acquired by discussions with companies’ representatives at the fair. This analysis method was helpful to see the industrial based 3D printers and how companies are creat- ing digital materials on its own. Finally, the demo experiment was carried out with fusion deposition modeling (FDM) 3D printer at the Arcada lab. Few objects were printed out using polylactic acid (PLA) material. Keywords: Photopolymers, 3D printing, Polyjet technology, FDM -
1 050929 Quiz 1 Introduction to Polymers 1) in Class We Discussed
050929 Quiz 1 Introduction to Polymers 1) In class we discussed a hierarchical categorization of the terms: macromolecule, polymer and plastics, in that plastics are polymers and macromolecules and polymers are macromolecules; but all macromolecules are not polymers and all polymers are not plastics. a) Give an example of a macromolecule that is not a polymer. b) Give an example of a polymer that is not a plastic. c) Define polymer. d) Define plastic. e) Define macromolecule. 2) In class we observed a simulation of a small polymer chain of 40 flexible steps. The chain was observed to explore configurational space. a) Explain what the phrase "explore configurational space" means. b) Consider the two ends of the chain to be tethered with a separation distance of about 6 extended steps. If temperature were increased would the chain ends push apart or pull together the tether points? Explain why. c) If one chain end is fixed in Cartesian space at x = 0, what are the limits on the x-axis for the other chain end as it explores configurational space? d) What is the average value of the position on the x-axis? dγ 3) Polymer melts are processed at high rates of strain, , in an extruder, injection molder, or dt calander. a) Sketch a typical plot of polymer viscosity versus rate of strain on a log-log plot showing the power-law region and the Newtonian plateau at low rates of strain. b) Explain using this plot why polymers are processed at high rates of strain. c) Using your own words propose a molecular model that could explain shear thinning in polymers. -
Kinetics and Modeling of the Radical Polymerization of Acrylic Acid and of Methacrylic Acid in Aqueous Solution
Kinetics and Modeling of the Radical Polymerization of Acrylic Acid and of Methacrylic Acid in Aqueous Solution Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen im Promotionsprogramm Chemie der Georg-August University School of Science (GAUSS) vorgelegt von Nils Friedrich Gunter Wittenberg aus Hamburg Göttingen, 2013 Betreuungsausschuss Prof. Dr. M. Buback, Technische und Makromolekulare Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Prof. Dr. P. Vana, MBA, Makromolekulare Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Mitglieder der Prüfungskommission Referent: Prof. Dr. M. Buback, Technische und Makromolekulare Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Korreferent: Prof. Dr. P. Vana, MBA, Makromolekulare Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Weitere Mitglieder der Prüfungskommission: Prof. Dr. G. Echold, Physikalische Chemie fester Körper, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Prof. Dr. B. Geil, Biophysikalische Chemie, Institut für Physikalische Chemie, Georg-August- Universität Göttingen Jun.-Prof. Dr. R. Mata, Computerchemie und Biochemie,Institut für Physikalische Chemie, Georg-August-Universität Göttingen Prof. Dr. A. Wodtke, Physikalische Chemie I / Humboldt-Professur, Institut für Physikalische Chemie, Georg-August-Universität Göttingen Tag der mündlichen Prüfung: -
Post-Polymerization Paper Technical
Post-Polymerization Paper Technical By Igor V. Khudyakov, V-curing technology is often Formal kinetics leads to the Ph.D., D.Sc. selected because of the high- following simple equation for post- speed nature of the process. polymerization: Although curing is initiated by UV U [M] [M] = o (3) irradiation, polymerization continues in t . (l + k [R ] t)kt /kp the dark following irradiation. For the t n o purpose of this paper, chemistry that Here a subscript “o” stands occurs after irradiation is defined as for the initial moment when post- post-polymerization. polymerization is initiated. [Rn ]o is The kinetics of free-radical UV the initial concentration of macro- curing of vinyl monomers in solution radicals at the moment when is well-known. The cessation of irradiation is terminated. For vinyl irradiation of the photoinitiator monomers in solution kt /kp>> 1, (PI) in the presence of a monomer and post-polymerization leads to a (M) quickly leads to termination of negligible additional consumption polymerization due to lack of new of M (formation of polymer). The radicals from the PI.1 Reactive macro- rate constants kp and kt (each has radicals, which exist in the solution dimension of M-1∙s-1) characterizes at the moment irradiation is stopped, the free-radical polymerization chain undergo primarily bimolecular reaction in solution. The rate constant termination: of an elementary bimolecular reaction kt in a diluted solution does not depend . → Rn + Rm macromolecule (1) upon time or concentration of reagents While “dying,” macro-radicals react but depends only upon temperature with the monomer: and pressure. -
Recent Advances in Cationic Photopolymerization
Journal of Photopolymer Science and Technology Volume 32, Number 2 (2019) 233 - 236 Ⓒ 2019SPST Recent Advances in Cationic Photopolymerization Marco Sangermano Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca degli Abruzzi 24, 10129, Torino, Italy [email protected] The paper reports important strategies to overcome limitation of cationic photopolymerization. First, it was possible to run emulsion cationic photopolymerization in water, taking the advantages of hydrophobic droplets of suitable dimension to avoid termination reaction, achieving capsules of about 200 nm. Subsequently a frontal polymerization reaction is used to promote the UV-induced crosslinking process of an epoxy composites via a radical induced cationic frontal polymerization. Keywords: Cationic photopolymerization, Emulsion polymerization, Frontal polymerization 1. Introduction the main limitation of UV-induced crosslinking Cationic photopolymerization is an interesting reactions is related to the hindering of UV-light UV-induced process since the mechanism is penetration towards thickness of the formulations, characterized by important advantages such as which limits this polymerization technique in the absence of oxygen inhibition, low shrinkage upon preparation of thick composite materials. This curing, and good versatility of the crosslinked limitation has been overcome by the introduction of materials [1]. While the main applications are in the a Radical Induced Cationic Frontal Polymerization field of coating and the electronic industry, we have (RICFP) process. The suggested mechanism put recently investigated the use of cationic UV-induced together the so-called Radical Induced Cationic polymerization for the synthesis of polymeric Polymerization (RICP) with Frontal Polymerization particles and for the fabrication of polymeric (FP). UV-cured bulk epoxy composites were composites. -
Fabricating Photopolymer Objects by Mold 3D Printing and UV Curing
Computational Design and Fabrication FabSquare: Fabricating Photopolymer Objects by Mold 3D Printing and UV Curing Vahid Babaei, Javier Ramos, Yongquan Lu, Guillermo Webster, and Wojciech Matusik ■ Massachusetts Institute of Technology apid prototyping tools provide practical of the mold content is carried out by ultraviolet methods for personal fabrication, al- (UV) energy. We replace the expensive and time- lowing designers and engineers to refine consuming mold-making stage in injection molding Rand iterate their ideas quickly. Because of their with 3D printing and substitute the high-pressure, low cost and versatility, 3D printers in particu- high-temperature process involving large and costly lar are becoming increasingly popular. Although hardware with simple injection and UV curing. 3D printers are incredibly powerful devices for Recently, 3D printing has been used as a tool to creating complex geometries, they are inherently fabricate molds for traditional thermoplastic injec- slow and only print materials tion molding. The molds are temporary and used that are within a small range to test mold geometries and for short production The FabSquare system of properties. This puts them in runs. Typically, the molds only last for several dozen fabricates objects by casting clear contrast with classic fabri- injections because the mold polymer degrades un- photopolymers inside a 3D cation processes such as injection der high pressure and heat. Moreover, such molds printed mold. The molds are molding, where speed and high still require the heavy machinery used for injection printed with UV-transparent throughput come at the expense molding. UV injection molding has also been used materials to allow for UV of cost and flexibility. -
Epoxy Resin-Photopolymer Composites for Volume Holography
Chem. Mater. 2000, 12, 1431-1438 1431 Epoxy Resin-Photopolymer Composites for Volume Holography Timothy J. Trentler, Joel E. Boyd, and Vicki L. Colvin* Department of Chemistry, Rice University, Houston, Texas 77005 Received December 28, 1999. Revised Manuscript Received February 23, 2000 Efficient materials for recording volume holograms are described that could potentially find application in archival data storage. These materials are prepared by mixing photopo- lymerizable vinyl monomers with a liquid epoxy resin and an amine hardener. A solid matrix is formed in situ as the epoxy cures at room temperature. The unreacted vinyl monomers are subsequently photopolymerized during hologram recording. A key feature of these materials is the separation of the epoxy and vinyl polymerizations. This separation allows for a large index contrast to be developed in holograms when components are optimized. The standard material described in this work consists of a low index matrix (n = 1.46), comprised of diethylenetriamine and 1,4-butanediol diglycidyl ether, and a high index photopolymer mixture (n = 1.60) of N-vinylcarbazole and N-vinyl-2-pyrrolidinone. This material is functional in thick formats (several millimeters), which enables narrow angular bandwidth and high diffraction efficiency. A dynamic range (M/#) up to 13 has been measured in these materials. Holographic performance is highly dependent on the amount of amine hardener used, as well as on photopolymer shrinkage. Introduction sponse to an interference pattern generated by incident laser beams. Because of photoreactions, the refractive Photopolymers have been extensively investigated as index of irradiated areas of a material differs from that holographic recording media for several decades1-3 for of dark areas. -
Kinetics of Free-Radical Nonbranched-Chain Addition of Hydrogen Atom to Oxygen Molecule
Silaev MM, J Mod Chem Sci 2018, 1: 003 HSOA Journal of Modern Chemical Sciences Review Article gen concentration has a maximum. From the energetic standpoint Hydrogen Oxidation: possible nonchain pathways of the free-radical oxidation of hydro- gen and the routes of ozone decay via the reaction with the hydroxyl Kinetics of Free-Radical free radical (including the addition yielding the hydrotetraoxyl free radical) in the Earth’s upper atmosphere were considered. Nonbranched-Chain Addition Keywords: Competition; Energy; Hydrogen; Low-reactive hydro- of Hydrogen Atom to Oxygen tetraoxyl free radical; Thermochemical data Molecule Introduction Michael M Silaev* The kinetics of inhibition for nonbranched-chain processes of Chemistry Faculty, Lomonosov Moscow State University, Moscow, Russia saturated free-radical addition to the C=C and C=O double bonds of alkene and formaldehyde molecules, respectively, by low-reac- tive free radicals that can experience delocalization of the unpaired p-electron was first considered in [1]. In these processes a low-reac- tive free radical is formed in the reaction competing with chain prop- agation reactions through a reactive free radical. In the present work the kinetics of inhibition by low-reactive hydrotetraoxyl free radical is considered for the nonbranched-chain process of the addition of a hydrogen atom to one of the two multiply bonded atoms of the oxy- gen molecule yielding a hydroperoxyl free radical. The hydroperoxyl free radical then abstracts the most labile atom from a molecule of the compound being oxidized or decomposes to turn into a molecule of an oxidation product. The only reaction that can compete with these Abstract two reactions at the chain evolution stage is the addition of the per- New reaction scheme is suggested for the initiated non- oxyl radical to the oxygen molecule (provided that the oxygen con- branched-chain addition of hydrogen atoms to the multiple bond of centration is sufficiently high). -
Rheological Study of the Solidification of Photopolymer and Dispersed Nanotube Systems
Rheological Study of the Solidification of Photopolymer and Dispersed Nanotube Systems Nono Darsono, Hiroshi Mizunuma, Hiromichi Obara Department of Mechanical Engineering, Tokyo Metropolitan University, 1 -1 Minamiohsawa Hachioji, Tokyo 192-0397, Japan *Corresponding author: [email protected] Fax: x81.42.6772701 Received: 17.5.2011, Final version: 11.8.2011 Abstract: We herein describe a set of rheological measurements that were carried out in order to characterize the solidi- fication of photopolymers. The solidification depends on the length of time of exposure to UV light, and the intensity of that light, which reduces with distance from the irradiative surface. Liquid prepolymer was solidi- fied inside the gap of a parallel disk rheometer by irradiation of the prepolymer with UV light through a fixed quartz disk. The rheological time-dependent changes were measured and analyzed for both unidirectional and oscillatory shear. The results were compared with those obtained by direct measurement in the absence of shear. When the thickness of the sample was less than 0.1 mm, the analysis for unidirectional shear flow yielded a rea- sonable agreement for both critical exposure and solidified depth. When the thickness was greater than 0.1 mm, the application of unidirectional shear delayed the start of the solidification but then caused it to occur more rapidly. This dependence of the solidification on the thickness of the sample was more significant for dispersed systems of nanotubes and for dynamic measurements made under oscillatory shear. The increase in viscosity due to photopolymerization was also estimated, and its effect was discussed. Zusammenfassung: Wir beschreiben eine Reihe von rheologischen Messungen, die durchgeführt wurden, um die Verfestigung von Photopolymeren zu charakterisieren. -
Physical and Chemical Properties Characterization of 3D-Printed Substrates Loaded with Copper-Nickel Nanowires
polymers Article Physical and Chemical Properties Characterization of 3D-Printed Substrates Loaded with Copper-Nickel Nanowires Ely Dannier V-Niño 1,2,* , Quentin Lonne 3, Andrés Díaz Lantada 4, Enrique Mejía-Ospino 5, Hugo Armando Estupiñán Durán 6, Rafael Cabanzo Hernández 5, Gustavo Ramírez-Caballero 5 and José Luis Endrino 1,7,* 1 BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain 2 Materials Science and Technology Research Group, Foundation of Researchers in Science and Technology of Materials, 680003 Bucaramanga, Colombia 3 School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK; [email protected] 4 Departamento de Ingeniería Mecánica, Universidad Politécnica de Madrid, 28006 Madrid, Spain; [email protected] 5 Escuelas de Química, Física e Ingeniería Química, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia; [email protected] (E.M.-O.); [email protected] (R.C.H.); [email protected] (G.R.-C.) 6 Departamento de Materiales y Minerales, Universidad Nacional de Colombia, 050034 Medellín, Colombia; [email protected] 7 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain * Correspondence: [email protected] (E.D.V.-N.); [email protected] (J.L.E.); Tel.: +34-94-465-1115 (E.D.V.-N. & J.L.E.) Received: 9 July 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: This study deals with the laser stereolithography manufacturing feasibility of copper-nickel nanowire-loaded photosensitive resins. The addition of nanowires resulted in a novel resin suitable for additive manufacturing technologies based on layer-by-layer photopolymerization. The pure and nanowire-loaded resin samples were 3D printed in a similar way.