Amdahl's Law in the Multicore

Total Page:16

File Type:pdf, Size:1020Kb

Amdahl's Law in the Multicore COVER FEATURE Amdahl’s Law in the Multicore Era Mark D. Hill, University of Wisconsin-Madison Michael R. Marty, Google Augmenting Amdahl’s law with a corollary for multicore hardware makes it relevant to future generations of chips with multiple processor cores. Obtaining optimal multicore performance will require further research in both extracting more parallelism and making sequential cores faster. s we enter the multicore era, we’re at an A COROLLARY FOR MULTIcoRE CHIP COST inflection point in the computing landscape. To apply Amdahl’s law to a multicore chip, we need Computing vendors have announced chips a cost model for the number and performance of cores with multiple processor cores. Moreover, that the chip can support. vendor road maps promise to repeatedly We first assume that a multicore chip of given size and Adouble the number of cores per chip. These future chips technology generation can contain at most n base core are variously called chip multiprocessors, multicore equivalents, where a single BCE implements the baseline chips, and many-core chips. core. This limit comes from the resources a chip designer Designers must subdue more degrees of freedom for is willing to devote to processor cores (with L1 caches). multicore chips than for single-core designs. They must It doesn’t include chip resources expended on shared address such questions as: How many cores? Should caches, interconnection networks, memory controllers, cores use simple pipelines or powerful multi-issue pipeline and so on. Rather, we simplistically assume that these designs? Should cores use the same or different micro- nonprocessor resources are roughly constant in the mul- architectures? In addition, designers must concurrently ticore variations we consider. manage power from both dynamic and static sources. We are agnostic on what limits a chip to n BCEs. It Although answering these questions for today’s multi- might be power, area, or some combination of power, core chip with two to eight cores is challenging now, it will area, and other factors. become much more challenging in the future. Sources as Second, we assume that (micro-) architects have varied as Intel and the University of California, Berkeley, techniques for using the resources of multiple BCEs predict a hundred,1 if not a thousand,2 cores. to create a core with greater sequential performance. As the “Amdahl’s Law” sidebar describes, this model Let the performance of a single-BCE core be 1. We has important consequences for the multicore era. To assume that architects can expend the resources of r complement Amdahl’s software model, we offer a corol- BCEs to create a powerful core with sequential per- lary of a simple model of multicore hardware resources. formance perf(r). Our results should encourage multicore designers to Architects should always increase core resources when view the entire chip’s performance rather than focusing perf(r) > r because doing so speeds up both sequential and on core efficiencies. We also discuss several important parallel execution. When perf(r) < r, however, the trade- limitations of our models to stimulate discussion and off begins. Increasing core performance aids sequential future work. execution, but hurts parallel execution. 0018-9162/08/$25.00 © 2008 IEEE Published by the IEEE Computer Society July 2008 33 Amdahl’s Law Everyone knows Amdahl’s law, but quickly for- Finally, Amdahl argued that typical values of 1 – f gets it. —Thomas Puzak, IBM, 2007 were large enough to favor single processors. Despite their simplicity, Amdahl’s arguments Most computer scientists learn Amdahl’s law in held, and mainframes with one or a few proces- school: Let speedup be the original execution time sors dominated the computing landscape. They 1 divided by an enhanced execution time. The modern also largely held in the minicomputer and personal version of Amdahl’s law states that if you enhance a computer eras that followed. As recent technology fraction f of a computation by a speedup S, the overall trends usher us into the multicore era, Amdahl’s law speedup is: is still relevant. 1 Amdahl’s equations assume, however, that the Speedup f, S enhanced () = f computation problem size doesn’t change when ()1− f + S running on enhanced machines. That is, the frac- Amdahl’s law applies broadly and has important tion of a program that is parallelizable remains corollaries such as: fixed. John Gustafson argued that Amdahl’s law doesn’t do justice to massively parallel machines • Attack the common case: When f is small, optimi- because they allow computations previously intrac- 2 zations will have little effect. table in the given time constraints. A machine • The aspects you ignore also limit speedup: with greater parallel computation ability lets com- As S approaches infinity, speedup is bound by putations operate on larger data sets in the same 1/(1 – f). amount of time. When Gustafson’s arguments apply, parallelism will be ample. In our view, how- Four decades ago, Gene Amdahl defined his law for ever, robust general-purpose multicore designs the special case of using n processors (cores) in parallel should also operate well under Amdahl’s more when he argued for the single-processor approach’s pessimistic assumptions. validity for achieving large-scale computing capa- 1 bilities. He used a limit argument to assume that a References fraction f of a program’s execution time was infinitely 1. G.M. Amdahl, “Validity of the Single-Processor Approach parallelizable with no scheduling overhead, while to Achieving Large-Scale Computing Capabilities,” Proc. the remaining fraction, 1 – f, was totally sequential. Am. Federation of Information Processing Societies Conf., AFIPS Without presenting an equation, he noted that the Press, 1967, pp. 483-485. speedup on n processors is governed by: 2. J.L. Gustafson, “Reevaluating Amdahl’s Law,” Comm. ACM, May 1988, pp. 532-533. 1 Speedup f, n parallel () = f ()1− f + n Our equations allow perf(r) to be an arbitrary func- 1a and 1b show two hypothetical symmetric multicore tion, but all our graphs follow Shekhar Borkar3 and chips for n = 16. assume perf(r) = r . In other words, we assume efforts Under Amdahl’s law, the speedup of a symmetric that devote r BCE resources will result in sequential multicore chip (relative to using one single-BCE core) performance r . Thus, architectures can double per- depends on the software fraction that is parallelizable formance at a cost of four BCEs, triple it for nine BCEs, (f), the total chip resources in BCEs (n), and the BCE and so on. We tried other similar functions (for example, resources (r) devoted to increase each core’s perfor- 1. 5 r ), but found no important changes to our results. mance. The chip uses one core to execute sequentially at performance perf(r). It uses all n/r cores to exe- SYmmETRIC MULTIcoRE CHIPS cute in parallel at performance perf(r) × n/r. Overall, A symmetric multicore chip requires that all its cores we get: have the same cost. A symmetric multicore chip with a resource budget of n = 16 BCEs, for example, can sup- 1 Speedupsymmetric ()f,, n r = port 16 cores of one BCE each, four cores of four BCEs 1−f + f⋅ r perf ()r pperf ()r⋅ n each, or, in general, n/r cores of r BCEs each (our equa- tions and graphs use a continuous approximation instead Consider Figure 2a. It assumes a symmetric multi- of rounding down to an integer number of cores). Figures core chip of n = 16 BCEs and perf(r) = r . The x-axis 34 Computer (a) (b) (c) Figure 1. Varieties of multicore chips. (a) Symmetric multicore with 16 one-base core equivalent cores, (b) symmetric multicore with four four-BCE cores, and (c) asymmetric multicore with one four-BCE core and 12 one-BCE cores. These figures omit important structures such as memory interfaces, shared caches, and interconnects, and assume that area, not power, is a chip’s limiting resource. 16 250 Symmetric, n = 16 Symmetric, n = 256 14 f = 0.999 200 f = 0.99 12 f = 0.975 f = 0.9 150 10 f = 0.5 symmetric symmetric 8 100 6 Speedup Speedup 50 4 2 0 2 4 8 16 0 2 4 8 16 32 64 128 256 (a) r BCEs (b) r BCEs 16 250 Asymmetric, n = 16 Asymmetric, n = 256 14 200 12 10 150 symmetric symmetric 8 100 6 Speedup Speedup 50 4 2 0 2 4 8 16 0 2 4 8 16 32 64 128 256 (c) r BCEs (d) r BCEs 16 250 Dynamic, n = 16 Dynamic, n = 256 14 200 12 10 150 dynamic dynamic 8 100 Speedup 6 Speedup 4 50 2 (e) 0 2 4 8 16 0 2 4 8 16 32 64 128 256 r BCEs (f) r BCEs Figure 2. Speedup of (a, b) symmetric, (c, d) asymmetric, and (e, f) dynamic multicore chips with n = 16 BCEs (a, c, and e) or n = 256 BCEs (b, d, and f). July 2008 35 gives resources used to increase each core’s perfor- with more resources to execute sequentially at per- mance: a value 1 says the chip has 16 base cores, while formance perf(r). In the parallel fraction, however, a value of r = 16 uses all resources for a single core. it gets performance perf(r) from the large core and Lines assume different values for the parallel fraction performance 1 from each of the n – r base cores. (f = 0.5, 0.9, …, 0.999). The y-axis gives the symmet- Overall, we get: ric multicore chip’s speedup relative to its running on 1 one single-BCE base core.
Recommended publications
  • Balanced Multithreading: Increasing Throughput Via a Low Cost Multithreading Hierarchy
    Balanced Multithreading: Increasing Throughput via a Low Cost Multithreading Hierarchy Eric Tune Rakesh Kumar Dean M. Tullsen Brad Calder Computer Science and Engineering Department University of California at San Diego {etune,rakumar,tullsen,calder}@cs.ucsd.edu Abstract ibility of SMT comes at a cost. The register file and rename tables must be enlarged to accommodate the architectural reg- A simultaneous multithreading (SMT) processor can issue isters of the additional threads. This in turn can increase the instructions from several threads every cycle, allowing it to clock cycle time and/or the depth of the pipeline. effectively hide various instruction latencies; this effect in- Coarse-grained multithreading (CGMT) [1, 21, 26] is a creases with the number of simultaneous contexts supported. more restrictive model where the processor can only execute However, each added context on an SMT processor incurs a instructions from one thread at a time, but where it can switch cost in complexity, which may lead to an increase in pipeline to a new thread after a short delay. This makes CGMT suited length or a decrease in the maximum clock rate. This pa- for hiding longer delays. Soon, general-purpose micropro- per presents new designs for multithreaded processors which cessors will be experiencing delays to main memory of 500 combine a conservative SMT implementation with a coarse- or more cycles. This means that a context switch in response grained multithreading capability. By presenting more virtual to a memory access can take tens of cycles and still provide contexts to the operating system and user than are supported a considerable performance benefit.
    [Show full text]
  • Amdahl's Law Threading, Openmp
    Computer Science 61C Spring 2018 Wawrzynek and Weaver Amdahl's Law Threading, OpenMP 1 Big Idea: Amdahl’s (Heartbreaking) Law Computer Science 61C Spring 2018 Wawrzynek and Weaver • Speedup due to enhancement E is Exec time w/o E Speedup w/ E = ---------------------- Exec time w/ E • Suppose that enhancement E accelerates a fraction F (F <1) of the task by a factor S (S>1) and the remainder of the task is unaffected Execution Time w/ E = Execution Time w/o E × [ (1-F) + F/S] Speedup w/ E = 1 / [ (1-F) + F/S ] 2 Big Idea: Amdahl’s Law Computer Science 61C Spring 2018 Wawrzynek and Weaver Speedup = 1 (1 - F) + F Non-speed-up part S Speed-up part Example: the execution time of half of the program can be accelerated by a factor of 2. What is the program speed-up overall? 1 1 = = 1.33 0.5 + 0.5 0.5 + 0.25 2 3 Example #1: Amdahl’s Law Speedup w/ E = 1 / [ (1-F) + F/S ] Computer Science 61C Spring 2018 Wawrzynek and Weaver • Consider an enhancement which runs 20 times faster but which is only usable 25% of the time Speedup w/ E = 1/(.75 + .25/20) = 1.31 • What if its usable only 15% of the time? Speedup w/ E = 1/(.85 + .15/20) = 1.17 • Amdahl’s Law tells us that to achieve linear speedup with 100 processors, none of the original computation can be scalar! • To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less Speedup w/ E = 1/(.001 + .999/100) = 90.99 4 Amdahl’s Law If the portion of Computer Science 61C Spring 2018 the program that Wawrzynek and Weaver can be parallelized is small, then the speedup is limited The non-parallel portion limits the performance 5 Strong and Weak Scaling Computer Science 61C Spring 2018 Wawrzynek and Weaver • To get good speedup on a parallel processor while keeping the problem size fixed is harder than getting good speedup by increasing the size of the problem.
    [Show full text]
  • Parallel Generation of Image Layers Constructed by Edge Detection
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 10 (2018) pp. 7323-7332 © Research India Publications. http://www.ripublication.com Speed Up Improvement of Parallel Image Layers Generation Constructed By Edge Detection Using Message Passing Interface Alaa Ismail Elnashar Faculty of Science, Computer Science Department, Minia University, Egypt. Associate professor, Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia. Abstract A. Elnashar [29] introduced two parallel techniques, NASHT1 and NASHT2 that apply edge detection to produce a set of Several image processing techniques require intensive layers for an input image. The proposed techniques generate computations that consume CPU time to achieve their results. an arbitrary number of image layers in a single parallel run Accelerating these techniques is a desired goal. Parallelization instead of generating a unique layer as in traditional case; this can be used to save the execution time of such techniques. In helps in selecting the layers with high quality edges among this paper, we propose a parallel technique that employs both the generated ones. Each presented parallel technique has two point to point and collective communication patterns to versions based on point to point communication "Send" and improve the speedup of two parallel edge detection techniques collective communication "Bcast" functions. The presented that generate multiple image layers using Message Passing techniques achieved notable relative speedup compared with Interface, MPI. In addition, the performance of the proposed that of sequential ones. technique is compared with that of the two concerned ones. In this paper, we introduce a speed up improvement for both Keywords: Image Processing, Image Segmentation, Parallel NASHT1 and NASHT2.
    [Show full text]
  • CS650 Computer Architecture Lecture 10 Introduction to Multiprocessors
    NJIT Computer Science Dept CS650 Computer Architecture CS650 Computer Architecture Lecture 10 Introduction to Multiprocessors and PC Clustering Andrew Sohn Computer Science Department New Jersey Institute of Technology Lecture 10: Intro to Multiprocessors/Clustering 1/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Key Issues Run PhotoShop on 1 PC or N PCs Programmability • How to program a bunch of PCs viewed as a single logical machine. Performance Scalability - Speedup • Run PhotoShop on 1 PC (forget the specs of this PC) • Run PhotoShop on N PCs • Will it run faster on N PCs? Speedup = ? Lecture 10: Intro to Multiprocessors/Clustering 2/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Types of Multiprocessors Key: Data and Instruction Single Instruction Single Data (SISD) • Intel processors, AMD processors Single Instruction Multiple Data (SIMD) • Array processor • Pentium MMX feature Multiple Instruction Single Data (MISD) • Systolic array • Special purpose machines Multiple Instruction Multiple Data (MIMD) • Typical multiprocessors (Sun, SGI, Cray,...) Single Program Multiple Data (SPMD) • Programming model Lecture 10: Intro to Multiprocessors/Clustering 3/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Shared-Memory Multiprocessor Processor Prcessor Prcessor Interconnection network Main Memory Storage I/O Lecture 10: Intro to Multiprocessors/Clustering 4/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Distributed-Memory Multiprocessor Processor Processor Processor IO/S MM IO/S MM IO/S MM Interconnection network IO/S MM IO/S MM IO/S MM Processor Processor Processor Lecture 10: Intro to Multiprocessors/Clustering 5/15 12/7/2003 A.
    [Show full text]
  • High-Performance Message Passing Over Generic Ethernet Hardware with Open-MX Brice Goglin
    High-Performance Message Passing over generic Ethernet Hardware with Open-MX Brice Goglin To cite this version: Brice Goglin. High-Performance Message Passing over generic Ethernet Hardware with Open-MX. Parallel Computing, Elsevier, 2011, 37 (2), pp.85-100. 10.1016/j.parco.2010.11.001. inria-00533058 HAL Id: inria-00533058 https://hal.inria.fr/inria-00533058 Submitted on 5 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. High-Performance Message Passing over generic Ethernet Hardware with Open-MX Brice Goglin INRIA Bordeaux - Sud-Ouest – LaBRI 351 cours de la Lib´eration – F-33405 Talence – France Abstract In the last decade, cluster computing has become the most popular high-performance computing architec- ture. Although numerous technological innovations have been proposed to improve the interconnection of nodes, many clusters still rely on commodity Ethernet hardware to implement message passing within parallel applications. We present Open-MX, an open-source message passing stack over generic Ethernet. It offers the same abilities as the specialized Myrinet Express stack, without requiring dedicated support from the networking hardware. Open-MX works transparently in the most popular MPI implementations through its MX interface compatibility.
    [Show full text]
  • An Investigation of Symmetric Multi-Threading Parallelism for Scientific Applications
    An Investigation of Symmetric Multi-Threading Parallelism for Scientific Applications Installation and Performance Evaluation of ASCI sPPM Frank Castaneda [email protected] Nikola Vouk [email protected] North Carolina State University CSC 591c Spring 2003 May 2, 2003 Dr. Frank Mueller An Investigation of Symmetric Multi-Threading Parallelism for Scientific Applications Introduction Our project is to investigate the use of Symmetric Multi-Threading (SMT), or “Hyper-threading” in Intel parlance, applied to course-grain parallelism in large-scale distributed scientific applications. The processors provide the capability to run two streams of instruction simultaneously to fully utilize all available functional units in the CPU. We are investigating the speedup available when running two threads on a single processor that uses different functional units. The idea we propose is to utilize the hyper-thread for asynchronous communications activity to improve course-grain parallelism. The hypothesis is that there will be little contention for similar processor functional units when splitting the communications work from the computational work, thus allowing better parallelism and better exploiting the hyper-thread technology. We believe with minimal changes to the 2.5 Linux kernel we can achieve 25-50% speedup depending on the amount of communication by utilizing a hyper-thread aware scheduler and a custom communications API. Experiment Setup Software Setup Hardware Setup ?? Custom Linux Kernel 2.5.68 with ?? IBM xSeries 335 Single/Dual Processor Red Hat distribution 2.0 Ghz Xeon ?? Modification of Kernel Scheduler to run processes together ?? Custom Test Code In order to test our code we focus on the following scenarios: ?? A serial execution of communication / computation sections o Executing in serial is used to test the expected back-to-back run-time.
    [Show full text]
  • Computer Systems Architecture
    CS 352H: Computer Systems Architecture Topic 14: Multicores, Multiprocessors, and Clusters University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell Introduction Goal: connecting multiple computers to get higher performance Multiprocessors Scalability, availability, power efficiency Job-level (process-level) parallelism High throughput for independent jobs Parallel processing program Single program run on multiple processors Multicore microprocessors Chips with multiple processors (cores) University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2 Hardware and Software Hardware Serial: e.g., Pentium 4 Parallel: e.g., quad-core Xeon e5345 Software Sequential: e.g., matrix multiplication Concurrent: e.g., operating system Sequential/concurrent software can run on serial/parallel hardware Challenge: making effective use of parallel hardware University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3 What We’ve Already Covered §2.11: Parallelism and Instructions Synchronization §3.6: Parallelism and Computer Arithmetic Associativity §4.10: Parallelism and Advanced Instruction-Level Parallelism §5.8: Parallelism and Memory Hierarchies Cache Coherence §6.9: Parallelism and I/O: Redundant Arrays of Inexpensive Disks University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4 Parallel Programming Parallel software is the problem Need to get significant performance improvement Otherwise, just use a faster uniprocessor,
    [Show full text]
  • Computer Architecture: Parallel Processing Basics
    Computer Architecture: Parallel Processing Basics Onur Mutlu & Seth Copen Goldstein Carnegie Mellon University 9/9/13 Today What is Parallel Processing? Why? Kinds of Parallel Processing Multiprocessing and Multithreading Measuring success Speedup Amdhal’s Law Bottlenecks to parallelism 2 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi PDL'09 © 2007-9 Goldstein5 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi Parallel PDL'09 © 2007-9 Goldstein6 Concurrent Systems Physical Geographical Cloud Parallel Geophysical +++ ++ --- --- location Relative +++ +++ + - location Faults ++++ +++ ++++ -- Number of +++ +++ + - Processors + Network varies varies fixed fixed structure Network --- --- + + connectivity 7 Concurrent System Challenge: Programming The old joke: How long does it take to write a parallel program? One Graduate Student Year 8 Parallel Programming Again?? Increased demand (multicore) Increased scale (cloud) Improved compute/communicate Change in Application focus Irregular Recursive data structures PDL'09 © 2007-9 Goldstein9 Why Parallel Computers? Parallelism: Doing multiple things at a time Things: instructions,
    [Show full text]
  • Your Speedup Is a Megaflop!
    KOLUMNE 22 CHI MIA 47 (1993) Nr. II~ (lnnuor/Fcbru",) COMPUTATIONAL CHEMISTRY Column Editors: Prof. Dr. J. Weber, University of Geneva COLUMN Prof. Dr. H. Huber, University of Basel Dr. H. P. Weber, Sandoz AG, Basel Clzilllia 47 (/993) 22-23 ond instruction on the first number at the © Neue Sclz\i'eizerisclze Clzelllische Gesellschaft same time as the first worker performs the /SSN 0009-4293 first instruction on the second number, etc .. For the first 20 steps no product is leaving your assembly line (no result is Your Speedup is a Megaflop! leaving your vector-processor) but after that you get a product (result) in each step, 'I just bought a new personal compu- Another common measure is the mil- i.e. after a total of 120 steps your loop is ter, the LAST, with a speed of 50 MHz, lions of instructions performed per sec- processed! You gain a factor of about 17, whereas your old MADOS has only a 25 ond (Mips). Again this is not a very useful i.e. if your scalar processor performs I MHz frequency'. 'You are joking, the measure for number crunching as differ- Mflops, your vector-processor yields 17 LAST makes only 2 Mflops, whereas mine ent processors need a different number of Mflops, which would roughly con'espond makes 25 Mips.' 'Never mind, your old instructions to perform a useful calcula- to the performance advertized by the com- scalar processors will not do it for long, I tion, e.g. a multiplication. For example puter manufacturer. However, any scien- just read about a supercomputer of the workstations usually have risc-processors tific program has instructions other than Teraflop generation with a speedup of (reduced instruction set computer) which loops which do not vectorize and, there- over 100!' in average need slightly more instructions fore, the efficiency is in practice much to perform floating point operations than lower! Depending on your problem and on Not far from reality - perhaps virtual the 'classical' main-frame processors.
    [Show full text]
  • Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
    Computer Architecture A Quantitative Approach, Fifth Edition Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures Copyright © 2012, Elsevier Inc. All rights reserved. 1 Contents 1. SIMD architecture 2. Vector architectures optimizations: Multiple Lanes, Vector Length Registers, Vector Mask Registers, Memory Banks, Stride, Scatter-Gather, 3. Programming Vector Architectures 4. SIMD extensions for media apps 5. GPUs – Graphical Processing Units 6. Fermi architecture innovations 7. Examples of loop-level parallelism 8. Fallacies Copyright © 2012, Elsevier Inc. All rights reserved. 2 Classes of Computers Classes Flynn’s Taxonomy SISD - Single instruction stream, single data stream SIMD - Single instruction stream, multiple data streams New: SIMT – Single Instruction Multiple Threads (for GPUs) MISD - Multiple instruction streams, single data stream No commercial implementation MIMD - Multiple instruction streams, multiple data streams Tightly-coupled MIMD Loosely-coupled MIMD Copyright © 2012, Elsevier Inc. All rights reserved. 3 Introduction Advantages of SIMD architectures 1. Can exploit significant data-level parallelism for: 1. matrix-oriented scientific computing 2. media-oriented image and sound processors 2. More energy efficient than MIMD 1. Only needs to fetch one instruction per multiple data operations, rather than one instr. per data op. 2. Makes SIMD attractive for personal mobile devices 3. Allows programmers to continue thinking sequentially SIMD/MIMD comparison. Potential speedup for SIMD twice that from MIMID! x86 processors expect two additional cores per chip per year SIMD width to double every four years Copyright © 2012, Elsevier Inc. All rights reserved. 4 Introduction SIMD parallelism SIMD architectures A. Vector architectures B. SIMD extensions for mobile systems and multimedia applications C.
    [Show full text]
  • Vector Processors
    VECTOR PROCESSORS Computer Science Department CS 566 – Fall 2012 1 Eman Aldakheel Ganesh Chandrasekaran Prof. Ajay Kshemkalyani OUTLINE What is Vector Processors Vector Processing & Parallel Processing Basic Vector Architecture Vector Instruction Vector Performance Advantages Disadvantages Applications Conclusion 2 VECTOR PROCESSORS A processor can operate on an entire vector in one instruction Work done automatically in parallel (simultaneously) The operand to the instructions are complete vectors instead of one element Reduce the fetch and decode bandwidth Data parallelism Tasks usually consist of: Large active data sets Poor locality Long run times 3 VECTOR PROCESSORS (CONT’D) Each result independent of previous result Long pipeline Compiler ensures no dependencies High clock rate Vector instructions access memory with known pattern Reduces branches and branch problems in pipelines Single vector instruction implies lots of work Example: for(i=0; i<n; i++) c(i) = a(i) + b(i); 4 5 VECTOR PROCESSORS (CONT’D) vadd // C code b[15]+=a[15] for(i=0;i<16; i++) b[i]+=a[i] b[14]+=a[14] b[13]+=a[13] b[12]+=a[12] // Vectorized code b[11]+=a[11] set vl,16 b[10]+=a[10] vload vr0,b b[9]+=a[9] vload vr1,a b[8]+=a[8] vadd vr0,vr0,vr1 b[7]+=a[7] vstore vr0,b b[6]+=a[6] b[5]+=a[5] b[4]+=a[4] Each vector instruction b[3]+=a[3] holds many units of b[2]+=a[2] independent operations b[1]+=a[1] 6 b[0]+=a[0] 1 Vector Lane VECTOR PROCESSORS (CONT’D) vadd // C code b[15]+=a[15] 16 Vector Lanes for(i=0;i<16; i++) b[14]+=a[14] b[i]+=a[i]
    [Show full text]
  • SIMD the Good, the Bad and the Ugly
    SIMD The Good, the Bad and the Ugly Viktor Leis Outline 1. Why does SIMD exist? 2. How to use SIMD? 3. When does SIMD help? 1 Why Does SIMD Exist? Hardware Trends • for decades, single-threaded performance doubled every 18-22 months • during the last decade, single-threaded performance has been stagnating • clock rates stopped growing due to heat/end of Dennard’s scaling • number of transistors is still growing, used for: • large caches • many cores (thread parallelism) • SIMD (data parallelism) 2 Number of Cores AMD Rome 64 48 AMD Naples 32 cores Skylake SP Broadwell EX Broadwell EP Haswell EP 16 Ivy Bridge EX Ivy Bridge EP Nehalem (Westmere EX) Nehalem (Beckton) Sandy Bridge EP Core (Kentsfield) Core (Lynnfield) NetBurst (Foster) NetBurst (Paxville) 1 2000 2004 2008 2012 2016 2020 year 3 Skylake CPU 4 Skylake Core 5 x86 SIMD History • 1997: MMX 64-bit (Pentium 1) • 1999: SSE 128-bit (Pentium 3) • 2011: AVX 256-bit float (Sandy Bridge) • 2013: AVX2 256-bit int (Haswell) • 2017: AVX-512 512 bit (Skylake Server) • instructions usually introduced by Intel • AMD typically followed quickly (except for AVX-512) 6 Single Instruction Multiple Data (SIMD) • data parallelism exposed by the CPU’s instruction set • CPU register holds multiple fixed-size values (e.g., 4×32-bit) • instructions (e.g., addition) are performed on two such registers (e.g., executing 4 additions in one instruction) 42 1 7 + 31 6 2 = 73 7 9 7 Registers • SSE: 16×128 bit (XMM0...XMM15) • AVX: 16×256 bit (YMM0...YMM15) • AVX-512: 32×512 bit (ZMM0...ZMM31) • XMM0 is lower half
    [Show full text]