Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects

Total Page:16

File Type:pdf, Size:1020Kb

Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Journal of Immunology Research Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Guest Editors: Roberta Castriconi, Barbara Savoldo, Daniel Olive, and Fabio Pastorino Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Journal of Immunology Research Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Guest Editors: Roberta Castriconi, Barbara Savoldo, Daniel Olive, and Fabio Pastorino Copyright © 2016 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Immunology Research.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board B. D. Akanmori, Congo Eung-Jun Im, USA G. Opdenakker, Belgium Stuart Berzins, Australia Hidetoshi Inoko, Japan Luigina Romani, Italy Kurt Blaser, Switzerland Peirong Jiao, China Aurelia Rughetti, Italy Federico Bussolino, Italy Taro Kawai, Japan Takami Sato, USA N. G. Chakraborty, USA Hiroshi Kiyono, Japan Senthamil Selvan, USA Robert B. Clark, USA Shigeo Koido, Japan Naohiro Seo, Japan Mario Clerici, Italy Herbert K. Lyerly, USA Ethan M. Shevach, USA Nathalie Cools, Belgium Enrico Maggi, Italy George B. Stefano, USA Mark J. Dobrzanski, USA Mahboobeh Mahdavinia, USA T. J. Stewart, Australia Nejat K. Egilmez, USA Eiji Matsuura, Japan J. Tabarkiewicz, Poland Eyad Elkord, UK C. J. M. Melief, The Netherlands Ban-Hock Toh, Australia S. E. Finkelstein, USA Chikao Morimoto, Japan Joseph F. Urban, USA Luca Gattinoni, USA Hiroshi Nakajima, Japan Xiao-Feng Yang, USA David E. Gilham, UK Toshinori Nakayama, Japan Qiang Zhang, USA Douglas C. Hooper, USA Paola Nistico, Italy Contents Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects D. Olive, B. Savoldo, F. Pastorino, and R. Castriconi Volume 2016, Article ID 7853028, 2 pages NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy? Claudia Cantoni, Leticia Huergo-Zapico, Monica Parodi, Marco Pedrazzi, Maria Cristina Mingari, Alessandro Moretta, Bianca Sparatore, Segundo Gonzalez, Daniel Olive, Cristina Bottino, Roberta Castriconi, and Massimo Vitale Volume 2016, Article ID 4684268, 13 pages Involvement of HMGB1 in Resistance to Tumor Vessel-Targeted, Monoclonal Antibody-Based Immunotherapy Vito Pistoia and Annalisa Pezzolo Volume 2016, Article ID 3142365, 7 pages Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium EileenS.Kim,JenniferE.Kim,MiraA.Patel,AntonellaMangraviti,JacobRuzevick,andMichaelLim Volume 2016, Article ID 4683607, 14 pages Clinical Options in Relapsed or Refractory Hodgkin Lymphoma: An Updated Review Roberta Fedele, Massimo Martino, Anna Grazia Recchia, Giuseppe Irrera, Massimo Gentile, and Fortunato Morabito Volume 2015, Article ID 968212, 11 pages Serum CEACAM1 Elevation Correlates with Melanoma Progression and Failure to Respond to Adoptive Cell Transfer Immunotherapy R. Ortenberg, S. Sapoznik, D. Zippel, R. Shapira-Frommer, O. Itzhaki, A. Kubi, D. Zikich, M. J. Besser, J. Schachter, and G. Markel Volume 2015, Article ID 902137, 8 pages In Vitro and In Vivo Comparison of Lymphocytes Transduced with a Human CD16 or with a Chimeric Antigen Receptor Reveals Potential Off-Target Interactions due to the IgG2 CH2-CH3 CAR-Spacer Béatrice Clémenceau, Sandrine Valsesia-Wittmann, Anne-Catherine Jallas, Régine Vivien, Raphaël Rousseau, Aurélien Marabelle, Christophe Caux, and Henri Vié Volume 2015, Article ID 482089, 13 pages Regulation of Murine Ovarian Epithelial Carcinoma by Vaccination against the Cytoplasmic Domain of Anti-Müllerian Hormone Receptor II Cagri Sakalar, Suparna Mazumder, Justin M. Johnson, Cengiz Z. Altuntas, Ritika Jaini, Robert Aguilar, Sathyamangla V. Naga Prasad, Denise C. Connolly, and Vincent K. Tuohy Volume 2015, Article ID 630287, 13 pages Immune Checkpoint Modulation in Colorectal Cancer: What’s New and What to Expect Julie Jacobs, Evelien Smits, Filip Lardon, Patrick Pauwels, and Vanessa Deschoolmeester Volume 2015, Article ID 158038, 16 pages Gene Expression Profile of Dendritic Cell-Tumor Cell Hybrids Determined by Microarrays and Its Implications for Cancer Immunotherapy Jens Dannull, Chunrui Tan, Christine Farrell, Cynthia Wang, Scott Pruitt, Smita K. Nair, and Walter T. Lee Volume2015,ArticleID789136,10pages Cellular and Antibody Based Approaches for Pediatric Cancer Immunotherapy MichaelA.Huang,DeepaK.Krishnadas,andKennethG.Lucas Volume 2015, Article ID 675269, 7 pages Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines Cleo Goyvaerts and Karine Breckpot Volume 2015, Article ID 785634, 18 pages Hindawi Publishing Corporation Journal of Immunology Research Volume 2016, Article ID 7853028, 2 pages http://dx.doi.org/10.1155/2016/7853028 Editorial Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects D. Olive,1,2,3 B. Savoldo,4 F. Pastorino,5 and R. Castriconi6,7 1 Centre de Recherche en Cancerologie de Marseille, Inserm, 13009 Marseille, France 2Aix Marseille Universite,´ 13009 Marseille, France 3Institut Paoli-Calmettes, 13009 Marseille, France 4Lineberger Comprehensive Cancer Center, Department of Pediatrics/Hematology-Oncology, University of North Carolina, Chapel Hill, NC 27599, USA 5LaboratoriodiOncologia,IstitutoG.Gaslini,16147Genova,Italy 6Dipartimento di Medicina Sperimentale, Universita` degli Studi di Genova, 16132 Genova, Italy 7Centro di Eccellenza per le Ricerche Biomediche, Universita` degli Studi di Genova, 16132 Genova, Italy Correspondence should be addressed to R. Castriconi; [email protected] Received 3 May 2016; Accepted 4 May 2016 Copyright © 2016 D. Olive et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The limited substantial therapeutic progresses observed in of them describe new possible mechanisms promoting tumor thetreatmentofsolidtumorsrequireconcertedeffortsto resistance to effector cell- (like NK cells) mediated aggres- combine our thorough knowledge of the tumor biology with sion or to chemotherapy in the tumor microenvironment a broader comprehension of the main mechanisms regulating favoring tumor progression. Special interest is directed to antitumor immune responses. In this context, in the last the possible role for peritumoral NK cells in shaping tumor decade, in parallel to the changeless therapeutic quest for tar- epithelial mesenchymal transition (EMT) and aggressiveness. geting molecules responsible for tumor progression, we have C. Goyvaerts and K. Breckpot provide here a useful and witnessed a growing consensus on the potential strong effi- comprehensive summary of the current knowledge on the cacy of combined immunotherapeutic approaches. Recently, efficacy of vaccination strategies, which differ in the quality these strategies, which include cancer vaccine developments, of the dispensed antigens and adjuvants, in the modalities strenuously pursued for many years, have mainly focused of antigen delivery, and in the targeted dendritic cells (DC) on breaking critical inhibitory immune checkpoint pathways subtypes. J. Dannull and colleagues deepen the reasons (i.e., PD1/PD-Ls axes), which limit the tumor aggression for the low immunogenicity of immunotherapy strategies by different immune cells including natural killer (NK) based on the infusion of DC-tumor hybrids alone, without and T lymphocytes. The strengthening of such endogenous adjuvants, whereas another contribution by C. Sakalar and cytolytic effectors, complemented by favoring their migration coworkers shows the immunogenic potential of AMHR2 toward tumors, and/or the infusion of cells engineered with (anti-Mullerian¨ hormone receptor II) molecule in murine improved function (i.e., with chimeric antigen receptors) is models. The efficacy of different vaccination strategies has widely considered in additional therapeutic protocols aimed also been discussed by M. A. Huang and colleagues in the at obtaining a more durable tumor growth control. This goal context of pediatric cancer, especially in terms of antibody- may also relate to the type of the hematopoietic stem cell and cellular-based therapeutic approaches. These latest inter- transplantation (HSCT) utilized, if included in the treatment ventions include chimeric antigen receptor- (CAR-) T cell of the malignancy. based strategies, targeting different antigens in both solid The papers featured in this issue provide useful informa- tumorsandBcellleukemia.Alongthisline,B.Clemenceau´ tion for these rapidly moving above-mentioned fields. Some and colleagues show in vitro the efficacy of CAR-NK92 cells 2 Journal of Immunology Research targeting the HER-2 antigen in breast cancer, but discourag- −/− ing in vivo activity in a NOD/SCID/IL-2Rg mouse model, due to an off-target effect of the CH2-CH3 hIgG2 spacer of the CAR construct. By interacting with macrophages at the edge of the tumor, the presence of the spacer in the CAR blocked these engineered cells at the periphery of the engrafted tumors, emphasizing critical issues for therapeutic approaches based on engineered molecules and the need for recruitment of effector cells in the tumor mass to obtain clinical benefits. This last point has been also discussed
Recommended publications
  • Atypical Functions of Leukocyte Chemoattractant Receptors
    EDITORIAL published: 09 October 2020 doi: 10.3389/fimmu.2020.596902 Editorial: Atypical Functions of Leukocyte Chemoattractant Receptors José Luis Rodríguez-Fernández 1*, Mario Mellado 2*, Marcus Thelen 3* and Philip M. Murphy 4* 1 Department of Molecular Cell Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 2 Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 3 Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland, 4 Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States Keywords: chemotaxis, chemokine, atypical chemokine receptor, G protein-coupled receptor, signaling, arrestin, GPCR Edited and reviewed by: Silvano Sozzani, Sapienza University of Rome, Italy Editorial on the Research Topic *Correspondence: José Luis Rodríguez-Fernández Atypical Functions of Leukocyte Chemoattractant Receptors [email protected] Mario Mellado Chemoattraction is a process that involves directed cell movement toward extracellular chemical [email protected] stimuli. It is a fundamental feature of all biological systems that was discovered in the late Marcus Thelen nineteenth century, when the word “chemotaxis” was coined by the German biologist Wilhelm [email protected] Pfeffer. Metchnikoff’s 1882 description of macrophages
    [Show full text]
  • Stromal Cell–Derived Factor-1/CXCL12 Stimulates Chemorepulsion of NOD/Ltj T-Cell Adhesion to Islet Microvascular Endothelium Christopher D
    ORIGINAL ARTICLE Stromal Cell–Derived Factor-1/CXCL12 Stimulates Chemorepulsion of NOD/LtJ T-Cell Adhesion to Islet Microvascular Endothelium Christopher D. Sharp,1 Meng Huang,1 John Glawe,1 D. Ross Patrick,1 Sible Pardue,1 Shayne C. Barlow,2 and Christopher G. Kevil1 OBJECTIVE—Diabetogenic T-cell recruitment into pancreatic islets faciltates ␤-cell destruction during autoimmune diabetes, yet specific mechanisms governing this process are poorly un- iabetogenic T-cell infiltration into pancreatic derstood. The chemokine stromal cell–derived factor-1 (SDF-1) islets is a key pathophysiological feature of controls T-cell recruitment, and genetic polymorphisms of SDF-1 autoimmune diabetes. Recruitment of autoreac- are associated with early development of type 1 diabetes. tive T-cells into islets, known as insulitis, ini- D ␤ tiates the process of -cell damage, which may occur over RESEARCH DESIGN AND METHODS—Here, we examined a protracted period of time, eventually leading to frank the role of SDF-1 regulation of diabetogenic T-cell adhesion to ␤ islet microvascular endothelium. Islet microvascular endothelial destruction of -cells and loss of insulin production (1,2). cell monolayers were activated with tumor necrosis factor-␣ Cellular and molecular mechanisms necessary for recruit- (TNF-␣), subsequently coated with varying concentrations of ment and homing of diabetogenic T-cells have been pur- SDF-1 (1–100 ng/ml), and assayed for T-cell/endothelial cell posed, with antigen presentation and changes in adhesion interactions under physiological flow conditions. molecule expression playing important roles in this pro- cess (3–6). However, T-cell recruitment is regulated by RESULTS—TNF-␣ significantly increased NOD/LtJ T-cell adhe- other factors besides antigen presentation and adhesion sion, which was completely blocked by SDF-1 in a dose-depen- molecule expression.
    [Show full text]
  • Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
    cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
    [Show full text]
  • Immunopharmacology
    Institute of Pharmacology http://www.pki.unibe.ch/ PKI Immunopharmacology Prof. Dr. Stephan von Gunten MD PhD MME Lectures: Clinical Immunology Immunomodulation Endogenous or exogenous molecules that influence immune responses positively (immunostimulation) or negatively (immunoregulation) DC Based Vaccination Freund complete adjuvans (FCA) Freund incomplete adjuvans (FIA) (mycobacteria + mineral oils) (mineral oils, without mycobacteria) differential maturation alum (hydrated alumina) dendritic cell (DC) mycobacteria Toll-like Receptors alum, mineral NLR-Inflammasome oils in FCA/FIA Toll-Like Receptors PAMPs 2 major adapters: MyD88 and TRIF protein kinases transcription factor (NFkB, IRF-3/-7) [IRF: Interferon regulatory factor] gene transcription: inflammatory cytokines, IFNa/b, others BMSc Pharma Immuno Manicassamy S & Pulendran B, Seminars in Immunology 2009 (modified) TLR Agonists and Cancer Immunotherapy: BCG-CWS BCG: Bacillus Calmette-Guérin, attenuated form of Mycobacterium bovis CWS (cell-wall skeleton ): major adjuvant–active part of mycobacterial cells; contains muramyldipeptide (MDP) -> activation of TLR-2 and -4 and NOD2 BCG-CWS TLR-2 MyD88-pathway mDC cytokines CTL tumour cell killing Carbohydrate-based vaccines in development Infectious disease Infectious Cancer Astronomo RD & Burton DR Nat Rev Drug Discov 2016 (modified) Antibody repertoire: glycan immunogenicity linked to structure Schneider et al. Sci Transl Med 2015 Cancer Immunotherapy Galluzi L et al. Oncotarget 2014 Siglec expression on immune cells Jandus C et al. Biochem Pharmacol 2011 Illustration by Aldona von Gunten The sialoglycan shield Jandus C & Boligan KF et al. J Clin Invest. 2014 Siglecs on CD8 T cells? May 2019 Cover Story American Association of Cancer Research (AACR) Immunomodulation Endogenous or exogenous molecules that influence immune responses positively (immunostimulation) or negatively (immunoregulation) Antiinflammatory vs.
    [Show full text]
  • The Immunophilins, Fk506 Binding Protein and Cyclophilin, Are Discretely Localized in the Brain: Relationship to Calcineurin
    NeuroscienceVol. 62,NO. 2, pp. 569-580,1994 Elsevier Sctence Ltd Copyright 0 1994 IBRO Pergamon 0306-4522(94)E0182-4 Printed in Great Britain. All rights reserved 0306-4522194 $7.00 + 0.00 THE IMMUNOPHILINS, FK506 BINDING PROTEIN AND CYCLOPHILIN, ARE DISCRETELY LOCALIZED IN THE BRAIN: RELATIONSHIP TO CALCINEURIN T. M. DAWSON,*t J. P. STEINER,* W. E. LYONS,*11 M. FOTUHI,* M. BLUE? and S. H. SNYDER*f§l Departments of *Neuroscience, tNeurology, $Pharmacology and Molecular Sciences, and §Psychiatry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A. (IDivision of Toxicological Science, Johns Hopkins University School of Hygiene and Public Health Abstract-The immunosuppressant drugs cyclosporin A and FK506 bind to small, predominantly soluble proteins cyclophilin and FK506 binding protein, respectively, to mediate their pharmacological actions. The immunosuppressant actions of these drugs occur through binding of cyclophilin-cyclosporinA and FK506 binding protein-FK506 complexes to the calcium-calmodulin-dependent protein phosphatase, calcineurin, inhibiting phosphatase activity, Utilizing immunohistcchemistry, in situ hybridization and autoradiography, we have localized protein and messenger RNA for FKS06 binding protein, cyclophilin and calcineurin. All three proteins and/or messages exhibit a heterogenous distribution through the brain and spinal cord, with the majority of the localizations being neuronal. We observe a striking co-localiz- ation of FK506 binding protein and calcineurin in most
    [Show full text]
  • TLR-Mediated Activation Pathways Calcineurin Negatively Regulates
    Calcineurin Negatively Regulates TLR-Mediated Activation Pathways Young Jun Kang, Brenda Kusler, Motoyuki Otsuka, Michael Hughes, Nobutaka Suzuki, Shinobu Suzuki, Wen-Chen Yeh, This information is current as Shizuo Akira, Jiahuai Han and Patricia P. Jones of September 26, 2021. J Immunol 2007; 179:4598-4607; ; doi: 10.4049/jimmunol.179.7.4598 http://www.jimmunol.org/content/179/7/4598 Downloaded from References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/179/7/4598.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Calcineurin Negatively Regulates TLR-Mediated Activation Pathways1 Young Jun Kang,2,3* Brenda Kusler,* Motoyuki Otsuka,† Michael Hughes,* Nobutaka Suzuki,‡ Shinobu Suzuki,‡ Wen-Chen Yeh,‡ Shizuo Akira,§ Jiahuai Han,† and Patricia P.
    [Show full text]
  • How HIV-1 Gag Manipulates Its Host Cell Proteins: a Focus on Interactors of the Nucleocapsid Domain
    viruses Review How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain 1 2, 2, 2 1 Jéromine Klingler , Halina Anton y, Eléonore Réal y, Manon Zeiger , Christiane Moog , Yves Mély 2 and Emmanuel Boutant 2,* 1 INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France; [email protected] (J.K.); [email protected] (C.M.) 2 UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, Faculté de Pharmacie, 67400 Illkirch, France; [email protected] (H.A.); [email protected] (E.R.); [email protected] (M.Z.); [email protected] (Y.M.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 13 July 2020; Accepted: 10 August 2020; Published: 13 August 2020 Abstract: The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins.
    [Show full text]
  • B-Cell Activation by Crosslinking of Surface Igm Or Ligation of CD40 Involves Alternative Signal Pathways and Results in Different B-Cell Phenotypes HENRY H
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 3348-3352, April 1995 Immunology B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes HENRY H. WORTIS*t, MARK TEUTSCH*, MINDY HIGER*, JENNY ZHENG*, AND DAVID C. PARKERt§ *Department of Pathology, Tufts University School of Medicine, and Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111; and tDepartment of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655 Communicated by Salome G. Waelsch, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY December 7, 1994 ABSTRACT Treatment of small resting B cells with sol- direct contact with an activated T-helper cell such that the uble F(ab')2 fragments of anti-IgM, an analogue of T-inde- surface molecule gp39 [CD40 ligand (CD40L)] of the T cell pendent type 2 antigens, induced activation characterized by ligates the CD40 of the B cell (10). proliferation and the expression of surface CD5. In contrast, Our strategy to determine if minimal TD and TI-2 signals B cells induced to proliferate in response to thymus-dependent were sufficient to induce phenotypic differences in B cells was inductive signals provided by either fixed activated T-helper 2 to use an antigen that could be modified so as to initiate either cells or soluble CD40 ligand-CD8 (CD40L) recombinant pro- a TD or a TI-2 response. To produce a TD response we used tein displayed elevated levels of CD23 (FcJII receptor) and no monovalent Fab of rabbit anti-IgM and provided help in the surface CD5.
    [Show full text]
  • Toll-Like Receptor–Mediated Induction of Type I Interferon in Plasmacytoid Dendritic Cells Requires the Rapamycin-Sensitive PI(3)K-Mtor-P70s6k Pathway
    ARTICLES Toll-like receptor–mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway Weiping Cao1, Santhakumar Manicassamy1, Hua Tang1, Sudhir Pai Kasturi1, Ali Pirani2, Niren Murthy3 & Bali Pulendran1,4 Robust production of type I interferon (IFN-a/b) in plasmacytoid dendritic cells (pDCs) is crucial for antiviral immunity. Here we show involvement of the mammalian target of rapamycin (mTOR) pathway in regulating interferon production by pDCs. Inhibition of mTOR or its ‘downstream’ mediators, the p70 ribosomal S6 protein kinases p70S6K1 and p70S6K2, during pDC activation http://www.nature.com/natureimmunology by Toll-like receptor 9 (TLR9) blocked the interaction of TLR9 with the adaptor MyD88 and subsequent activation of the interferon-regulatory factor IRF7, which resulted in impaired IFN-a/b production. Microarray analysis confirmed that inhibition of mTOR by the immunosuppressive drug rapamycin suppressed antiviral and anti-inflammatory gene expression. Consistent with this, targeting rapamycin-encapsulated microparticles to antigen-presenting cells in vivo resulted in less IFN-a/b production in response to CpG DNA or the yellow fever vaccine virus strain 17D. Thus, mTOR signaling is crucial in TLR-mediated IFN-a/b responses by pDCs. Plasmacytoid dendritic cells (pDCs) are specialized immune cells able or p70S6K by various approaches resulted in much less TLR-mediated to rapidly produce large amounts of type I interferon for antiviral production of interferon-a (IFN-a) by pDCs. The mechanism of this innate immunity1–3. Induction of the antiviral innate immune inhibition seemed to involve disruption of the TLR9-MyD88 complex Nature Publishing Group Group Nature Publishing 8 response depends on recognition of viral components by Toll-like and subsequent impairment of phosphorylation and nuclear translo- receptors (TLRs)4.
    [Show full text]
  • A Haptotaxis Assay for Neutrophils Using Optical Patterning and a High-Content Approach Received: 5 September 2016 Joannie Roy 1,2, Javier Mazzaferri 1, János G
    www.nature.com/scientificreports OPEN A Haptotaxis Assay for Neutrophils using Optical Patterning and a High-content Approach Received: 5 September 2016 Joannie Roy 1,2, Javier Mazzaferri 1, János G. Filep1,3 & Santiago Costantino1,2,4 Accepted: 21 April 2017 Neutrophil recruitment guided by chemotactic cues is a central event in host defense against infection Published: xx xx xxxx and tissue injury. While the mechanisms underlying neutrophil chemotaxis have been extensively studied, these are just recently being addressed by using high-content approaches or surface-bound chemotactic gradients (haptotaxis) in vitro. Here, we report a haptotaxis assay, based on the classic under-agarose assay, which combines an optical patterning technique to generate surface-bound formyl peptide gradients as well as an automated imaging and analysis of a large number of migration trajectories. We show that human neutrophils migrate on covalently-bound formyl-peptide gradients, which influence the speed and frequency of neutrophil penetration under the agarose. Analysis revealed that neutrophils migrating on surface-bound patterns accumulate in the region of the highest peptide concentration, thereby mimicking in vivo events. We propose the use of a chemotactic precision index, gyration tensors and neutrophil penetration rate for characterizing haptotaxis. This high-content assay provides a simple approach that can be applied for studying molecular mechanisms underlying haptotaxis on user-defined gradient shape. Neutrophils are rapidly recruited into infected or injured tissues where they play a pivotal role in host defense against invading pathogens and in wound healing1. Neutrophil trafficking into inflamed tissues is governed by chemotactic molecules secreted by invading bacteria and tissue-resident sentinel cells2 and coordinated expres- sion of adhesion molecules on neutrophils and endothelial cells3.
    [Show full text]
  • Two Distinct Signal Transmission Pathways in T Lymphocytes
    Proc. Natl. Acad. Sci. USA Vol. 87, pp. 9231-9235, December 1990 Immunology Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin (cyclosporin A/FK506 binding protein/rotamase) BARBARA E. BIERER*tf§, PETRI S. MATTILA¶, ROBERT F. STANDAERTII, LEONARD A. HERZENBERG$, STEVEN J. BURAKOFF*tt, GERALD CRABTREE¶, AND STUART L. SCHREIBERII *Division of Pediatric Oncology, Dana-Farber Cancer Institute; tHematology Division, Department of Medicine, Brigham & Women's Hospital; Departments of tMedicine and "tPediatrics, Harvard Medical School, Boston, MA 02115; TBeckman Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305; and I'Department of Chemistry, Harvard University, Cambridge, MA 02138 Communicated by Samuel J. Danishefsky, August 13, 1990 (received for review July 11, 1990) ABSTRACT Proliferation and immunologic function of T actions of these drugs. Our results suggest that a common lymphocytes are initiated by signals from the antigen receptor drug receptor binding site is involved in at least two distinct that are inhibited by the immunosuppressant FK506 but not by signaling pathways in the T-cell activation cascade. Both its structural analog, rapamycin. On the other hand, interleu- rapamycin (Kd = 0.2 nM) and FK506 (Kd = 0.4 nM) are kin 2 (IL-2)-induced signals are blocked by rapamycin but not shown to bind with high affinity to FKBP. Thus, FKBP is by FK506. Remarkably, these two drugs inhibit each other's possibly involved in one or both of the aforementioned actions, raising the possibility that both act by means of a pathways. In addition, both rapamycin (K, = 0.2 nM) and common immunophilin (immunosuppressant binding protein).
    [Show full text]
  • FKBP Family Proteins: Immunophilins with Versatile Biological Functions
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. FKBP family proteins : immunophilins with versatile biological functions Kang, Cong Bao; Ye, Hong; Dhe‑Paganon, Sirano; Yoon, Ho Sup 2008 Kang, C. B., Ye, H., Dhe‑Paganon, S., & Yoon, H. S. (2008). FKBP family proteins : immunophilins with versatile biological functions. Neurosignals, 16(4), 318–325. https://hdl.handle.net/10356/95238 https://doi.org/10.1159/000123041 © 2008 S. Karger AG, Basel. This is the author created version of a work that has been peer reviewed and accepted for publication by Neurosignals, S. Karger AG, Basel. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1159/000123041. Downloaded on 28 Sep 2021 01:49:48 SGT FKBP Family Proteins: Immunophilins with Versatile Biological Functions Cong Bao Kang a, Hong Ye a, Sirano Dhe-Paganon b, Ho Sup Yoon a,* a School of Biological Science, Nanyang Technological University, Singapore , Singapore; b Structural Genomics Consortium and Physiology, Banting Institute, University of Toronto, Toronto, Ont. , Canada * Tel. +65 6316 2846, Fax +65 6791 3856, E-Mail [email protected] Key Words Immunophilin • FK506-binding protein • Peptidylprolyl cis/trans isomerase • Immunophilin ligand • Neuroprotection • FK506 • Rapamycin Abstract Immunophilins consist of a family of highly conserved proteins binding with immunosuppressive drugs such as FK506, rapamycin and cyclosporin A. FK506-binding protein (FKBP) is one of two major immunophilins and most of FKBP family members bind FK506 and show peptidylprolyl cis/trans isomerase (PPIase) activity.
    [Show full text]