Inhibits Leukocyte Migration and Mitigates Inflammation

Total Page:16

File Type:pdf, Size:1020Kb

Inhibits Leukocyte Migration and Mitigates Inflammation Repulsive guidance molecule-A (RGM-A) inhibits leukocyte migration and mitigates inflammation Valbona Mirakaja,b, Sebastian Browna, Stefanie Lauchera, Carolin Steinlc, Gerd Kleinc, David Köhlera,b, Thomas Skutellad, Christian Meisele, Benedikt Brommerf, Peter Rosenbergera,b,1,2, and Jan M. Schwabf,1,2 aDepartment of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, 72076 Tübingen, Germany; bClinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, Frankfurt University Hospital, Frankfurt, Germany; cSection for Transplantation Immunology and Immunohematology, Center for Medical Research, 72072 Tübingen, Germany; dInstitute for Anatomy and Cell Biology, School of Medicine, University of Heidelberg, D-69120 Heidelberg, Germany; eDepartment of Medical Immunology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; and fDepartment of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité–Universitätsmedizin Berlin, Humboldt University, 10117 Berlin, Germany Edited by Dennis A. Carson, University of California San Diego, La Jolla, CA, and approved February 23, 2011 (received for review October 17, 2010) Directed cell migration is a prerequisite not only for the develop- A is thought to be shed from the cell membrane by cleavage at ment of the central nervous system, but also for topically restricted, amino acid 412 or instability cleavage at the putative autopro- appropriate immune responses. This is crucial for host defense and teolytic cleavage site (amino acid 168), which is sensitive to pH immune surveillance. Attracting environmental cues guiding leu- drop-induced cleavage (14–17). During neuronal development, kocyte cell traffic are likely to be complemented by repulsive cues, RGM-A is a chemorepulsive environmental cue that instructs nav- which actively abolish cell migration. One such a paradigm exists in igating outgrowing axons (15–17) and also acts on neuronal mi- the developing nervous system, where neuronal migration and gration and patterning, as demonstrated by neural tube closure fi axonal path nding is balanced by chemoattractive and chemo- defects in RGM-A knockout mice (17). In addition, RGM-A repulsive cues, such as the neuronal repulsive guidance molecule-A fl regulates neuronal survival and differentiation by binding to its (RGM-A). As expressed at the in ammatory site, the role of RGM-A dependence receptor neogenin (18–20). After development of within the immune response remains unclear. Here we report that i the CNS is complete, RGM-A is present in the myelin sheath RGM-A ( ) is expressed by epithelium and leukocytes (granulocytes, fi ii (21, 22). RGM-A reexpression is con ned to the parenchymal monocytes, and T/B lymphocytes); ( ) inhibits leukocyte migration fi fl IMMUNOLOGY by contact repulsion and chemorepulsion, depending on dosage, lesion environment, speci cally in areas of in ammation after through its receptor neogenin; and (iii) suppresses the inflam- rodent or human CNS injury (21, 22). Because axonal outgrowth fl matory response in a model of zymosan-A–induced peritonitis. and the transmigration of leukocytes into in amed tissue share Systemic application of RGM-A attenuates the humoral proinflam- the conserved biological mechanisms of cytoskeleton remodeling matory response (TNF-α, IL-6, and macrophage inflammatory (9), we hypothesized that RGM-A also repulses leukocyte mi- protein 1α), infiltration of inflammatory cell traffic, and edema gration in response to chemotactic factors. formation. In contrast, the demonstrated anti-inflammatory effect Our results demonstrate that besides being expressed in the of RGM-A is absent in mice homozygous for a gene trap mutation in developing CNS and in lesions in the adult CNS, RGM-A is the neo1 locus (encoding neogenin). Thus, our results suggest that strongly expressed by epithelium, leukocytes [ie, polymorpho- RGM-A is a unique endogenous inhibitor of leukocyte chemotaxis nuclear leukocytes (PMNs), monocytes, and T/B lymphocytes], and that limits inflammatory leukocyte traffic and creates opportunities tissues that are sensitive to infection. Both in vitro and in vivo, to better understand and treat pathologies caused by exacerbated RGM-A inhibits PMN migration through its receptor neogenin or misdirected inflammatory responses. and modifies the inflammatory milieu by attenuating the proin- flammatory response. In addition, RGM-A is a potent inhibitor of uiding migrating cells toward their destination is of prime leukocyte recruitment to sites of inflammation, mitigating hall- Gimportance in cell biology and physiology and is a prerequisite marks of inflammation, such as edema formation and proin- for tissue homeostasis, host defense, and immune surveillance (1, 2). flammatory cytokine expression, in a model of mouse peritonitis. Attracting cues, such as chemokines to guide leukocyte cell traffic, RGM-A is essential to limiting the ability of leukocytes to trans- have been well characterized in recent years (3–5) and are likely to migrate through epithelial cell layers, thereby attenuating the in- be complemented by repulsive cues, which actively abolish cell mi- flammatory milieu (“cytokine storm”), and also to reducing the gration. One such a paradigm exists in the developing nervous sys- number of leukocytes subsequently recruited. Thus, we have iden- tem, where neuronal migration is regulated by chemoattractive and tified a previously uncharacterized function of the neuronal guid- chemorepulsive cues, such as the neuronal repulsive guidance ance cue RGM-A outside the CNS. Our findings identify RGM-A molecule A (RGM-A). The migration of leukocytes is a tightly or- as a potent immunomodulatory protein in vitro and in vivo. Its anti- chestrated and controlled multiphasic biological cascade elicited by fl fl in ammatory functions through binding to its receptor neogenin. chemotactic signals during an acute in ammatory process (3, 4). These results support a conserved molecular role for RGM-A as Excessive immune cell migration into an inflammatory site might a guidance cue for neurons and leukocyte chemotaxis. result in tissue destruction and organ dysfunction (functio laesa). Recently, neuronal guidance cues were identified that control and attenuate inappropriate migration and infiltration of leukocytes into fl – Author contributions: P.R. and J.M.S. designed research; V.M., S.B., S.L., C.S., G.K., D.K., T.S., acutely in amed areas (6 12). Given that the neuronal repellent C.M., B.B., and P.R. performed research; V.M., G.K., T.S., P.R., and J.M.S. contributed new RGM-A is expressed at inflammatory sites but shares no sequence ho- reagents/analytic tools; S.B., S.L., C.S., G.K., D.K., T.S., C.M., B.B., P.R., and J.M.S. analyzed mology with any other known guidance cues, we explored whether data; and P.R. and J.M.S. wrote the paper. it inhibits leukocyte migration in vitro and in vivo (7, 12, 13). The authors declare no conflict of interest. RGM was the first candidate for characterization as a topo- This article is a PNAS Direct Submission. graphic guidance cue and was originally described as a glycosylpho- 1P.R. and J.M.S. contributed equally to this work. sphatidylinositol-anchored proline- and cysteine-rich glycocprotein 2To whom correspondence may be addressed. E-mail: [email protected] or peter. (13). Vertebrates comprise three homologs of RGM: RGM-A, [email protected]. RGM-B (DRAGON), and RGM-C (hemojuvelin). The human This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. RGM-A isoform is located on chromosome 15q26.1 (14). RGM- 1073/pnas.1015605108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1015605108 PNAS | April 19, 2011 | vol. 108 | no. 16 | 6555–6560 Downloaded by guest on September 28, 2021 A C CD45+pan-leukocytes CD15+granulocytes (PMN) A Epithelium Overlay DAPI RGM-A Cytokeratin CD45 CD45& Isotype CD15 CD15& Isotype RGMA RGMA RGM-A mRNA (Relative Expression) B Brain Lung KidneyLiver SpleenIntestine Endothelium CD45 Isotype FITC CD15 CD45 & RGM-A Isotype PC5/PE CD15 & RGM-A Overlay DAPI RGM-A vWF B CD14+monocytes CD3+ &CD19+ T-/B- lymphocytes C RGM-A Isotype controls & DAPI -Actin CD14 CD14& Isotype CD3& CD3& Isotype RGMA CD19 CD19&RGMA IgG vWF IgG RGM-A IgG Cytokeratin Brain Lung Liver Spleen Intestine Kidney D HMEC HUVEC CD14 Isotype FITC CD3 & CD19 CD14 & RGM-A Isotype PE CD3 & CD19 & RGM-A Endothelial Cell lines Fig. 1. RGM-A is expressed outside the CNS postdevelopmentally. (A)RGM-A mRNA in murine tissues quantified by quantitative real-time RT-PCR compared Isotype controls with levels of RGM-A mRNA expression present in the murine brain. Along with RGM-A-FITC lymphatic tissue such as spleen, pronounced RGM-A mRNA levels were detected in organs hosting an intrinsic immune compartment, including the brain Fig. 2. RGM-A is expressed at the epithelial barrier. Given the repulsive (microglia), lungs (alveolar macrophages), and intestines (Peyer’s patches). (B) bioactivity of RGM-A, we investigated its presence in cells relevant for epi- fi Western blot analysis of RGM-A protein expression in pooled murine tissues thelial or endothelial barriers. (A) In the lung, RGM-A expression is con ned compared with levels of expression in the brain. Values correspond to relative to cytokeratin-positive epithelial cells. (B) In contrast, RGM-A expression is RGM-A mRNA levels. All data are mean ± SEM; n =5.(C) FACS analysis verified absent on vWF-positive endothelium. (C) Isotype controls demonstrated no the expression of RGM-A by leukocyte subsets including CD15+ granulocytes relevant signal. (D) The absence of RGM-A in endothelial barriers was further (PMNs), CD14+ monocytes, CD3+ T lymphocytes, and some CD19+ B lymphocytes corroborated by the lack of RGM-A expression by the major endothelial cell (PMNs). Isotype controls demonstrated no relevant signal. lines HMEC-1 and HUVEC, which serve as cell sources to investigate features of endothelial function (8). Results effective host defense and also to avoid tissue damage due to an RGM-A Is Expressed Outside the CNS. To perform an immunologic aberrant, exacerbated inflammatory response (3, 4).
Recommended publications
  • Atypical Functions of Leukocyte Chemoattractant Receptors
    EDITORIAL published: 09 October 2020 doi: 10.3389/fimmu.2020.596902 Editorial: Atypical Functions of Leukocyte Chemoattractant Receptors José Luis Rodríguez-Fernández 1*, Mario Mellado 2*, Marcus Thelen 3* and Philip M. Murphy 4* 1 Department of Molecular Cell Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 2 Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 3 Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland, 4 Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States Keywords: chemotaxis, chemokine, atypical chemokine receptor, G protein-coupled receptor, signaling, arrestin, GPCR Edited and reviewed by: Silvano Sozzani, Sapienza University of Rome, Italy Editorial on the Research Topic *Correspondence: José Luis Rodríguez-Fernández Atypical Functions of Leukocyte Chemoattractant Receptors [email protected] Mario Mellado Chemoattraction is a process that involves directed cell movement toward extracellular chemical [email protected] stimuli. It is a fundamental feature of all biological systems that was discovered in the late Marcus Thelen nineteenth century, when the word “chemotaxis” was coined by the German biologist Wilhelm [email protected] Pfeffer. Metchnikoff’s 1882 description of macrophages
    [Show full text]
  • Stromal Cell–Derived Factor-1/CXCL12 Stimulates Chemorepulsion of NOD/Ltj T-Cell Adhesion to Islet Microvascular Endothelium Christopher D
    ORIGINAL ARTICLE Stromal Cell–Derived Factor-1/CXCL12 Stimulates Chemorepulsion of NOD/LtJ T-Cell Adhesion to Islet Microvascular Endothelium Christopher D. Sharp,1 Meng Huang,1 John Glawe,1 D. Ross Patrick,1 Sible Pardue,1 Shayne C. Barlow,2 and Christopher G. Kevil1 OBJECTIVE—Diabetogenic T-cell recruitment into pancreatic islets faciltates ␤-cell destruction during autoimmune diabetes, yet specific mechanisms governing this process are poorly un- iabetogenic T-cell infiltration into pancreatic derstood. The chemokine stromal cell–derived factor-1 (SDF-1) islets is a key pathophysiological feature of controls T-cell recruitment, and genetic polymorphisms of SDF-1 autoimmune diabetes. Recruitment of autoreac- are associated with early development of type 1 diabetes. tive T-cells into islets, known as insulitis, ini- D ␤ tiates the process of -cell damage, which may occur over RESEARCH DESIGN AND METHODS—Here, we examined a protracted period of time, eventually leading to frank the role of SDF-1 regulation of diabetogenic T-cell adhesion to ␤ islet microvascular endothelium. Islet microvascular endothelial destruction of -cells and loss of insulin production (1,2). cell monolayers were activated with tumor necrosis factor-␣ Cellular and molecular mechanisms necessary for recruit- (TNF-␣), subsequently coated with varying concentrations of ment and homing of diabetogenic T-cells have been pur- SDF-1 (1–100 ng/ml), and assayed for T-cell/endothelial cell posed, with antigen presentation and changes in adhesion interactions under physiological flow conditions. molecule expression playing important roles in this pro- cess (3–6). However, T-cell recruitment is regulated by RESULTS—TNF-␣ significantly increased NOD/LtJ T-cell adhe- other factors besides antigen presentation and adhesion sion, which was completely blocked by SDF-1 in a dose-depen- molecule expression.
    [Show full text]
  • Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects
    Journal of Immunology Research Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Guest Editors: Roberta Castriconi, Barbara Savoldo, Daniel Olive, and Fabio Pastorino Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Journal of Immunology Research Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Guest Editors: Roberta Castriconi, Barbara Savoldo, Daniel Olive, and Fabio Pastorino Copyright © 2016 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Immunology Research.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board B. D. Akanmori, Congo Eung-Jun Im, USA G. Opdenakker, Belgium Stuart Berzins, Australia Hidetoshi Inoko, Japan Luigina Romani, Italy Kurt Blaser, Switzerland Peirong Jiao, China Aurelia Rughetti, Italy Federico Bussolino, Italy Taro Kawai, Japan Takami Sato, USA N. G. Chakraborty, USA Hiroshi Kiyono, Japan Senthamil Selvan, USA Robert B. Clark, USA Shigeo Koido, Japan Naohiro Seo, Japan Mario Clerici, Italy Herbert K. Lyerly, USA Ethan M. Shevach, USA Nathalie Cools, Belgium Enrico Maggi, Italy George B. Stefano, USA Mark J. Dobrzanski, USA Mahboobeh Mahdavinia, USA T. J. Stewart, Australia Nejat K. Egilmez, USA Eiji Matsuura, Japan J. Tabarkiewicz, Poland Eyad Elkord, UK C. J. M. Melief, The Netherlands Ban-Hock Toh, Australia S. E. Finkelstein, USA Chikao Morimoto, Japan Joseph F. Urban, USA Luca Gattinoni, USA Hiroshi Nakajima, Japan Xiao-Feng Yang, USA David E. Gilham, UK Toshinori Nakayama, Japan Qiang Zhang, USA Douglas C.
    [Show full text]
  • A Haptotaxis Assay for Neutrophils Using Optical Patterning and a High-Content Approach Received: 5 September 2016 Joannie Roy 1,2, Javier Mazzaferri 1, János G
    www.nature.com/scientificreports OPEN A Haptotaxis Assay for Neutrophils using Optical Patterning and a High-content Approach Received: 5 September 2016 Joannie Roy 1,2, Javier Mazzaferri 1, János G. Filep1,3 & Santiago Costantino1,2,4 Accepted: 21 April 2017 Neutrophil recruitment guided by chemotactic cues is a central event in host defense against infection Published: xx xx xxxx and tissue injury. While the mechanisms underlying neutrophil chemotaxis have been extensively studied, these are just recently being addressed by using high-content approaches or surface-bound chemotactic gradients (haptotaxis) in vitro. Here, we report a haptotaxis assay, based on the classic under-agarose assay, which combines an optical patterning technique to generate surface-bound formyl peptide gradients as well as an automated imaging and analysis of a large number of migration trajectories. We show that human neutrophils migrate on covalently-bound formyl-peptide gradients, which influence the speed and frequency of neutrophil penetration under the agarose. Analysis revealed that neutrophils migrating on surface-bound patterns accumulate in the region of the highest peptide concentration, thereby mimicking in vivo events. We propose the use of a chemotactic precision index, gyration tensors and neutrophil penetration rate for characterizing haptotaxis. This high-content assay provides a simple approach that can be applied for studying molecular mechanisms underlying haptotaxis on user-defined gradient shape. Neutrophils are rapidly recruited into infected or injured tissues where they play a pivotal role in host defense against invading pathogens and in wound healing1. Neutrophil trafficking into inflamed tissues is governed by chemotactic molecules secreted by invading bacteria and tissue-resident sentinel cells2 and coordinated expres- sion of adhesion molecules on neutrophils and endothelial cells3.
    [Show full text]
  • Multifunctionality of Chemokine Receptors in Leukocytes
    1 1 2 3 4 Beyond Chemoattraction: Multifunctionality of Chemokine 5 Receptors in Leukocytes 6 Pilar López-Cotarelo1,*, Carolina Gómez-Moreira1,*, Olga Criado-García1,*, Lucas 7 Sánchez2 and José Luis Rodríguez-Fernández1 8 9 1 Molecular Microbiology and Infection Biology Department. Centro de Investigaciones 10 Biológicas. Consejo Superior de Investigaciones Científicas. Madrid. Spain 11 2 Cellular and Molecular Biology Department. Centro de Investigaciones Biológicas. 12 Consejo Superior de Investigaciones Científicas. Madrid. Spain 13 14 *Equal first authors 15 16 Correspondence: [email protected] (JL Rodríguez-Fernández) 17 18 Chemokine is a combination of the words “chemotactic” and “cytokine”, i.e. 19 cytokines that promote chemotaxis. Hence, the term chemokine receptor refers 20 largely to the ability to regulate chemoattraction. However, these receptors can 21 modulate additional leukocyte functions, as exemplified by the case of CCR7 which, 22 apart from chemotaxis, regulates survival, migratory speed, endocytosis, 23 differentiation and cytoarchitecture. Here, we present evidence highlighting that 24 multifunctionality is a common feature of chemokine receptors. Based on the 25 activities that they regulate, we suggest that chemokine receptors can be classified in 26 inflammatory (which control both inflammatory and homeostatic functions) and 27 homeostatic families. The information accrued also suggests that the non-chemotactic 28 functions controlled by chemokine receptors may contribute to optimize leukocyte 29 functioning under normal physiological conditions and during inflammation. 30 31 32 33 34 "What's in a name? That which we call a rose 35 by any other name would smell as sweet." 36 Romeo and Juliet (II, ii, 1-2) 37 Chemokine Receptors: What´s in a Name? 2 38 Chemokines constitute a large family of peptides that are characterized by their 39 relatively high degree of similarity in their aminoacid sequences, small molecular weights 40 and the presence of cysteines in conserved positions resulting in a characteristic 3D- 41 structure [1].
    [Show full text]
  • Neuronal Migration and Molecular Conservation with Leukocyte Chemotaxis
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Neuronal migration and molecular conservation with leukocyte chemotaxis Yi Rao,1,3 Kit Wong,1 Michael Ward,1 Claudia Jurgensen,1 and Jane Y. Wu2 1Department of Anatomy and Neurobiology and 2Departments of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA Cell migration is essential in species ranging from bac- migrate in the developing CNS(Angevine and Sidman teria to humans (for recent reviews, see Lauffenburger 1961; Rakic 1971a,b, 1972; Nowakowski and Rakic and Horwitz 1996; Mitchison and Cramer 1996; Montell 1979; Hatten and Liem 1981; Mason et al. 1988; Gray et 1999). In the amoebae Dictyostelium discoideum, cell al. 1990; Walsh and Cepko 1990; Hatten and Heintz migration is involved in chemotaxis toward food sources 1998). and in aggregation (for review, see Devreotes and Zig- Neuronal migration is essential for the formation and mond 1988; Parent and Devreotes 1999; Chung et al. normal functioning of the nervous system. Many human 2001). In higher vertebrates, cell migration plays crucial diseases are caused by defects in neuronal positioning roles in multiple physiological and pathological pro- (e.g., Volpe 1987; Reiner et al. 1993; Norman et al. 1995; cesses. During embryonic and neonatal development, Flint and Kriegstein 1997). Although some diseases such cell migration is crucial in morphogenetic processes as lissencephaly (smooth brain) are easily explained by such as gastrulation, cardiogenesis, and the formation of developmental abnormalities, others, such as epilepsy the nervous system (for review, see Hatten and Mason and autism, are not immediately obvious and are most 1990; Rakic 1990; Hatten and Heintz 1998; Bentivoglio likely indirect consequences of abnormal neuronal posi- and Mazzarello 1999).
    [Show full text]
  • Spatial Distributions of Guidance Molecules Regulate Chemorepulsion and Chemoattraction of Growth Cones
    The Journal of Neuroscience, February 1, 2000, 20(3):1030–1035 Spatial Distributions of Guidance Molecules Regulate Chemorepulsion and Chemoattraction of Growth Cones Dominique Bagnard,1 Nicole Thomasset,2 Marion Lohrum,3 Andreas W. Pu¨ schel,3 and Ju¨ rgen Bolz4 1Institut National de la Sante´ et de la Recherche Me´ dicale (INSERM) Unite´ 371, Cerveau et Vision, 69500 Bron, France, 2INSERM Unite´ 433, Faculte´deMe´ decine Laennec, 69372 Lyon cedex 08, France, 3Max-Planck-Institut fu¨r Hirnforschung, Molekulare Neurogenetik, Abt. Neurochemie, 60528 Frankfurt, Germany, and 4Universita¨ t Jena, Institut fu¨ r Allgemeine Zoologie, 07743 Jena, Germany It is generally assumed that gradients of chemotropic mole- neither repulsive effects of Sema3A nor attractive effects of cules are instrumental to the wiring of the nervous system. Sema3C were observed when axons were growing toward Recently, two members of the secreted class III semaphorin decreasing semaphorin concentrations. Thus, growth cone protein family have been implicated as repulsive (Sema3A) and guidance by gradients of chemotropic molecules is robust and attractive (Sema3C) guidance molecules for cortical axons reproducible, because it is primarily independent of the exact (Bagnard et al., 1998). Here, we show that stabilized gradients dimensions of the gradients. of increasing semaphorin concentrations elicit stereotyped re- Key words: wiring molecules; axonal guidance; gradients; sponses from cortical growth cones, independent of the abso- chemotropic attraction; chemotropic repulsion; semaphorins; lute concentration and the slope of these gradients. In contrast, cortical development; in vitro assays; time-lapse imaging A fundamental issue in developmental neurobiology is how neu- Bonhoeffer, 1992; Rosentreter et al., 1998), there is little experi- rons establish precise connections to distant target cells.
    [Show full text]
  • AMD3100 Augments the Efficacy of Mesothelin-Targeted, Immune-Activating VIC-008 in Mesothelioma by Modulating Intratumoral Immunosuppression
    Published OnlineFirst March 6, 2018; DOI: 10.1158/2326-6066.CIR-17-0530 Research Article Cancer Immunology Research AMD3100 Augments the Efficacy of Mesothelin- Targeted, Immune-Activating VIC-008 in Mesothelioma by Modulating Intratumoral Immunosuppression Binghao Li1,2, Yang Zeng1, Patrick M. Reeves1, Chongzhao Ran3, Qiuyan Liu1, Xiying Qu1, Yingying Liang1, Zhao Liu1, Jianping Yuan1, Pierre R. Leblanc1, Zhaoming Ye2, Ann E. Sluder1, Jeffrey A. Gelfand1, Timothy A. Brauns1, Huabiao Chen1, and Mark C. Poznansky1 Abstract AMD3100 (plerixafor), a CXCR4 antagonist, has been dem- AMD3100 alone and in combination with VIC-008 modulated onstrated to suppress tumor growth and modulate intratumoral immunosuppression in tumors and the immune system through þ T-cell trafficking. However, the effect of AMD3100 on immuno- suppression of PD-1 expression on CD8 T cells and conversion þ – þ þ þ modulation remains elusive. Here, we explored immunomodu- of regulatory T cells (Tregs) into CD4 CD25 Foxp3 IL2 CD40L lation and antitumor efficacy of AMD3100 in combination with a helper-like cells. In mechanistic studies, we demonstrated previously developed mesothelin-targeted, immune-activating that AMD3100-driven Treg reprogramming required T cell recep- fusion protein, VIC-008, in two syngeneic, orthotopic models of tor (TCR) activation and was associated with loss of PTEN due to malignant mesothelioma in immunocompetent mice. We oxidative inactivation. The combination of VIC-008 augmen- þ showed that combination therapy significantly suppressed tumor tation of tumor-specificCD8 T-cell responses with AMD3100 growth and prolonged animal survival in two mouse models. abrogation of immunosuppression conferred significant bene- Tumor control and survival benefit were associated with fits for tumor control and animal survival.
    [Show full text]
  • Immune Control Cell Chemorepulsion and Escape from Factor-1/CXCL12 Induce Tumor-Specific T Levels of the Chemokine Stromal-Deriv
    Murine B16 Melanomas Expressing High Levels of the Chemokine Stromal-Derived Factor-1/CXCL12 Induce Tumor-Specific T Cell Chemorepulsion and Escape from This information is current as Immune Control of September 25, 2021. Fabrizio Vianello, Natalia Papeta, Tao Chen, Paul Kraft, Natasha White, William K. Hart, Moritz F. Kircher, Eric Swart, Sarah Rhee, Giorgio Palù, Daniel Irimia, Mehmet Toner, Ralph Weissleder and Mark C. Poznansky Downloaded from J Immunol 2006; 176:2902-2914; ; doi: 10.4049/jimmunol.176.5.2902 http://www.jimmunol.org/content/176/5/2902 http://www.jimmunol.org/ References This article cites 53 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/176/5/2902.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Murine B16 Melanomas Expressing High Levels of the Chemokine Stromal-Derived Factor-1/CXCL12 Induce Tumor-Specific T Cell Chemorepulsion and Escape from Immune Control1 Fabrizio Vianello,2*‡ Natalia Papeta,2* Tao Chen,* Paul Kraft,* Natasha White,* William K.
    [Show full text]
  • Chemorepulsion and Thymocyte Emigration Commentary
    Chemorepulsion and thymocyte emigration Commentary See related article, pages 1101–1110. Jason G. Cyster Howard Hughes Medical Institute, and Department of Microbiology and Immunology, University of California, San Francisco, 513 Parnassus Ave., San Francisco, California 94143-0414, USA. Phone: (415) 502-6427; Fax: (415) 502-8424; E-mail: [email protected]. J. Clin. Invest. 109:1011–1012 (2002). DOI:10.1172/JCI200215511. The possibility that chemorepulsion, cellular motility increases without any help in developing an understanding or cell migration away from a stimu- directional specificity. of how a chemokine-mediated repul- lus, plays a role in the immune system Like SDF1/CXCL12–mediated che- sive response might occur. is exciting from both clinical and cell- motaxis, the putative chemorepul- biological viewpoints. For the clini- sion/fugetaxis behavior is sensitive to Chemorepulsion in vivo? cian, what could be a more satisfying pertussis toxin (PTX), implicating Gi- Having found suggestive in vitro evi- way to treat a cell-mediated immune mediated signaling in this process. dence for lymphocyte chemorepul- disease than local application of a These observations suggested not sion/fugetaxis, the Scadden group (2) chemorepellent? For the cell biologist, only that a cell can sense differences sought to identify an in vivo example eukaryotic cell chemorepulsion repre- in chemokine receptor occupancy of the process. Revisiting a decade-old sents a novel behavior to be explored between its front and back, but also observation — that cell emigration and explained at the molecular level. that it can respond differently from the thymus is inhibited by the Although the repulsion of neurons depending on the extent of receptor ADP-ribosylating subunit of PTX (6) — and their axons has emerged as an occupancy.
    [Show full text]
  • Modulates Immune Responses in the Tumor Microenvironment
    ISSN: 2378-3419 Liu et al. Int J Cancer Clin Res 2021, 8:144 DOI: 10.23937/2378-3419/1410144 Volume 8 | Issue 1 International Journal of Open Access Cancer and Clinical Research MINI REVIEW CXCR4 Antagonist AMD3100 (Plerixafor) Modulates Immune Responses in the Tumor Microenvironment 1 1 2,3,4* Check for Ziyao Liu , Jingzhe Wang and Huabiao Chen updates 1Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China 2Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, USA 3Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, USA 4Harvard Medical School, Boston, USA *Corresponding author: Dr. Huabiao Chen, Vaccine and Immunotherapy Center, Massachusetts General Hospital (East), 149 13th Street, Charlestown, MA 02129, USA, Tel: 617-643-2561 suggests that the interaction between tumor and stro- Abstract mal cells is an integral part of the development and AMD3100 (Plerixafor), a specific antagonist of CXCR4, progression of tumors. The tumor microenvironment is the most potent small molecule non-peptide inhibitor to CXCR4/CXCL12 axis. The chemokine receptor CXCR4 (TME) is best conceptualized as the composition of a and its ligand CXCL12 (SDF-1) expressed in a variety of variety of cells, such as noncancerous fibroblasts, adi- tumor cells play an important role in regulating tumor bio- pocytes, immune and vascular cells, as well as signaling logical behavior. The tumor microenvironment (TME) is the molecules and mediators [3-5]. environment around a tumor, comprising blood vessels, immune cells, fibroblasts, signaling molecules and the ex- It is gradually recognized that chemokines and their tracellular matrix which are involved in tumor growth, inva- receptors are key communication bridges between sion, metastasis, immune escape and tumor eradication.
    [Show full text]
  • Inhibits Leukocyte Migration and Mitigates Inflammation
    Repulsive guidance molecule-A (RGM-A) inhibits leukocyte migration and mitigates inflammation Valbona Mirakaja,b, Sebastian Browna, Stefanie Lauchera, Carolin Steinlc, Gerd Kleinc, David Köhlera,b, Thomas Skutellad, Christian Meisele, Benedikt Brommerf, Peter Rosenbergera,b,1,2, and Jan M. Schwabf,1,2 aDepartment of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, 72076 Tübingen, Germany; bClinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, Frankfurt University Hospital, Frankfurt, Germany; cSection for Transplantation Immunology and Immunohematology, Center for Medical Research, 72072 Tübingen, Germany; dInstitute for Anatomy and Cell Biology, School of Medicine, University of Heidelberg, D-69120 Heidelberg, Germany; eDepartment of Medical Immunology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; and fDepartment of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité–Universitätsmedizin Berlin, Humboldt University, 10117 Berlin, Germany Edited by Dennis A. Carson, University of California San Diego, La Jolla, CA, and approved February 23, 2011 (received for review October 17, 2010) Directed cell migration is a prerequisite not only for the develop- A is thought to be shed from the cell membrane by cleavage at ment of the central nervous system, but also for topically restricted, amino acid 412 or instability cleavage at the putative autopro- appropriate immune responses. This is crucial for host defense and teolytic cleavage site (amino acid 168), which is sensitive
    [Show full text]