Marcel S. Pawlowski Testing Cosmology with Phase-Space

Total Page:16

File Type:pdf, Size:1020Kb

Marcel S. Pawlowski Testing Cosmology with Phase-Space Observed MW satellites Testing Cosmology with Phase-Space Correlations in Systems of Satellite Galaxies Current Studies and Future Prospects http://marcelpawlowski.com/research/movies-astronomy/ Marcel S. Pawlowski Hubble Fellow at University of California Irvine (2006) et al. Diemand Email: [email protected] Twitter: @8minutesold Web: marcelpawlowski.com Simulated DM subhalos Is the phase-space distribution of satellite galaxies consistent with ΛCDM expectations? • 40-50 known satellite galaxies for both Milky Way and Andromeda. • Numerous small-scale problems known (missing satellites, core-cusp, TBTF) but affected by baryonic physics • Positions and velocities of satellite sub- halos on ≥100 kpc scales robust against internal baryonic physics and feedback processes. • Radial distribution is affected. Ahmed+2017, Garrison-Kimmel+2017 Via Lactea project / J. Diemand Lactea project Via Phase-space correlations • Close pairs of galaxies • Groups of galaxies / group infall • Planes of satellite/dwarf galaxies • Lopsided satellite systems Phase-space correlations • Close pairs of galaxies • Groups of galaxies / group infall • Planes of satellite/dwarf galaxies • Lopsided satellite systems Pairs of Satellites (of similar magnitude) Fattahi et al. (2013) Observed LG: ΛCDM simulations: 28% in close pairs 6% in close pairs with similar velocity with similar velocity Phase-space correlations • Close pairs of galaxies • Groups of galaxies / group infall • Planes of satellite/dwarf galaxies • Lopsided satellite systems Crater-Leo group of MW satellites Pawlowski, McGaugh & Sohn (in prep.) • 4 satellite galaxies + 1 star cluster (Crater 1). • Suggested by e.g. Torrealba et al. (2016) to be one infalling group. 1.Aligned along one common great circle. 2.Coherent distance trend along this direction (symbol sizes). 3.Similar, low Galactocentric velocities. 4.Typical number for ‘normal’ ΛCDM sub- halo groups found in simulations (2-5, VPOS e.g. Li & Helmi 2009). 5.Leo II and Leo IV stopped star formation ~5 Gyr ago: common infall at that time? 6.Leo II proper motion (Piatek et al. 2016) consistent with orbit along this direction (but VPOS too). Phase-space correlations • Close pairs of galaxies • Groups of galaxies / group infall • Planes of satellite/dwarf galaxies • Lopsided satellite systems The Vast Polar Structure of the Milky Way (VPOS) Pawlowski, Pflamm-Altenburg & Kroupa (2012, MNRAS, 423, 1109), Pawlowski & Kroupa (2013, MNRAS, 435, 2116), Pawlowski, McGaugh & Jerjen (2015, MNRAS, 453, 1047) Majority of MW satellites with measured proper motions co-orbit along VPOS CVn II CVn Com Leo II Crater-Leo group Willman 1 Boo UMa I Segue 1 or part of the Boo III VPOS? Boo II UMi Leo V Leo I Leo IV Draco Her Crater UMa II Hya II Sextans Segue 3 Sgr Tri II Kim 1 Car Kim 2 LMC SegueBoth 2 MW satellite pairs SMC Peg III Tuc II have similar PMs Pic I Ret II Pisces II Gru I Hor II Phe II Hor I Eri III For Scl The VPOS as seen from outside the Milky Way Pawlowski 2018 (brief review in MPLA, arXiv:1802.02579) How does the VPOS compare to ΛCDM? Pawlowski 2018 (brief review in MPLA, arXiv:1802.02579) (11 classical satellites only!) Observed VPOS Frequency of similarly extreme satellite arrangements in cosmological simulations is ≤ 0.1% Measure of kinematic coherence Measure Measure of plane width Is the Milky Way special? The Great Plane of Andromeda (GPoA) Ibata+2013 Both M31 satellite pairs are part of the GPoA Measure of kinematic coherence Measure Measure of plane width Frequency of similarly extreme satellite arrangements in cosmological simulations is ≤ 1%, ≤0.1% if considering radial distribution. Is the LG special? Cen A Satellite Plane Müller, Pawlowski, Jerjen & Lelli (2018) Measure of kinematic coherence Measure Measure of plane width Frequency of similarly extreme satellite arrangements in cosmological simulations is ≤ 0.5% (DMO & hydro simulations) Searching for a Satellite Planes Signal in a Statistical Sample of Systems Ibata et al. 2014 • Identify hosts with ≥2 satellites with measured los velocities in SDSS. • Select satellites on opposite sides -> increases chance to see satellite plane edge-on. • Check velocity relative to host: • ΛCDM expectation: 50% have correlated, 50% have anti-correlated velocity sign. • Rotating satellite planes: satellite pairs should show anti-correlated velocities. • Observed velocity anti-correlation consistent with > 60% of satellites in thin planes. (Ibata et al. 2014) Phase-space correlations • Close pairs of galaxies • Groups of galaxies / group infall • Planes of satellite/dwarf galaxies • Lopsided satellite systems Libeskind et al. (2016): Lopsidedness in stacked host pairs in SDSS θ 20 7 . θ Lopsidedness of Satellite Systems in Simulations Pawlowski, Ibata & Bullock (2017) • Cumulative number of satellites Observed vs. Simulated 1.15 MS1 (no orphans) facing partner in wedges of opening angle θ. MS1 (no orphans) opposite partner MS2 (no orphans) facing partner • Observed overabundance MS2 (no orphans) opposite partner SDSS facing partner 1.10 (black). Libeskind+2016 SDSS opposite partner • Millennium 1+2 simulations show such an excess! Pawlowski+2017 1.05 • ΛCDM passes this test. 1.00 θ 0.95 ratio of found vs. expected from isotropy 0.90 0 10 20 30 40 50 60 70 80 90 cos (✓) ≥| | Limitations of Studying Phase-Space Correlations in Satellite Galaxy System Target Milky Way Andromeda Centaurus A Local Volume (~ 100 Mpc) (distance) (~100 kpc) (~800 kpc) (~4 Mpc) (~10 Mpc) Angular size of viral volume all-sky 18º 4º 1.4º 9’ (rvir~ 250 kpc) 5% distance ± 5 kpc ± 40 kpc ± 200 kpc ~ 500 kpc ~ 5 Mpc uncertainty Positions 3D 3D ~3D 2D 2D 3D 1D - 3D 1D 1D 1D Kinematics LoS + PM LoS (+ PM?) LoS LoS LoS Angular size of dwarf 9’ 1’ 0.2’ 5” 0.5” (rh ~ 250 pc) Limitations of Studying Phase-Space Correlations in Satellite Galaxy System • Less phase-space information available for distant satellite systems. ➡ Must test correlations in projection. ➡ Need to study more host systems. • Need better statistics to investigate connections between different types of phase-space correlations. • Is is universal or incidental? • Velocity information is crucial (2D -> 3D). • Not only for top 1-2 satellites, but for ≥ 10, i.e. down to MV ~ -8 Some Current Surveys Spectroscopic Satellite Survey Around NGC 4258 (Spencer, Loebman & Yoachim, 2014) • d=7.6 Mpc, luminosity limit for satellite velocities: MV < −11 (Sculptor) 1.5 450 SAGA Probablesurvey Satellites (Geha et al. 2017) 600 Possible Satellites 350 Probable Satellites • 1.0Aim: dwarf satellite galaxy systems down to Mr Possible Satellites 634 400 634 080 250 207 < −12.3 (Leo I) in 300 kpc viral radius around 593 521 621 0.5 593 100 MW analogs between521 20-40150 Mpc.200 190 080 ) 207 1 190 − 480 072 092 090 ) 0.0 (km/s) 072 ° 50 (kms 436 0 Limits correspond996 to top 5-6 MW sats. (LMC, 277 277 NGC 4258 NGC4258 Dec ( −0.5 −50 V V −200 SMC, Sag, For, Leo I, Scu) − 860 996 860 −150 V ➡ Not enough to study480 phase-space structures −1.0 092 −400 −250 621 −1.5 436 −600 −350 0 50 100 150 200 250 090 RProj (kpc) −2.0 −450 1.5 1.0 0.5 0.0 −0.5 −1.0 −1.5 −2.0 RA (°) Conclusions 1. The phase-space distribution of satellite galaxies is a powerful test of cosmological models: • Does not depend strongly on baryonic physics. • LCDM predicts correlations which haven’t been observationally confirmed (e.g. groups of satellites). 2. Satellite phase-space distributions show a number of conflicts with ΛCDM expectations: Planes of Satellite galaxies, too many satellite pairs, … 3. Most severe tension with LCDM due to kinematics, not distribution alone. ➡Need line-of-sight velocities! 4. Have to study a statistical sample of satellite systems. For more on satellite planes, see my review in MPLA: arXiv:1802.02579.
Recommended publications
  • A New Milky Way Halo Star Cluster in the Southern Galactic Sky
    The Astrophysical Journal, 767:101 (6pp), 2013 April 20 doi:10.1088/0004-637X/767/2/101 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A NEW MILKY WAY HALO STAR CLUSTER IN THE SOUTHERN GALACTIC SKY E. Balbinot1,2, B. X. Santiago1,2, L. da Costa2,3,M.A.G.Maia2,3,S.R.Majewski4, D. Nidever5, H. J. Rocha-Pinto2,6, D. Thomas7, R. H. Wechsler8,9, and B. Yanny10 1 Instituto de F´ısica, UFRGS, CP 15051, Porto Alegre, RS 91501-970, Brazil; [email protected] 2 Laboratorio´ Interinstitucional de e-Astronomia–LIneA, Rua Gal. Jose´ Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil 3 Observatorio´ Nacional, Rua Gal. Jose´ Cristino 77, Rio de Janeiro, RJ 22460-040, Brazil 4 Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA 5 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1042, USA 6 Observatorio´ do Valongo, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 20080-090, Brazil 7 Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, Hampshire PO1 2UP, UK 8 Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA 9 Department of Physics, Stanford University, Stanford, CA 94305, USA 10 Fermi National Laboratory, P.O. Box 500, Batavia, IL 60510-5011, USA Received 2012 October 8; accepted 2013 February 28; published 2013 April 1 ABSTRACT We report on the discovery of a new Milky Way (MW) companion stellar system located at (αJ 2000,δJ 2000) = (22h10m43s.15, 14◦5658.8).
    [Show full text]
  • Main Sequence Star Populations in the Virgo Overdensity Region
    Draft version October 17, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 MAIN SEQUENCE STAR POPULATIONS IN THE VIRGO OVERDENSITY REGION H. Jerjen1, G.S. Da Costa1, B. Willman2, P. Tisserand1, N. Arimoto3,4, S. Okamoto5, M. Mateo6, I. Saviane7, S. Walsh8, M. Geha9, A. Jordan´ 10,11, E. Olszewski12, M. Walker13, M. Zoccali10,11, P. Kroupa14 1Research School of Astronomy & Astrophysics, The Australian National University, Mt Stromlo Observatory, via Cotter Rd, Weston, ACT 2611, Australia 2Haverford College, Department of Astronomy, 370 Lancaster Avenue, Haverford, PA 19041, USA 3National Astronomical Observatory of Japan, Subaru Telescope, 650 North A'ohoku Place, Hilo, 96720 USA 4The Graduate University for Advanced Studies, Department of Astronomical Sciences, Osawa 2-21-1, Mitaka, Tokyo, Japan 5Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China 6Department of Astronomy, University of Michigan, Ann Arbor, MI, USA 7European Southern Observatory, Casilla 19001, Santiago 19, Chile 8Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 9Astronomy Department, Yale University, New Haven, CT 06520, USA 10Departamento de Astronom´ıay Astrof´ısica,Pontificia Universidad Cat´olicade Chile, 7820436 Macul, Santiago, Chile 11The Milky Way Millennium Nucleus, Av. Vicu~naMackenna 4860, 782-0436 Macul, Santiago, Chile 12Steward Observatory, The University of Arizona, Tucson, AZ, USA 13Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA and 14Argelander Institute for Astronomy, University of Bonn, Auf dem H¨ugel71,D-53121 Bonn, Germany Draft version October 17, 2018 ABSTRACT We present deep color-magnitude diagrams for two Subaru Suprime-Cam fields in the Virgo Stellar Stream(VSS)/Virgo Overdensity(VOD) and compare them to a field centred on the highest concen- tration of Sagittarius (Sgr) Tidal Stream stars in the leading arm, Branch A of the bifurcation.
    [Show full text]
  • Distances to Local Group Galaxies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Distances to Local Group Galaxies Alistair R. Walker Cerro Tololo Inter-American Observatory, NOAO, Casilla 603, la Serena, Chile Abstract. Distances to galaxies in the Local Group are reviewed. In particular, the distance to the Large Magellanic Cloud is found to be (m M)0 =18:52 0:10, cor- − ± responding to 50; 600 2; 400 pc. The importance of M31 as an analog of the galaxies observed at greater distances± is stressed, while the variety of star formation and chem- ical enrichment histories displayed by Local Group galaxies allows critical evaluation of the calibrations of the various distance indicators in a variety of environments. 1 Introduction The Local Group (hereafter LG) of galaxies has been comprehensively described in the monograph by Sidney van den Berg [1], with update in [2]. The zero- velocity surface has radius of a little more than 1 Mpc, therefore the small sub-group of galaxies consisting of NGC 3109, Antlia, Sextans A and Sextans B lie outside the the LG by this definition, as do galaxies in the direction of the nearby Sculptor and IC342/Maffei groups. Thus the LG consists of two large spirals (the Galaxy and M31) each with their entourage of 11 and 10 smaller galaxies respectively, the dwarf spiral M33, and 13 other galaxies classified as either irregular or spherical. We have here included NGC 147 and NGC 185 as members of the M31 sub-group [60], whether they are actually bound to M31 is not proven.
    [Show full text]
  • Distribution of Phantom Dark Matter in Dwarf Spheroidals Alistair O
    A&A 640, A26 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037634 & c ESO 2020 Astrophysics Distribution of phantom dark matter in dwarf spheroidals Alistair O. Hodson1,2, Antonaldo Diaferio1,2, and Luisa Ostorero1,2 1 Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy 2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy e-mail: [email protected],[email protected] Received 31 January 2020 / Accepted 25 May 2020 ABSTRACT We derive the distribution of the phantom dark matter in the eight classical dwarf galaxies surrounding the Milky Way, under the assumption that modified Newtonian dynamics (MOND) is the correct theory of gravity. According to their observed shape, we model the dwarfs as axisymmetric systems, rather than spherical systems, as usually assumed. In addition, as required by the assumption of the MOND framework, we realistically include the external gravitational field of the Milky Way and of the large-scale structure beyond the Local Group. For the dwarfs where the external field dominates over the internal gravitational field, the phantom dark matter has, from the star distribution, an offset of ∼0:1−0:2 kpc, depending on the mass-to-light ratio adopted. This offset is a substantial fraction of the dwarf half-mass radius. For Sculptor and Fornax, where the internal and external gravitational fields are comparable, the phantom dark matter distribution appears disturbed with spikes at the locations where the two fields cancel each other; these features have little connection with the distribution of the stars within the dwarfs.
    [Show full text]
  • Dark Matter Signals from Draco and Willman 1: Prospects for MAGIC II
    Preprint typeset in JHEP style - HYPER VERSION astro-ph/0809.2269 Dark Matter Signals from Draco and Willman 1: Prospects for MAGIC II and CTA Torsten Bringmann Department of Physics, Stockholm University, AlbaNova, University Centre, S-106 91 Stockholm, Sweden E-mail: [email protected] Michele Doro Department of Physics G. Galilei, University of Padova & INFN, via Marzolo 8, 35131 Padova, Italy E-mail: [email protected] Mattia Fornasa Department of Physics G. Galilei, University of Padova & INFN, via Marzolo 8, 35131 Padova, Italy Institut d’Astrophysique de Paris, boulevard Arago 98bis, 75014, Paris, France E-mail: [email protected] Abstract: The next generation of ground-based Imaging Air Cherenkov Telescopes will play an important role in indirect dark matter searches. In this article, we consider two particularly promis- ing candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such studies, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to arXiv:0809.2269v3 [astro-ph] 21 Jan 2009 considerably enhance, in some cases, the gamma-ray flux in the high energies domain where At- mospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect, unless one adopts somewhat favorable descriptions of the smooth dark matter distribution in the dwarfs.
    [Show full text]
  • The Detailed Properties of Leo V, Pisces II and Canes Venatici II
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2012 Tidal Signatures in the Faintest Milky Way Satellites: The Detailed Properties of Leo V, Pisces II and Canes Venatici II David J. Sand Jay Strader Beth Willman Haverford College Dennis Zaritsky Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation Sand, David J., Jay Strader, Beth Willman, Dennis Zaritsky, Brian Mcleod, Nelson Caldwell, Anil Seth, and Edward Olszewski. "Tidal Signatures In The Faintest Milky Way Satellites: The Detailed Properties Of Leo V, Pisces Ii, And Canes Venatici Ii." The Astrophysical Journal 756.1 (2012): 79. Print. This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 756:79 (14pp), 2012 September 1 doi:10.1088/0004-637X/756/1/79 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TIDAL SIGNATURES IN THE FAINTEST MILKY WAY SATELLITES: THE DETAILED PROPERTIES OF LEO V, PISCES II, AND CANES VENATICI II∗ David J. Sand1,2,7, Jay Strader3, Beth Willman4, Dennis Zaritsky5, Brian McLeod3, Nelson Caldwell3, Anil Seth6, and Edward Olszewski5 1 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117, USA; [email protected] 2 Department of Physics, Broida Hall,
    [Show full text]
  • Wyn Evans Institute of Astronomy, Cambridge
    DARK MATTER SUBSTRUCTURES IN THE NEARBY UNIVERSE Wyn Evans Institute of Astronomy, Cambridge Monday, 16 July 2012 DARK MATTER 1. The dwarf spheroidals 2. The ultra-faints 3. The clouds & streams 4. The unknown Monday, 16 July 2012 DWARF SPHEROIDALS Image (35’ by 35’) of the Sculptor dwarf spheroidal taken with the NOAO CTIO 4 m telescope. Monday, 16 July 2012 DWARF SPHEROIDALS Surrounding the Milky Way are 9 classical dwarf spheroidal galaxies (Scu, For, Leo I, Leo II, UMi, Dra, Car, Sex, Sgr). These contain intermediate age to old stellar populations and no gas. They have velocity dispersions ∼ 8-10 km/s, half-light radius ∼ 200-300 pc, and absolute magnitudes MV brighter than -8. They are all highly dark matter dominated, and are natural targets for indirect detection experiments. What are their dark matter profiles? Are they cusped or cored? Monday, 16 July 2012 DWARF SPHEROIDALS Radial velocity surveys with multi-object spectrographs have now provided datasets of thousands of velocities for the giants stars. Early hopes that the photometry and line of sight velocity dispersion profile could be used to constrain the dark halo give way to pessimism. Most early modelers used the spherical Jeans equations to deduce dark matter properties at the center. Monday, 16 July 2012 JEANS EQUATIONS • The spherical Jeans equation is dangerous! If the light profile is cored (Plummer), then assuming isotropy gives a cored dark matter density. If the light profile is cusped (exponential), then so is the dark halo (An & Evans 2009). • The degeneracies in the Jeans equations are also illustrated by Walker et al.
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Galactic Archaeology. the Dwarfs That Survived and Perished
    Galactic Archaeology. The dwarfs that survived and perished Vasily Belokurova,∗ aInstitute of Astronomy, Cambridge Abstract From the archaeological point of view, the local dwarf galaxies are unique objects in which the imprint of the conditions that shaped the early structure formation can be studied today at high resolution. Over the last decade, this new window into the high redshift Universe has started to be exploited using deep wide-field imaging, high resolution spectroscopy and cutting edge N- body and hydro-dynamical simulations. We review the recent advances in the observational studies of the Milky Way dwarf galaxies, with the aim to understand the properties of the population as a whole and to assist an objective comparison between the models and the data. Keywords: Galaxies: kinematics and dynamics, Galaxies: dwarf, dark matter, Local Group, Galaxies: stellar content. 1. Introduction The prehistoric stars whose formation epochs lie beyond the redshift ac- cessible by the Hubble Ultra Deep Field, have been found en masse in little satellites around the Milky Way. Other less fortunate dwarf galaxies have been pulled apart by gravity to furnish the diffuse Galactic halo. These re- cently uncovered relics of the ancient dwarf galaxy population may play a arXiv:1307.0041v2 [astro-ph.GA] 15 Jul 2013 vital role in the pursuit of reconstructing the formation of the Galaxy. Its path from the distant pre-reionisation era, through the most active growth ∗Corresponding author Email address: [email protected] (Vasily Belokurov) Preprint submitted to New Astronomy Reviews July 16, 2013 periods to the present day, can be gleaned by studying the chemical compo- sition and the phase-space density distribution of these halo denizens.
    [Show full text]
  • The Feeble Giant. Discovery of a Large and Diffuse Milky Way Dwarf Galaxy in the Constellation of Crater
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo MNRAS 459, 2370–2378 (2016) doi:10.1093/mnras/stw733 Advance Access publication 2016 April 13 The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater G. Torrealba,‹ S. E. Koposov, V. Belokurov and M. Irwin Institute of Astronomy, Madingley Rd, Cambridge CB3 0HA, UK Downloaded from https://academic.oup.com/mnras/article-abstract/459/3/2370/2595158 by University of Cambridge user on 24 July 2019 Accepted 2016 March 24. Received 2016 March 24; in original form 2016 January 26 ABSTRACT We announce the discovery of the Crater 2 dwarf galaxy, identified in imaging data of the VLT Survey Telescope ATLAS survey. Given its half-light radius of ∼1100 pc, Crater 2 is the fourth largest satellite of the Milky Way, surpassed only by the Large Magellanic Cloud, Small Magellanic Cloud and the Sgr dwarf. With a total luminosity of MV ≈−8, this galaxy is also one of the lowest surface brightness dwarfs. Falling under the nominal detection boundary of 30 mag arcsec−2, it compares in nebulosity to the recently discovered Tuc 2 and Tuc IV and UMa II. Crater 2 is located ∼120 kpc from the Sun and appears to be aligned in 3D with the enigmatic globular cluster Crater, the pair of ultrafaint dwarfs Leo IV and Leo V and the classical dwarf Leo II. We argue that such arrangement is probably not accidental and, in fact, can be viewed as the evidence for the accretion of the Crater-Leo group.
    [Show full text]
  • A Detection Algorithm to Trace the Faintest Milky Way Satellites
    The Astronomical Journal, 137:450–469, 2009 January doi:10.1088/0004-6256/137/1/450 c 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE INVISIBLES: A DETECTION ALGORITHM TO TRACE THE FAINTEST MILKY WAY SATELLITES S. M. Walsh1, B. Willman2,3, and H. Jerjen1 1 Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611, Australia; [email protected] 2 Clay Fellow, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3 Haverford College, 371 Lancaster Ave, Haverford PA 19041, USA Received 2008 July 19; accepted 2008 October 21; published 2008 December 19 ABSTRACT A specialized data-mining algorithm has been developed using wide-field photometry catalogs, enabling systematic and efficient searches for resolved, extremely low surface brightness satellite galaxies in the halo of the Milky Way (MW). Tested and calibrated with the Sloan Digital Sky Survey Data Release 6 (SDSS-DR6) we recover all 15 MW satellites recently detected in SDSS, six known MW/Local Group dSphs in the SDSS footprint, and 19 previously known globular and open clusters. In addition, 30 point-source overdensities have been found that correspond to no cataloged objects. The detection efficiencies of the algorithm have been carefully quantified by simulating more than three million model satellites embedded in star fields typical of those observed in SDSS, covering a wide range of parameters including galaxy distance, scale length, luminosity, and Galactic latitude. We present several parameterizations of these detection limits to facilitate comparison between the observed MW satellite population and predictions.
    [Show full text]
  • A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: the Darkest Galaxy
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2011 A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy Joshua D. Simon Marla Geha Quinn E. Minor Beth Willman Haverford College Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation A Complete Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar membership and binary properties from a Bayesian analysis - Martinez, Gregory D. et al. Astrophys.J. 738 (2011) 55 arXiv:1008.4585 [astro-ph.GA] This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 733:46 (20pp), 2011 May 20 doi:10.1088/0004-637X/733/1/46 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY∗ Joshua D. Simon1, Marla Geha2, Quinn E. Minor3, Gregory D. Martinez3, Evan N. Kirby4,8, James S. Bullock3, Manoj Kaplinghat3, Louis E. Strigari5,8, Beth Willman6, Philip I. Choi7, Erik J. Tollerud3, and Joe Wolf3 1 Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA; [email protected] 2 Astronomy Department, Yale University, New Haven, CT 06520, USA; [email protected]
    [Show full text]