Regulation of Inositol Biosynthesis and Cellular Consequences of Inositol Depletion: Implications for the Echm Anism of Action of Valproate Rania M

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Inositol Biosynthesis and Cellular Consequences of Inositol Depletion: Implications for the Echm Anism of Action of Valproate Rania M Wayne State University Wayne State University Dissertations 1-1-2014 Regulation Of Inositol Biosynthesis And Cellular Consequences Of Inositol Depletion: Implications For The echM anism Of Action Of Valproate Rania M. Deranieh Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Biology Commons, Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Deranieh, Rania M., "Regulation Of Inositol Biosynthesis And Cellular Consequences Of Inositol Depletion: Implications For The Mechanism Of Action Of Valproate" (2014). Wayne State University Dissertations. Paper 1045. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. REGULATION OF INOSITOL BIOSYNTHESIS AND CELLULAR CONSEQUENCES OF INOSITOL DEPLETION: IMPLICATIONS FOR THE MECHANISM OF ACTION OF VALPROATE by RANIA M. DERANIEH DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2014 MAJOR: BIOLOGICAL SCIENCES Approved by: _____________________________________ Advisor Date _________________________________________ _________________________________________ _________________________________________ _________________________________________ DEDICATION In memory of my beloved parents ii ACKNOWLEDGEMENTS My everlasting gratitude and appreciation to Dr. Miriam L. Greenberg, my mentor, advisor, teacher, and friend. Thank you, Miriam, for your unwavering support and encouragement, for each and everything you have taught me, and for each and every advice you have given me. You are a gem! I am lucky, and proud to be your student. Special thanks to my committee members, Dr. David Njus, Dr. Karen Beningo, Dr. Arun Anantharam, and Dr. Krishna Rao Maddipati. I thank you all for your continuous support and advice. You are a great committee! I thank the American- Jordanian Fulbright Commission for the Fulbright Scholarship, the Biological Sciences Department for funding, and the Graduate School for the University Graduate Research Fellowship. I thank our collaborators, Dr. Patricia Kane for her wonderful collaboration and many discussions, Dr. Marie Migaud, and Dr. Robin Williams. My thanks to Dr. Golenberg who constantly stood by me through various stages of ups and downs. I would also like to thank Dr. Phil Cunningham for all that he taught me during my first few years in his lab. Also, thank you to my lab-mates, past and present. I am grateful to friends and family for always being there, even from a distance. Shifra, Miriam, and Rebecca, thank you for being my family here and for all your warmth, support, and fun times. Aunt Ikram, you are an angel. Ali, you have been my solid rock and you have kept me sane! Rana, Muna, Laila, Hania, Dima, Steffi, Sophie, Micha, Peggy, Brad, Mechthild, Airlie, and Ricky, thank you all for your friendship and continuous support... I am blessed to have you all... Thank you! iii TABLE OF CONTENTS Dedication ............................................................................................................... ii Acknowledgements ................................................................................................ iii List of Tables ............................................................................................................ vi List of Figures ......................................................................................................... vii CHAPTER 1 - INTRODUCTION ................................................................................... 1 CHAPTER 2 - PHOSPHORYLATION OF MYO-INOSITOL PHOSPHATE 3-SYNTHASE: A NOVEL REGULATORY MECHANISM OF INOSITOL BIOSYNTHESIS Introduction ...................................................................................... 21 Materials and Methods ................................................................... 25 Results ............................................................................................. 35 Discussion ....................................................................................... 51 CHAPTER 3 - INOSITOL DEPLETION PERTURBS THE VACUOLAR-ATPase: A NOVEL MECHANISM OF ACTON OF VALPROATE Introduction ..................................................................................... 57 Materials and Methods .................................................................. 61 Results ............................................................................................ 66 Discussion ...................................................................................... 84 CHAPTER 4 - VALPROATE DECREASES ENDOCYTOSIS IN YEAST AND MAMMALIAN CELLS Introduction .................................................................................... 92 Materials and Methods .................................................................. 97 Results ........................................................................................... 103 iv Discussion ........................................................................................ 118 CHAPTER 5 – FUTURE DIRECTIONS ....................................................................... 125 References ............................................................................................................ 138 Abstract ................................................................................................................ 181 Autobiographical Statement ................................................................................ 184 v LIST OF TABLES Table 2.1 Strains used in Chapter 2 ....................................................................... 32 Table 2.2 Plasmids used in Chapter 2 .................................................................... 33 Table 2.3 Primers used for site-directed mutagenesis of yeast and human MIPS...34 Table 3.1 Strains used in Chapter 3 ........................................................................ 65 Table 4.1 Yeast strains and plasmids used in Chapter 4 ....................................... 102 Table 4.2 Genes leading to increased sensitivity to VPA when overexpressed .... 104 vi LIST OF FIGURES Figure 1.1 The inositol biosynthetic pathway ..........................................................4 Figure 2.1. MIPS catalyzes the rate-limiting step in inositol biosynthesis .............. 22 Figure 2.2 The tagged MIPS is functional and rescues growth of ino1Δ in inositol- deficient media ..................................................................... 36 Figure 2.3 MIPS is a phosphoprotein ..................................................................... 38 Figure 2.4 Domains and phosphosites of MIPS ...................................................... 39 Figure 2.5 MIPS is phosphorylated at 5 serine and threonine residues ................. 41 Figure 2.6 Effect of site mutations of yeast MIPS on growth and enzyme activity .................................................................................................... 44 Figure 2.7 Effect of dephosphorylation on MIPS activity ........................................ 47 Figure 2.8 Effect of site mutations of human MIPS on growth and enzyme activity .................................................................................................... 48 Figure 2.9 The double mutation (DM) confers a growth advantage, increases MIPS activity, and partially rescues sensitivity to VPA ........................... 50 Figure 3.1 The vacuolar ATPase ................................................................................. 60 Figure 3.2 Vacuolar defects in VPA-treated cells are rescued by supplementation with inositol .............................................................................................. 67 Figure 3.3 VPA inhibits V-ATPase activity and reduces coupling in WT cells ..............69 Figure 3.4 Inositol depletion inhibits V-ATPase activity and reduces coupling ..........71 Figure 3.5 VPA does not cause a vma- phenotype..................................................... 73 Figure 3.6 Inositol rescues sensitivity of V-ATPase V0 deletion mutants to VPA.........74 Figure 3.7 Cytosolic pH is not altered by VPA treatment........................................... 75 Figure 3.8 VPA alters the distribution of vacuolar PI3,5P2......................................... 78 vii Figure 3.9 VPA enhances vacuolar fusion................................................................ 79 Figure 3.10 Synthesis of PI3,5P2 is perturbed in VPA-treated cells. A, Levels of PI3,5P2 .................................................................................................... 81 Figure 3.11 Levels of PI3P are not altered by VPA..................................................... 83 Figure 3.12 Model: Inositol depletion perturbs the vacuolar V-ATPase.................... 91 Figure 4.1 VPA treatment phenocopies overexpression of AKL1........................... 106 Figure 4.2 Endocytosis is decreased in VPA-treated cells....................................... 107 Figure 4.3 VPA alters the trafficking of PI4P........................................................... 109 Figure 4.4 VPA causes cell wall defects and increases thermosensitivity............... 111 Figure 4.5 VPA perturbs the cell wall integrity pathway......................................... 113
Recommended publications
  • Multifaceted Chaudhry.Pdf
    Neuropharmacology 161 (2019) 107789 Contents lists available at ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Invited review Multifaceted regulation of the system A transporter Slc38a2 suggests T nanoscale regulation of amino acid metabolism and cellular signaling ∗ Robin Johansen Menchinia, , Farrukh Abbas Chaudhrya,b a Department of Molecular Medicine, University of Oslo, Oslo, Norway b Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway HIGHLIGHTS • Slc38a2 represents the classically described system A transport activity. • Slc38a2 accumulates small, neutral amino acids directly or indirectly by energizing ASCT1/2 and LAT1/2 transporters. • Slc38a2 is extensively regulated by cell stress, nutritional and hormonal signaling, and acts as an amino acid sensor upstream of mTOR. • Slc38a2 contributes to the pathology in a number of diseases such as cancer, epilepsy and diabetes mellitus. ARTICLE INFO ABSTRACT Keywords: Amino acids are essential for cellular protein synthesis, growth, metabolism, signaling and in stress responses. Slc38a1 Cell plasma membranes harbor specialized transporters accumulating amino acids to support a variety of cellular Slc38a2 biochemical pathways. Several transporters for neutral amino acids have been characterized. However, Slc38a2 SNAT2 (also known as SA1, SAT2, ATA2, SNAT2) representing the classical transport system A activity stands in a Glutamine unique position: Being a secondarily active transporter energized by the electrochemical gradient of Na+, it Osmoregulation creates steep concentration gradients for amino acids such as glutamine: this may subsequently drive the ac- Adaptive regulation cumulation of additional neutral amino acids through exchange via transport systems ASC and L. Slc38a2 is ubiquitously expressed, yet in a cell-specific manner. In this review, we show that Slc38a2 is regulated atthe transcriptional and translational levels as well as by ions and proteins through direct interactions.
    [Show full text]
  • Supplemental Information Vesicular Glutamate Transporters Use Flexible Anion and Cation Binding Sites for Efficient Accumulation
    Neuron, Volume 84 Supplemental Information Vesicular Glutamate Transporters Use Flexible Anion and Cation Binding Sites for Efficient Accumulation of Neurotransmitter Julia Preobraschenski, Johannes-Friedrich Zander, Toshiharu Suzuki, Gudrun Ahnert-Hilger, and Reinhard Jahn SUPPLEMENTAL INFORMATION SUPPLEMENTAL FIGURES Figure S1: Cl- dependence of VGLUT-mediated glutamate uptake is independent of the isoform and does not require the Cl- channel ClC3, related to Figure 1. A: Cl-- dependence of glutamate uptake by SV isolated from wild type, VGLUT1-/-, or ClC3-/- mice. Data represent FCCP-sensitive uptake and are normalized to uptake at 4 mM chloride of the respective wild type.* B: Glutamate uptake by SV immunoisolated from rat brain using antibodies specific for VGLUT 1 or 2, respectively. The immunoisolated vesicles are highly enriched for their respective antigens, with only very limited overlap (Zander et al., 2010). Values are expressed as nmol/mg protein.* (*n=1). Figure S2: Characterization of proteoliposomes containing purified recombinant VGLUT1 and the proton ATPase TFoF1, related to Figure 2. A: Coomassie Blue-stained SDS-polyacrylamide gels (10%) of the purified proteins (5µg protein/lane) and an immunoblot for VGLUT1 (1µg). B: After reconstitution, VGLUT1 is predominantly oriented with the cytoplasmic side facing outward. VGLUT1 containing an N-terminal streptavidin binding peptide tag was reconstituted in liposomes and incubated with TEV protease (TEV) in the absence or presence of the detergent n-Octyl-β-D- glucopyranoside
    [Show full text]
  • Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers
    Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Berglund, K. et al. “Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers.” Journal of Neuroscience 36, 21 (May 2016): 5709–5723 © 2016 The Author(s) As Published http://dx.doi.org/10.1523/JNEUROSCI.4366-15.2016 Publisher Society for Neuroscience Version Final published version Citable link http://hdl.handle.net/1721.1/112258 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ The Journal of Neuroscience, May 25, 2016 • 36(21):5709–5723 • 5709 Cellular/Molecular Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers X Ken Berglund,1,2* Lei Wen,3,4,5* Robert L. Dunbar,1 Guoping Feng,1 and XGeorge J. Augustine3,4,5,6 1Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, 2Departments of Neurosurgery and Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, 3Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea, 4Lee Kong Chian School of Medicine, Nanyang Technological University, Research Techno Plaza, Singapore 637553 Singapore, 5Institute of Molecular and Cell Biology, Singapore 138673, Singapore, and 6MBL, Woods Hole, Massachusetts 02543 Tonic inhibition was imaged in cerebellar granule cells of transgenic mice expressing the optogenetic chloride indicator, Clomeleon. Blockade of GABAA receptors substantially reduced chloride concentration in granule cells due to block of tonic inhibition. This indicates thattonicinhibitionisasignificantcontributortotherestingchlorideconcentrationofthesecells.Tonicinhibitionwasobservednotonly in granule cell bodies, but also in their axons, the parallel fibers (PFs).
    [Show full text]
  • Role of an Electrical Potential in the Coupling of Metabolic Energy To
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 6, pp. 1804-1808, June 1973 Role of an Electrical Potential in the Coupling of Metabolic Energy to Active Transport by Membrane Vesicles of Escherichia coli (chemiosmotic hypothesis/lipid-soluble ions/valinomycin/ionophores/amino-acid transport) HAJIME HIRATA, KARLHEINZ ALTENDORF, AND FRANKLIN M. HAROLD* Division of Research, National Jewish Hospital and Research Center, Denver, Colorado 80206; and Department of Microbiology, University of Colorado Medical Center, Denver, Colorado 80220 Communicated by Saul Roseman, April 12, 1973 ABSTRACT Membrane vesicles from E. coli can oxidize probably occurs quite directly at the level of the membrane D-lactate and other substrates and couple respiration to its the active transport of sugars and amino acidl8. The pres- and constituent proteins (5-7). Kaback and Barnes (8) ent experiments bear on the nature of the link between proposed a tentative mechanism by which the coupling might respiration and transport. be effected: the transport carriers are thought to monitor Respiring vesicles were found to accumulate dibenzyl- the redox state of the electron-transport chain and themselves dimethylammonium ion, a synthetic lipid-soluble cation undergo cyclic oxidation and reduction of critical sulfhydryl that serves as an indicator of an electrical potential. The results suggest that oxidation of it-lactate generates groups; each cycle is accompanied by concurrent changes in a membrane potential, vesicle interior negative, of the the orientation of the carrier center and in its affinity for the order of -100 mV. In vesicles lacking substrate, an electri- substrate, leading to accumulation of the substrate in the cal potential was created by induction of electrogenic lumen of the vesicle.
    [Show full text]
  • The Externally Derived Portion of the Hyperosmotic Shock-Activated Cytosolic Calcium Pulse Mediates Adaptation to Ionic Stress in Suspension-Cultured Tobacco Cells
    ARTICLE IN PRESS Journal of Plant Physiology 164 (2007) 815—823 www.elsevier.de/jplph The externally derived portion of the hyperosmotic shock-activated cytosolic calcium pulse mediates adaptation to ionic stress in suspension-cultured tobacco cells Stephen G. Cessnaa,Ã, Tracie K. Matsumotob, Gregory N. Lamba, Shawn J. Ricea,1, Wendy Wenger Hochstedlera,2 aDepartments of Biology and Chemistry, Eastern Mennonite University, 1200 Park Road, Harrisonburg, VA 22802, USA bUSDA-ARS-PWA-PBARC, Tropical Plant Genetic Resource Management Unit, Hilo, HI, USA Received 9 October 2006; received in revised form 16 November 2006; accepted 27 November 2006 KEYWORDS Summary Aequorin; The influx of Ca2+ into the cytosol has long been suggested to serve as a signaling Calcium; intermediate in the acquisition of tolerance to hyperosmotic and/or salinity stresses. Inositol-1,4,5-tris- Here we use aequorin-transformed suspension-cultured tobacco cells to directly phosphate; assess the role of cytosolic calcium (Ca2+ ) signaling in salinity tolerance acquisition. Salinity; cyt Aequorin luminescence recordings and 45Ca influx measurements using inhibitors of Signal transduction Ca2+ influx (Gd3+ and the Ca2+-selective chelator EGTA), and modulators of organellar Ca2+ release (phospholipase C inhibitors U73122 or neomycin) demonstrate that hyperosmolarity, whether imposed by NaCl or by a non-ionic molecule sorbitol, 2+ 2+ induces a rapid (returning to baseline levels of Ca within 10 min) and complex Cacyt pulse in tobacco cells, deriving both from Gd3+-sensitive externally derived Ca2+ influx and from U73122- and neomycin-sensitive Ca2+ release from an organelle. To determine whether each of the two components of this brief Ca2+ signal regulate adaptation to hyperosmotic shock, the Ca2+ pulse was modified by the addition of Gd3+, U73122, neomycin, or excess Ca2+, and then cells were treated with salt or sorbitol.
    [Show full text]
  • Active Transport of Y-Aminobutyric Acid and Glycine Into Synaptic Vesicles (Neurotransmitter/Mg-Activating Atpase/Proton Gradient/Brain/Spinal Cord) PHILLIP E
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 3877-3881, May 1989 Neurobiology Active transport of y-aminobutyric acid and glycine into synaptic vesicles (neurotransmitter/Mg-activating ATPase/proton gradient/brain/spinal cord) PHILLIP E. KISH*, CAROLYN FISCHER-BOVENKERK*, AND TETSUFUMI UEDA*tt§ *Mental Health Research Institute and Departments of tPharmacology and Psychiatry, The University of Michigan, Ann Arbor, MI 48109 Communicated by Philip Siekevitz, January 3, 1989 ABSTRACT Although y-aminobutyric acid (GABA) and also accumulated into synaptic vesicles in an ATP-dependent glycine are recognized as major amino acid inhibitory neuro- manner and that their uptake is driven by an electrochemical transmitters in the central nervous system, their storage is proton gradient. We have characterized these uptake systems poorly understood. In this study we have characterized vesic- with respect to sensitivity to chloride and the specificity of ular GABA and glycine uptakes in the cerebrum and spinal the transporter. Preliminary accounts of this work have been cord, respectively. We present evidence that GABA and glycine reported in abstract form (14, 15). are each taken up into isolated synaptic vesicles in an ATP- dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids EXPERIMENTAL PROCEDURES exhibited kinetics with low affinity (Km in the millimolar range) Materials. All GABA and glycine analogs were from Sigma similar to vesicular glutamate uptake. The ATP-dependent or Aldrich. 4-Amino-n-[2,3-3H]butyric acid (50 Ci/mmol; 1 Ci GABA uptake was not inhibited by the putative amino acid = 37 GBq), [2-3H]glycine (19 Ci/mmol), and other tritiated neurotransmitters glycine, taurine, glutamate, or aspartate or amino acids tested for uptake were obtained from Amersham.
    [Show full text]
  • Xanthan Gum Derivatives: Review of Synthesis, Properties and Diverse Applications Cite This: RSC Adv., 2020, 10,27103 Jwala Patel,A Biswajit Maji,B N
    RSC Advances View Article Online REVIEW View Journal | View Issue Xanthan gum derivatives: review of synthesis, properties and diverse applications Cite this: RSC Adv., 2020, 10,27103 Jwala Patel,a Biswajit Maji,b N. S. Hari Narayana Moorthya and Sabyasachi Maiti *a Natural polysaccharides are well known for their biocompatibility, non-toxicity and biodegradability. These properties are also inherent to xanthan gum (XG), a microbial polysaccharide. This biomaterial has been extensively investigated as matrices for tablets, nanoparticles, microparticles, hydrogels, buccal/ transdermal patches, tissue engineering scaffolds with different degrees of success. However, the native XG has its own limitations with regards to its susceptibility to microbial contamination, unusable viscosity, poor thermal and mechanical stability, and inadequate water solubility. Chemical modification can circumvent these limitations and tailor the properties of virgin XG to fulfill the unmet needs of drug delivery, tissue engineering, oil drilling and other applications. This review illustrates the process of chemical modification and/crosslinking of XG via etherification, esterification, acetalation, amidation, and Received 16th May 2020 oxidation. This review further describes the tailor-made properties of novel XG derivatives and their Creative Commons Attribution 3.0 Unported Licence. Accepted 13th July 2020 potential application in diverse fields. The physicomechanical modification and its impact on the DOI: 10.1039/d0ra04366d properties of XG are also discussed. Overall, the recent developments on XG derivatives are very rsc.li/rsc-advances promising to progress further with polysaccharide research. 1. Introduction a polyanionic character. Chemical structure of XG is illustrated in Fig. 1a and b. Polysaccharides are isolated from renewable sources and have The hydroxy and carboxy polar groups of XG reconnoiter nontoxic, biocompatible, biodegradable, and bioadhesive intramolecular and intermolecular hydrogen bonding interac- This article is licensed under a 6 properties.
    [Show full text]
  • Intracellular Potassium Depletion Enhances Apoptosis Induced by Staurosporine in Cultured Trigeminal Satellite Glial Cells
    SOMATOSENSORY & MOTOR RESEARCH https://doi.org/10.1080/08990220.2021.1941843 ARTICLE Intracellular potassium depletion enhances apoptosis induced by staurosporine in cultured trigeminal satellite glial cells Hedie A. Bustamantea, Marion F. Ehrichb and Bradley G. Kleinb aFaculty of Veterinary Sciences, Veterinary Clinical Sciences Institute, Universidad Austral de Chile, Valdivia, Chile; bDepartment of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ABSTRACT ARTICLE HISTORY Purpose: Satellite glial cells (SGC) surrounding neurons in sensory ganglia can buffer extracellular Received 4 June 2021 potassium, regulating the excitability of injured neurons and possibly influencing a shift from acute to Accepted 8 June 2021 neuropathic pain. SGC apoptosis may be a key component in this process. This work evaluated induc- KEYWORDS tion or enhancement of apoptosis in cultured trigeminal SGC following changes in intracellular potas- Satellite glial cells; sium [K]ic. apoptosis; staurosporine; Materials and methods: We developed SGC primary cultures from rat trigeminal ganglia (TG). Purity neuropathic pain of our cultures was confirmed using immunofluorescence and western blot analysis for the presence of the specific marker of SGC, glutamine synthetase (GS). SGC [K]ic was depleted using hypo-osmotic shock and 4 mM bumetanide plus 10 mM ouabain. [K]ic was measured using the Kþ fluorescent indica- tor potassium benzofuran isophthalate (PBFI-AM). Results: SGC tested positive for GS and hypo-osmotic shock induced a significant decrease in [K]ic at every evaluated time. Cells were then incubated for 5 h with either 2 mM staurosporine (STS) or 20 ng/ ml of TNF-a and evaluated for early apoptosis and late apoptosis/necrosis by flow cytometry using annexin V and propidium iodide.
    [Show full text]
  • LETM1 Haploinsufficiency Causes Mitochondrial Defects in Cells From
    © 2014. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2014) 7, 535-545 doi:10.1242/dmm.014464 RESEARCH ARTICLE LETM1 haploinsufficiency causes mitochondrial defects in cells from humans with Wolf-Hirschhorn syndrome: implications for dissecting the underlying pathomechanisms in this condition Lesley Hart1,2, Anita Rauch3, Antony M. Carr2, Joris R. Vermeesch4 and Mark O’Driscoll1,* ABSTRACT abnormalities, a characteristic facial dysmorphology, hypotonia, and Wolf-Hirschhorn syndrome (WHS) represents an archetypical epileptic seizures (Hirschhorn and Cooper, 1961; Hirschhorn et al., example of a contiguous gene deletion disorder – a condition 1965; Wolf et al., 1965). The spectrum and severity of these clinical comprising a complex set of developmental phenotypes with a features typically correlate with deletion size (Battaglia et al., 2008; multigenic origin. Epileptic seizures, intellectual disability, growth Maas et al., 2008; Van Buggenhout et al., 2004; Zollino et al., 2000). restriction, motor delay and hypotonia are major co-morbidities in WHS is generally regarded as a multigenic disorder, although two WHS. Haploinsufficiency of LETM1, which encodes a mitochondrial critical regions have been described: WHSCR1 and WHSCR2, for inner-membrane protein functioning in ion transport, has been WHS critical region 1 and 2, respectively (see Fig. 1). These critical proposed as an underlying pathomechanism, principally for seizures regions are based on the demarcation of the minimum region of but also for other core features of WHS, including growth and motor overlap in individuals exhibiting WHS-like phenotypes. WHSCR1 delay. Growing evidence derived from several model organisms incorporates part of the WHS candidate gene WHSC1 and the entire suggests that reduced LETM1 expression is associated with some WHSC2 gene (White et al., 1995; Wright et al., 1997).
    [Show full text]
  • Use of a Lipophilic Cation to Monitor Electrical Membrane Potential in the Intact Rat Lens
    Use of a Lipophilic Cation to Monitor Electrical Membrane Potential in the Intact Rat Lens Qiufang Cheng,1 David Lichtstein,2 Paul Russell,1 and J. Samuel Zigler, Jr1 ϩ PURPOSE. Tetraphenylphosphonium (TPP ) is a permeant lipophilic cation that accumulates in cultured cells and tissues as a function of the electrical membrane potential across the plasma membrane. This study was undertaken to determine whether TPPϩ can be used for assessing membrane potential in intact lenses in organ culture. ϩ 3 ϩ METHODS. Rat lenses were cultured in media containing 10 ␮M TPP and a tracer level of H-TPP for various times. 3H-TPPϩ levels in whole lenses or dissected portions of lenses were determined by liquid scintillation counting. Ionophores, transport inhibitors, and neurotransmitters were also added to investigate their effects on TPPϩ uptake. ϩ RESULTS. Incubation of lenses in low-K balanced salt solution and TC-199 medium, containing physiological concentrations of Naϩ and Kϩ, led to a biphasic accumulation of TPPϩ in the lens that approached equilibrium by 12 to 16 hours of culture. The TPPϩ equilibrated within 1 hour in the epithelium but penetrated more slowly into the fiber mass. The steady state level of TPPϩ accumulation in the lens was depressed by 90% when the lenses were cultured in a medium containing high Kϩ. The calculated membrane potential for the normal rat lens in TC-199 was Ϫ75 Ϯ 3 mV. Monensin (1 ␮M) and nigericin (1 ␮M), NaϩHϩ and KϩHϩ exchangers respectively, as well as the protonophore carbonylcyanide-m-chlorophenylhydrazone (CCCP, 10 ␮M) and the calcium ionophore A23187 (10 ␮M), abolished TPPϩ accumulation and caused cloudiness of the lenses.
    [Show full text]
  • Common Distribution of Gad Operon in Lactobacillus Brevis and Its Gada Contributes to Efficient GABA Synthesis Toward Cytosolic
    Common distribution of gad operon in Lactobacillus brevis and Title its GadA contributes to efficient GABA synthesis toward cytosolic near-neutral pH Author(s) Wu, Q; TUN, HM; LAW, YS; Khafipour, E; Shah, N Citation Frontiers in Microbiology, 2017, v. 8, p. 206:1-16 Issued Date 2017 URL http://hdl.handle.net/10722/239608 This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with Rights permission.; Creative Commons: Attribution 3.0 Hong Kong License ORIGINAL RESEARCH published: 14 February 2017 doi: 10.3389/fmicb.2017.00206 Common Distribution of gad Operon in Lactobacillus brevis and its GadA Contributes to Efficient GABA Synthesis toward Cytosolic Near-Neutral pH Qinglong Wu 1, Hein Min Tun 2, Yee-Song Law 1, Ehsan Khafipour 2, 3 and Nagendra P. Shah 1, 4* 1 School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong, 2 Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada, 3 Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada, 4 Victoria University, Melbourne, VIC, Australia Many strains of lactic acid bacteria (LAB) and bifidobacteria have exhibited strain-specific capacity to produce γ-aminobutyric acid (GABA) via their glutamic acid decarboxylase (GAD) system, which is one of amino acid-dependent acid resistance (AR) systems in bacteria. However, the linkage between bacterial AR and GABA production capacity has Edited by: not been well established. Meanwhile, limited evidence has been provided to the global Michael Gänzle, University of Alberta, Canada diversity of GABA-producing LAB and bifidobacteria, and their mechanisms of efficient Reviewed by: GABA synthesis.
    [Show full text]
  • Exploring Pheuomics in Bacteria: High-Throughput Phenotyping Drives Biological Discovery in Escherichia Coli
    Exploring Pheuomics in Bacteria: High-throughput Phenotyping Drives Biological Discovery in Escherichia Coli by Robert J. Nichols DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Oral and Craniofacial Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO ii This work is dedicated to all of my family and friends, whose love and support inspired me to reach for new heights… Acknowledgements The Introduction and Future Perspectives (Chapters 1 and 3) of this thesis have been published as a book chapter in a volume entitled “Phenomics”, by Science Publishers (ISBN #978-1-57808-806-5). The Research section of this Thesis was originally published in the January 7, 2011 edition of Cell. The article was titled “Phenotypic Landscape of a Bacterial Cell”, and is being published here under the terms of license agreement #2882741144479 with Elsevier. iii Abstract The genomic revolution of the last twenty years has launched the biosciences into a new frontier. For scientists working on many organisms, the availability of a genome sequence has dramatically accelerated research. The effects have been profound: Genetic engineering is now standard laboratory practice; evolutionary biologists can trace entire genomes; and genetic risk factors have been defined for many human conditions. However, our rapidly accelerating ability to collect and assemble DNA sequence information has greatly outpaced our ability to assign biological meaning to it. This imbalance creates a need for high-throughput methods aimed at developing leads to gene function: phenomic technologies. Phenomic technologies seek to associate DNA sequences with phenotypes in a high-throughput manner to gain a functional understanding of genetic code.
    [Show full text]