Hybridisation of a GPS Receiver with Low-Cost Sensors for Personal Positioning in Urban Environment. Damien Kubrak

To cite this version:

Damien Kubrak. Hybridisation of a GPS Receiver with Low-Cost Sensors for Personal Positioning in Urban Environment.. Engineering Sciences [physics]. Télécom ParisTech, 2007. English. ￿pastel- 00002803￿

HAL Id: pastel-00002803 https://pastel.archives-ouvertes.fr/pastel-00002803 Submitted on 28 Sep 2007

HAL is a multi-disciplinary open L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés.

Thèse

présentée pour obtenir le grade de Docteur de l’École Nationale Supérieure des Télécommunications

Spécialité : Électronique et Communications DAMIEN KUBRAK Etude de l’hybridation d’un récepteur GPS avec des capteurs bas coûts pour la navigation personnelle en milieu urbain Soutenue le 24 mai 2007 devant le jury composé de

Gérard Maral Président Gérard Lachapelle Rapporteur Günter Hein Rapporteur Michel Monnerat Examinateur Christophe Macabiau Co-directeur de thèse Marie-Laure Boucheret Co-directeur de thèse Marc Pontif Invité Remerciements

Remerciements Cette thèse est le fruit de trois années de travail passées principalement au sein du LaboratoiredeTraitementduSignaletdeTélécommunication(LTST)del’ENAC,ainsiquesurle sited’AlcatelAleniaSpace,maintenantdevenuThalesAleniaSpace.Ellem’apermisd’acquérir une connaissance théorique approfondie des techniques de traitement du signal GPS et de navigation inertielle, tout en ayant la possibilité de tester les algorithmes étudiés en conditions réelles.Ilestpourmoiévidentquelesmoyensmisàmadispositionm’ontlargementaidédansmes recherches. J’ai par ailleurs bénéficié d’un environnement de travail très favorable. En ce sens, je voudrais particulièrement remercier Christophe Macabiau, responsable du laboratoire LTST de l’ENAC,etMichelMonnerat,ingénieurdansleserviceLocationBasedServicesdeThalesAlenia Space,pourm’avoirpermisderéalisercettethèse.Cesdeuxpersonnesontétédéterminantespour moitoutaulongdecestroisannées,etjeleurensuisreconnaissant. JedoisàChristopheunegrandepartiedecestravaux.Jeleremerciepourletempsqu’ilm’a consacré,lamotivationqu’ilasumeprocurer,lesconnaissancesqu’ilm’atransmises…etaudelà poursalégendairebonnehumeursetraduisantgénéralementpardebelleschansonnettesd’époque, ainsiquedesriresparticulièrementretentissants. BienquesouventoccupéparlesaffairescourantesdudépartementLocationBasedServices, Michelatoujourssutrouverletempspourdiscuterdesgrandesorientationsdecettethèse,reflechir aux problèmes techniques posés et a toujours facilité mon travail. Il m’a par ailleurs laissé une grandelibertédansmesactivitésderecherche. J’aimeraisaussiremercierAnneChristineEscherpoursonimplicationetl’aidequ’ellem’a apportée dans le domaine de la navigation inertielle. Cet aspect très technique était relativement neufpourmoiaudébutdecettethèse. JeprofitedecetteoccasionpourremercierStéphaneCorazza,FlorianDargeouetAntonio Dias pour m’avoir aidé dans l’utilisation du serveur AGPS pour mes diverses experiences en conditionsréelles. Un grand merci à mes deux‘cobureau’, Emilie et Hanaa,sans qui je n’aurais jamais pu mourirdechaudl’été.Jeleurreconnaisnéanmoinsunsensdel’organisationtrèsdéveloppéquim’a souventétésalvateur,aussibienaulaboratoirequelorsdenosvoyages.Evidemment,jen’oublie pasBenjamin,MathieuetOlivierquiontpuadmirermadéfensedeferaufootballetmaponctualité auDeDanu,Anaïsquiresterapourmoicequisefaitdemieuxenmatièredecuriosité,Christophe, Philippe,Audrey,Na,MarieLaure,Antoine… Enfin,jetiensàsoulignerlapatiencedeClairetoutaulongdecestroisannées,etjefinirai parcesquelquesnanoencouragementsàJulien:«leboutdutunneln’estpeutêtrepassiloin».

Pagei Remerciements

Pageii Résumé

Résumé A l’origine, les services basés sur la localisation trouvaient la justification de leur développementdanslesnouvellesdirectivessurlesappelsd’urgenceémisesd’abordauxEtatsUnis avecleE911.Maisaujourd’hui,ilsprennentdeplusenplusd’importancedanslaviedetousles jours. Plusieurs technologies de positionnement peuvent répondre au besoin de localisation d’un individu, qu’il soit à l’intérieur ou à l’extérieur d’un bâtiment. Parmi ces techniques, le système GPS, et plus généralement GNSS, est particulièrement adapté aux applications nécessitant un positionnementprécisdanstoustypesd’environnements.Ilnerequiertaucuneinfrastructure,sice n’estuneantennederéceptionetunepucepourdécoderettraiterlesmessagestransmisautravers des signaux. Aussi, ce moyen de localisation est à même de répondre aux besoins de positionnement d’applications comme les services d’urgence, la navigation en voiture, l’e tourisme… Le positionnement par GPS a néanmoins des limites liées aux phénomènes affectant les signauxlorsdeleurpropagation.Danslamesureoùlesservicesliésàlalocalisationdespersonnes sontdéployésdansdeszonesurbaines,lasolutiondepositionpeutêtreentachéed’erreursduesaux multitrajetsquisecombinentautrajetdirectdessignauxreçus.Parailleurs,ilestprobablequeles signauxGPSpuissentêtrebloquésoufortementatténuésparlesbâtiments,contribuantdefaitàune augmentationdelasensibilitéauxintercorrelationsetdoncunedégradationdelaprécisionetdela disponibilitéduservicedepositionnement.LesrécentesévolutionsdesrécepteursGPSdites«haute sensibilité» (HSGPS) ou «assistées» (AGPS) peuvent partiellement surmonter les difficultés de fournir une position à l’intérieur d’un bâtiment. Néanmoins, les améliorations apportées par ces nouvelles architectures restent limitées lorsque des signaux à très faible puissance doivent être traités. En conséquence, des techniques complémentaires doivent être utilisées pour aider, voire remplacerlecaséchéant,lessystèmesbaséssurletraitementdessignauxGPS. Parmi les systèmes candidats, ceux basés sur des capteurs inertiels bas coûts sont prometteurs. En effet, ils sont susceptibles d’améliorer les performances globales du système de navigation intégré tout en minimisant son surcoût, et ce, malgré la faible qualité des capteurs utilisés. Cette thèse est dédiée à l’utilisation de tels senseurs comme moyen complémentaire de navigation. Plusieurs objectifs sont fixés parmi lesquels l’amélioration de la précision et de la disponibilitédelasolutiondeposition,maisaussil’étudedelaréductiondelachargedecalculdes récepteursHSGPSetAGPStoutenconservantlesperformancesdessystèmesactuels. Lestechniquesavancéesdetraitementdusignal(modes«hautesensibilité»et«assisté») sont dans un premier temps étudiées à la fois théoriquement et sur la base d’analyses de performance en conditions réelles. Les résultats obtenus lors de tests montrent que le positionnementurbainestrendupossiblegrâceàcestechniques,mêmesileseffetsdesmultitrajets et des intercorrelations dégradent sensiblement la précision. L’AGPS fournit des solutions de position plus précises que l’HSGPS, ce qui privilégie son utilisation dans un système intégré de navigation. Néanmoins, il est clairement démontré que même avec ces techniques avancées de traitement du signal, le positionnement à l’intérieur d’un bâtiment reste très difficile, voire impossiblepourunegrandemajoritédescas. Les algorithmes alternatifs de navigation basés sur l’utilisation de capteurs tels que des accéléromètres, des gyroscopes, mais aussi des magnétomètresou encoreun capteur de pression sont étudiés dans un second temps. Différentes architectures sont détaillées et optimisées pour

Pageiii Résumé compenser les dérives introduites par les erreurs de mesure intrinsèques aux senseurs. Un filtre permettant l’estimation dynamique des biais affectant les mesures des gyroscopes est dans ce contexteproposéàlafoispourlanavigationpédestreetlanavigationenvoiture. La possibilité de réduire la complexité du traitement effectué par les récepteurs AGPS et HSGPS est également abordée dans cette thèse. Plus particulièrement, une technique permettant d’estimer la contribution utilisateur sur le Doppler total affectant la porteuse du signal reçu est proposée.Sesperformancessonttestéessurdesdonnéesréellescollectéesenenvironnementurbain. Ilestdémontréquecettecontributionpeutêtreestiméedanslaplupartdescasavecprécisionquelle quesoitladynamiquedel’utilisateur,réduisantdefaitlacomplexitédel’étaged’acquisitiondes signaux GPS. De meilleures performances sont néanmoins atteintes dans le cas particulier de la navigationpédestre. Enfin, l’amélioration de la disponibilité et de la précision de la solution de position en environnement urbain et à l’intérieur de bâtiments est étudiée. Plusieurs schémas d’hybridation ayant pour but de combiner les différents modules GPS (AGPS, HSGPS) et les systèmes de navigationinertiellebaséssurlescapteursbascoûtssontanalysés.Uneapprochedifférentedecelle traditionnellement suivie est proposée dans le cadre de la navigation en voiture pour coupler de façon serrée les modules GPS et le système de navigation inertielle. Ce schéma d’hybridation permetdecorrigerleserreursdescapteursbascoûtsdèslorsquedeuxmesuresdepseudodistanceet de Doppler sont disponibles, même si cette technique est sensible à la géométrie des satellites utilisés par rapport au cap du véhicule.Dans le cadre delanavigation pédestre, une hybridation lâche en temps réel est proposée et implantée. La performance du système intégré de positionnementàl’intérieurdesbâtimentsaététestéeenconditionsréelles,montrantuneprécision de10mètresparrapportàlatrajectoirederéférence,ycomprislorsd’interruptionscomplètesdu serviceGPS(2mindanslestestseffectués). Motsclés:HSGPS,AGPS,acquisition,MEMS,INS,hybridation,Kalman

Pageiv

HybridisationofaGPSReceiverwithLowCost SensorsforPersonalPositioninginUrban Environment

Pagev

Pagevi Abstract

Abstract First driven by the regulation on emergency calls in the United States (E911), Location BasedServices(LBS)arecurrentlygainingmoreandmoreimportanceineverydaylife.Numerous positioning technologies are foreseen to allow the location of one user whether he is indoors or outdoors. Among these techniques, GPS and even more GNSS are well adapted to applications requiring accurate positioning whatever the environment (urban or rural). Such a positioning technique requires no extra infrastructure but achipset to decode andprocessGPS signals.As a consequence,thismakesitverysuitabletofulfilthelocationrequirementsofapplicationssuchas emergencyservices(USE911),guidanceofrescueteams,invehiclenavigation,etourism…The technique has nevertheless limitations due to errors that affect the incoming signals. Because LocationBasedServicesarelikelytobedeployedinurbanareas,strongmultipathmayaffectthe signals,contributingtoahighpositionbias.GPSsignalsmayalsobeblockedorfadedbybuildings, whichmayexposethereceivertocrosscorrelationdistortionsincaseoflargedifferencebetween theSignaltoNoiseRatios(SNRs),decreasinginthesametimetheaccuracyandtheavailabilityof thepositioningservice. Theabilityofprovidingapositionsolutionespeciallyindoorsisthenagreatchallengethat can be partially handled with High Sensitivity GPS or Assisted GPS solutions. However, such processing improvements still encounter big issues in the aforementioned harsh environments becauseoftheweakpowerofthesignalstoacquireandprocess.Asaconsequence,complementary techniquesshallbeusedtosupportorreplaceGPSbasedpositioningsystems.Amongthepossible augmentations, inertial sensorbased techniques are promising ones since they may offer a cost effective means of improving the overall performance despite the intrinsic low accuracy and stabilityofthesensorsoutput. The purpose of this thesis is to investigate the use of such lowcost sensors as a self containedaugmentationofaGPSbasedpositioningsystem.Morespecifically,thisstudyaddresses theimprovementofthepositionsolutionavailabilityandaccuracy,aswellasthedecreaseofthe processingloadofHSGPS/AGPSreceiversthankstoinformationprovidedbythesetofsensors. In the first place, the performance of the new GPS processing techniques (HSGPS and AGPS) is analysed based on theoretical simulations and field test trials. Results from these test campaigns show that a good accuracy is achievable in urban areas, even if multipath and cross correlations degrade the overall performance. AGPS is shown to give better measurements than HSGPS,whichmakesitmoresuitableforhybridisationpurposes.However,thereisanunavoidable lackofavailabilityindoorswhereGPSsignalsaretooweaktobeprocessed. TheaugmentationoftheaforementionedGPSbasednavigationsolutionsisthenaddressed through the use of lowcost sensors (typically accelerometers, gyroscopes, magnetometers and a pressure sensor). Different pure inertial navigation algorithms are detailed and optimised mechanisations designed to compensate for the low performance of the lowcost sensors used throughout this thesis are proposed. In particular, an attitude filter capable of dynamically estimatingthegyroscopebiasesisdevelopedandtestedinactualconditions. The improvement of the acquisition stage of AGPS and HSGPS receivers is investigated based on the selfcontained augmentations previously described. The reduction of the Doppler uncertainty due to user’s motion is more specifically addressed. Tests on data collected during

Pagevii Abstract urbanvehicletrialsareusedtoassesstheperformanceoftheproposedtechnique.Itisshownthat the user’s Doppler contribution can be well estimated whatever the dynamic experienced by the receiver,whichcontributestothedecreaseoftheacquisitionstagecomplexity.Howeveritshould bepointedoutthatbetterperformancesareobtainedinthepedestriannavigationcasethaninthe landvehiclenavigationcase. Thepositionsolutionavailabilityandaccuracyinurbancanyonsandindoorenvironmentsis finallyaddressedthroughseveralhybridisationschemesaimedatfusingthedifferentGPSmodules (HSGPS or AGPS) and the lowcost inertial sensors. A nonstandard tight coupling scheme is proposedintheframeoflandvehiclenavigation.Resultsshowthaturbannavigationusingonly2 pseudorange and Doppler measurements is possible, even if the accuracy of the integrated navigationsystemissensitivetothegeometryofthesatelliteusedforhybridisation.Arealtime loosecouplingprototypeisimplementedandtestedforthespecificpedestriannavigationcase.The accuracyoftheintegratednavigationsystemisshowntostaywithin10metresfromthereference trajectoryevenduringcompleteGPSoutagesofabout2minutesaccordingtothetrialsexercised. Keywords:HSGPS,AGPS,Acquisition,MEMS,INS,Hybridisation,Kalmanfilter.

Pageviii TableofContents

Table of Contents REMERCIEMENTS ...... I RESUME...... III ABSTRACT ...... VII TABLE OF CONTENTS ...... IX LIST OF FIGURES...... XIII LIST OF TABLES...... XIX ABBREVIATIONS...... XXI CHAPTER 1: INTRODUCTION...... 1 1.1 BACKGROUND ...... 1 1.2 MOTIVATIONSAND OBJECTIVES ...... 2 1.3 CONTRIBUTIONS ...... 3 1.4 THESIS OUTLINE ...... 5 CHAPTER 2: GPS-BASED POSITIONING ...... 7 2.1 THE GLOBAL POSITIONING SYSTEM ...... 8 2.1.1 Fundamentals ...... 8 2.1.1.1 SpaceSegment ...... 8 2.1.1.2 ControlSegment...... 10 2.1.1.3 UserSegment ...... 11 2.1.2 GPSSignalProcessing ...... 12 2.1.2.1 GPSSignalAcquisition...... 13 2.1.2.2 GPSSignalTracking...... 17 2.1.3 GPSMeasurements...... 22 2.1.3.1 PseudorangeMeasurement...... 22 2.1.3.2 DopplerMeasurement ...... 23 2.1.3.3 CarrierPhaseMeasurement...... 24 2.1.4 MeasurementErrors...... 24 2.1.4.1 SatelliteOrbitalErrorD...... 24 2.1.4.2 IonosphericErrorI...... 24 2.1.4.3 TroposphericErrorT ...... 25 2.1.4.4 Multipath...... 25 2.1.4.5 TimeSynchronisationb...... 25 2.1.4.6 TrackingLoopsJitter ...... 25 2.2 GPS PROCESSING ENHANCEMENT ...... 26 2.2.1 PositioningTechnologiesandIssues ...... 26 2.2.2 HighSensitivityGPS...... 27 2.2.2.1 Principle ...... 27 2.2.2.2 PerformanceOverview...... 29 2.2.3 AssistedGPS...... 30 2.2.3.1 Principle ...... 30 2.2.3.2 EnhancedAGPS...... 32 2.2.3.3 AcquisitionPerformance...... 33 2.3 HSGPS /AGPS PERFORMANCE ANALYSIS ...... 35 2.3.1 HSGPS/AGPSModules...... 35 2.3.2 PerformanceAssessment ...... 36 2.3.2.1 Accuracy ...... 36 2.3.2.2 TimeToFirstFix ...... 37 2.3.2.3 Availability...... 37 2.3.3 ComparativeTestResults ...... 37 2.3.3.1 LightIndoorEnvironment...... 37 2.3.3.2 UrbanStreetEnvironment...... 39 2.3.3.3 KinematicUrbanTest ...... 40 2.3.3.4 IndoorTest ...... 41 2.4 CONCLUSION ...... 41

Pageix TableofContents

CHAPTER 3: INERTIAL NAVIGATION SYSTEMS...... 44 3.1 INERTIAL NAVIGATION OVERVIEW ...... 45 3.1.1 Basicprinciple...... 45 3.1.2 FramesandCoordinates...... 45 3.1.3 Sensors...... 46 3.1.3.1 Accelerometer ...... 46 3.1.3.2 Gyroscope ...... 47 3.1.3.3 MeasurementsErrors...... 48 3.2 STRAP DOWN ATTITUDE COMPUTATION ...... 48 3.2.1 AttitudeAlgorithm...... 49 3.2.2 AttitudeInitialisation ...... 51 3.2.3 Euler’sAnglesSingularityIssue...... 52 3.3 MEMS SENSOR UNIT PERFORMANCE OVERVIEW ...... 54 3.3.1 XsensMotionTracker...... 54 3.3.1.1 Accelerometer ...... 54 3.3.1.2 Gyroscopes...... 55 3.3.2 GyroscopeOutputApproximation ...... 56 3.4 CLASSICAL INERTIAL NAVIGATION SYSTEM ...... 58 3.4.1 FundamentalInertialDifferentialEquation...... 58 3.4.2 INSMechanisationintheNavigationFrame...... 60 3.4.3 ExpectedAccuracy...... 61 3.5 THE PARTICULAR CASEOFTHE PEDESTRIAN NAVIGATION ...... 62 3.5.1 MechanisationintheNavigationFrame ...... 63 3.5.2 TravelledDistanceEstimation...... 65 3.5.2.1 Parameters...... 65 3.5.2.2 VelocityModels...... 68 3.5.2.3 RegressionCoefficients...... 69 3.5.3 DisplacementDirectionEstimation...... 73 3.5.4 UnconstrainedNavigationIssue...... 74 3.5.5 PNSMechanisation...... 76 3.5.6 ExpectedAccuracy...... 76 3.6 CONCLUSION ...... 79 CHAPTER 4: SENSOR-BASED AUGMENTATIONS...... 80 4.1 PRESSURE SENSOR ...... 81 4.1.1 PrincipleandOutputModel ...... 81 4.1.2 Performanceassessment...... 82 4.1.3 ImprovementofthePositionSolution...... 83 4.2 MAGNETIC FIELD SENSOR ...... 85 4.2.1 EarthMagneticField...... 85 4.2.2 SensorOutputModel ...... 86 4.2.3 MagneticHeading...... 86 4.2.4 CalibrationProceduresandMagneticInterferences...... 87 4.3 DRIFT FREE ATTITUDE FILTER ...... 89 4.3.1 InclinationFilter...... 90 4.3.1.1 StateTransitionModels ...... 90 4.3.1.2 MeasurementModels...... 94 4.3.1.3 InclinationFilterSummary ...... 95 4.3.2 HeadingFilter ...... 95 4.3.2.1 StateTransitionModels ...... 95 4.3.2.2 MeasurementsModels...... 97 4.3.2.3 HeadingFilerSummary ...... 98 4.3.3 OptimisedDriftFreeAttitudeFilter...... 99 4.3.4 DriftFreeAttitudeFilter ...... 100 4.3.4.1 Designn°1:AttitudeFilterusingalltheSensors...... 100 4.3.4.2 Designn°2:AttitudeFilterusingonly1Gyroscope...... 100 4.3.5 TestResults ...... 101 4.3.5.1 ThePedestrianNavigationCase...... 102 4.3.5.2 TheLandVehicleNavigation ...... 106 4.4 OTHER AUGMENTATION TECHNIQUES ...... 109 4.4.1 ZerovelocityUPdaTe(ZUPT)...... 109 4.4.2 VelocityandHeightConstraints...... 110

Pagex TableofContents

4.5 CONCLUSION ...... 110 CHAPTER 5: SENSORS AIDING FOR GPS ACQUISITION ...... 112 5.1 INTRODUCTION ...... 113 5.2 RECEIVER DOPPLER UNCERTAINTY ...... 115 5.2.1 SatelliteContribution...... 115 5.2.2 LocalOscillatorContribution...... 118 5.2.3 UserContribution...... 119 5.3 SENSORS AIDINGFOR DOPPLER UNCERTAINTY REDUCTION ...... 120 5.3.1 MotionRecognition...... 120 5.3.2 SensorFusion&IntegrationScheme ...... 121 5.3.3 SatelliteGeometryIssue ...... 123 5.3.4 OnDemandDopplerEstimation ...... 125 5.3.5 DopplerReductionProcedure ...... 126 5.4 TEST RESULTS ...... 127 5.4.1 ThePedestrianNavigationCase...... 127 5.4.2 TheLandVehicleNavigationCase...... 129 5.5 CONCLUSIONS ...... 131 CHAPTER 6: GPS/IMU HYBRIDISATION FOR PERSONAL NAVIGATION ...... 134 6.1 INTEGRATION STRATEGIES &ARCHITECTURES ...... 135 6.1.1 LooseCoupling...... 135 6.1.2 TightCoupling...... 136 6.1.3 SensorsAugmentation...... 137 6.1.4 PracticalUseCases...... 138 6.2 LAND VEHICLE NAVIGATION CASE ...... 138 6.2.1 Introduction ...... 138 6.2.2 IntegratedNavigationSystem...... 140 6.2.2.1 INSMechanisation...... 140 6.2.2.2 MeasurementEquations ...... 143 6.2.2.3 CouplingMethodology ...... 144 6.2.3 TestResults ...... 148 6.2.4 Conclusion ...... 156 6.3 PEDESTRIAN NAVIGATION CASE ...... 157 6.3.1 Introduction ...... 157 6.3.2 PNSMechanisationPerformance...... 158 6.3.2.1 StaticPerformance ...... 158 6.3.2.2 ConstrainedNavigation...... 159 6.3.2.3 UnconstrainedNavigation...... 162 6.3.2.4 Conclusion ...... 163 6.3.3 IntegratedNavigationSystem...... 164 6.3.3.1 Introduction...... 164 6.3.3.2 CouplingMethodology ...... 165 6.3.3.3 TestResults...... 171 6.3.4 Conclusion ...... 176 6.4 CONCLUSION ...... 177 CHAPTER 7: CONCLUSIONS AND FUTURE WORK ...... 178 7.1 CONCLUSIONS ...... 178 7.2 FUTUREWORK ...... 180 APPENDIX A: DOPPLER EFFECT...... 182 APPENDIX B: QUATERNION-BASED ATTITUDE COMPUTATION ...... 186 APPENDIX C: LEAST SQUARES AND KALMAN FILTERING...... 190 APPENDIX D: FREQUENCY ESTIMATION TECHNIQUES...... 194 BIBLIOGRAPHY...... 200

Pagexi TableofContents

Pagexii ListofFigures

List of Figures Figure2.1:GPSL1signalgenerationarchitecture...... 9 Figure2.2:BasebandC/APSD...... 10 Figure2.3:StructureofaGPSframe...... 10 Figure2.4:GeneralGPSreceiverarchitecture...... 12 Figure2.5:Singledwellserialsearchacquisitionstructure...... 14 Figure2.6:Probabilityofdetectionforaconstantdwelltimeof20ms...... 17 Figure2.7:Singledwellserialsearchmeanacquisitiontimeforaconstantdwelltimeof20ms.....17 Figure2.8:GenericPhaseLockLooparchitecture[3]...... 17 Figure2.9:PerformanceofseveralCostasPLLdiscriminators...... 19 Figure2.10:GenericDelayLockLooparchitecture[3]...... 20 Figure2.11:Singledwellserialsearchprobabilityofdetectionforaconstantdwelltimeof500ms...... 27 Figure2.12:Singledwellserialsearchmeanacquisitiontimeforaconstantdwelltimeof500ms.27 Figure2.13:FFTbasedacquisitionscheme...... 28 Figure2.14:CostasPhaseLockLooptrackingperformance...... 29 Figure2.15:Probabilityofnoerror(BERof0)inthedemodulationoftheephemeris/clockblock (WhiteGaussianNoiseChannel)...... 29 Figure2.16:Comparativenavigationtestinurbanenvironment...... 30 Figure2.17:AssistedGPSbasicprinciple...... 31 Figure2.18:AGPSacquisitionenhancement...... 31 Figure2.19:EGNOScoverage...... 33 Figure2.20:Positioningserveraccuracy...... 33 Figure2.21:Meansignaldurationrequiredforasuccessfulacquisition.Pfa=1e5,nofrequency error...... 34 Figure2.22:Meanacquisitiontimeforasuccessfulacquisition.Pfa=1e5,nofrequencyerror...... 35 Figure2.23:Lightindoorenvironment...... 38 Figure2.24:2DplotofBT338(standalone)inlightindoorenvironment...... 38 Figure2.25:2DplotofBT338(MSbased)inlightindoorenvironment ...... 38 Figure2.26:Urbanstreetenvironment(headingnorth)...... 39 Figure2.27:Urbanstreetenvironment(headingsouth)...... 39 Figure2.28:2DplotofBT338(standalone)inurbanstreetenvironment...... 40 Figure2.29:2DplotofBT338(MSbased)inurbanstreetenvironment...... 40 Figure2.30:2DplotofBT338(standalone)inurbandynamictest...... 40 Figure2.31:2DplotofBT338(MSbased)inurbandynamictest...... 40 Figure2.32:AGPStrackingresultofapedestriangoingoutside/insidebuildings...... 41 Figure2.33:HSGPStrackingresultofapedestriangoingoutside/insidebuildings...... 41 Figure3.1:Inertial (I) ,ECEF (e) andnavigation (n) frames...... 46 Figure3.2:Navigation (n) frame...... 46 Figure3.3:Euler’sanglesdefiniton...... 49 Figure3.4:Estimatedinclinationangleerrorasafunctionofseveralaccelerometerbiases...... 52 Figure3.5:Accelerometerinclinationmeasurementscheme...... 52 Figure3.6:Euler’sanglessingularityissue...... 53 Figure3.7:Euler’sanglessingularityresolution...... 53 Figure3.8:Xsensmotiontrackerandsensorsperformance...... 54 Figure3.9:Accelerometersturnonbias...... 55 Figure3.10:Accelerometerturnonscalefactor...... 55

Pagexiii ListofFigures

Figure3.11:Gyroscopesturnonbias...... 56 Figure3.12:Gyroscopetriadstaticoutputs...... 56 Figure3.13:Rotationrateof (e) withrespectto (I) expressedin (n) .v N=v E=140km/h,h=0...... 58 Figure3.14:Rotationrateof (e) withrespectto (I) expressedin (n) ...... 58 Figure3.15:InertialNavigationSystem(INS)mechanisation...... 60 Figure3.16:PredictedandactualINShorizontalRMSerror...... 62 Figure3.17:BiasesandscalefactorimpactonINShorizontalaccuracy...... 62 Figure3.18:DGPSvelocityofreference.Walkn°1...... 66 Figure3.19:DGPSvelocityofreference.Walkn°2...... 66 Figure3.20:Bestparameterscomputedevery2steps.Walkn°1...... 67 Figure3.21:Bestparameterscomputedevery2steps.Walkn°2...... 67 Figure3.22:Bestparameterscomputedover2s.Walkn°1...... 68 Figure3.23:Bestparameterscomputedover2s.Walkn°2...... 68 Figure3.24:Regressioncoefficients.Nonlinearmodel...... 70 Figure3.25:Regressioncoefficients.Nonlinearmodel(closeup)...... 70 Figure3.26:Regressioncoefficients.Linearmodel.1 st method...... 70 Figure3.27:Regressioncoefficients.Linearmodel.2 nd method...... 70 Figure3.28:MeanDGPSvelocityprofileoftheelevenreferencetests...... 71 Figure3.29:CurvilineardistanceestimationerrorwithrespecttoDGPSmeasurements...... 71 Figure3.30:MeanDGPSvelocityprofileoftheeightreferencetests...... 72 Figure3.31:Regressioncoefficients.Linearvelocitymodel.2 nd method...... 72 Figure3.32:Referencevelocityusedforregression...... 73 Figure3.33:DGPSvelocityprofile(up)anddistanceestimationerror(down)...... 73 Figure3.34:Regressioncoefficients.Linearmodel.2 nd method...... 73 Figure3.35:Parametersofthevelocitymodel(unitm/s).IMUismovedwhilewalking...... 75 Figure3.36:Relationshipbetweentheaccelerationmagnitudeandtheparameters(unitm/s 2)...... 75 Figure3.37:PedestrianNavigationSystem(PNS)mechanisation...... 76 Figure3.38:Errorofapedestrianwalkingastraightpathassumingconstantvelocityandheading ratebiases...... 77 Figure3.39:Trajectoryerrorofapedestrianwalkingastraightpathassumingconstantvelocityand headingbiases...... 77 Figure3.40:2Dupperboundpositionerrorassumingaconstantvelocitybias...... 78 Figure3.41:Detailofthecontributionsofeach2Dupperboundpositionerror...... 78 Figure4.1:Pressuremeasurementprinciple...... 81 Figure4.2:Altitudetopressurerelationship...... 81 Figure4.3:Requiredpressureresolutiontoenablea1mverticalresolution...... 82 Figure4.4:Impactofthepressurevariationonthecomputedaltitude...... 82 Figure4.5:Altitudeandtemperaturevariationsrecordedover13hoursinaclosedroom...... 83 Figure4.6:Verticalvelocitycomputedwiththepressuresensormeasurements...... 83 Figure4.7:3DRMSpositionerrorusingpressuremeasurementswiththreedifferentcomputations methods...... 84 Figure4.8:DOPsimprovementduetotheprocessingofthepressuremeasurements...... 84 Figure4.9:Earth’smagneticfieldintensity[22]...... 85 Figure4.10:Earth’smagneticfielddeclination[22]...... 85 Figure4.11:Earthmagneticfield[25]...... 87 Figure4.12:Magneticheadingerrorwithrespecttoinclinationerror...... 87 Figure4.13:Calibrationtestdiagraminanonperturbedmagneticenvironment...... 88 Figure4.14:Magneticfieldmagnitudevariationduringthedifferentvehicleenginestart...... 89 Figure4.15:Magneticinterferencesduetothedashboardequipmentsofavehicle...... 89

Pagexiv ListofFigures

Figure4.16:Typicalrotationratepatternsforpedestriannavigation(upperpart)andlandvehicle navigation(lowerpart)...... 92 Figure4.17:PSDofthethreerotationratecomponentsinthemobileframe (m) ,1 st orderGMand 2nd orderbandpassfilter...... 92 Figure4.18:Typicalaccelerationmagnitudepatternsforpedestriannavigation(upperpart)andland vehiclenavigation(lowerpart)...... 93 Figure4.19:PSDofthethreeaccelerationcomponentsinthemobileframe (m) ,1 st orderGMand 2nd orderbandpassfilter...... 93 Figure4.20:Inclinationfilterprinciple...... 95 Figure4.21:Headingfilterprinciple...... 98 Figure4.22:Attitudefilteralgorithmusingallthesensors...... 100 Figure4.23:Attitudefilteralgorithmwithonly1gyroscopeinthesensorsunit...... 101 Figure4.24:Attitudefilterheadingsolution...... 102 Figure4.25:Normalisedmagneticfieldmagnitude...... 102 Figure4.26:Attitudefilterandgyrobasedheadingerrors.Allsensorsareused...... 103 Figure4.27:Attitudefilterheadingerror.Allsensorsused...... 103 Figure 4.28: Trajectories using different heading sources. Pedestrian case with the triad of gyroscopes...... 104 Figure4.29:Attitudefilterandgyrobasedheadingerrors.Onlyonegyroscopeisused...... 105 Figure4.30:YaxisgyrobiasestimateoftheInclinationKalmanFilter(IKF)...... 105 Figure 4.31: Trajectories using Different Heading Sources. Pedestrian Case with only one Gyroscope...... 106 Figure4.32:HeadingerrorswithrespecttotheDGPSreference.Allthesensorsareused...... 107 Figure4.33:Trajectoriesusingdifferentheadingsources.Landvehiclecasewiththreegyroscopes...... 107 Figure 4.34: Trajectories using different heading sources. Land vehicle case with only one gyroscope...... 108 Figure4.35:ZUPT.Theoreticalvelocityerrorprofiles...... 110 Figure4.36:ZUPT.Theoreticalpositionerrorprofiles...... 110 Figure5.1:Navigationsystemsintegrationprinciple...... 113 Figure5.2:Satellitepositiondefinitionwithrespecttotheuser’sposition...... 116 Figure5.3:SatelliteDoppleruncertainty.GPStimeknownat±2s...... 117 Figure5.4:SatelliteDoppleruncertainty.User’spositionuncertaintyof±15km...... 117 Figure5.5:SatelliteDoppleruncertainty.GPStimeknownat±2s.User’spositionuncertaintyof ±15km...... 117 Figure5.6:SatelliteDoppleruncertainty.GPStimeknownat±2s.ResultswithrealGPSephemeris...... 117 Figure5.7:LocalOscillatordrift(ProPakGL2plus,statictestcase)...... 118 Figure5.8:FrequencybinsandnumberoffrequencybinstoexplorewithrespecttoauserDoppler uncertaintyof+/250Hz...... 119 Figure 5.9: Sliding window variances computed from three different acceleration magnitude sources...... 121 Figure 5.10: Illustration of elevation (left) and azimuth (right) errors for a user’s position uncertaintyof±15kmandaGPStimeof±2s...... 122 Figure5.11:Badsatellitegeometryconfigurationwithrespecttotheuser’sheading...... 124 Figure5.12:Typicalissueoftheuser’svelocityestimation.Landvehiclecase...... 124 Figure5.13:Driftfreeattitudefilterwithinmotionalignmentaiding...... 125 Figure5.14:Attitudeangleserrorwithrespecttotheestimatedangleswithastaticinitialisationof thefilter...... 126

Pagexv ListofFigures

Figure 5.15: Closeup on the first epochs. The convergence of the filter is shown here and lasts about10seconds...... 126 Figure5.16:User’sDoppleruncertaintyreductionprocedure...... 126 Figure 5.17: User’s Doppler predictionaccuracy using filtered (a) and gyrobased (b) attitude as well as the modelled pedestrian velocity. The reference user’s Doppler is taken from GPS measurements...... 128 Figure 5.18: User’s Doppler prediction accuracy using filtered and gyrobased attitude and the Doppler model of equation (5.7). The reference user’s Doppler is taken from GPS measurements...... 128 Figure 5.19: Reduction of the number of user’s Doppler bins with respect to different coherent integrationtimesforaninitialuncertaintyof±250HzusingdataprovidedbyMEMSsenors...... 129 Figure5.20:User’svelocityestimationusingallpossiblecombinationsofmeasurementsfromtwo GPSsatellites...... 130 Figure5.21:User’sDopplerpredictionaccuracyusingthefilteredattitude...... 130 Figure5.22:ImprovementofthecombinationofMEMS...... 131 Figure6.1:Loosecouplingintegrationscheme.Openlooparchitecture...... 136 Figure6.2:Loosecouplingintegrationscheme.Closedlooparchitecture...... 136 Figure6.3:Tightcouplingintegrationscheme.Openlooparchitecture...... 137 Figure6.4:Tightcouplingintegrationscheme.Closedlooparchitecture...... 137 Figure6.5:Hybridisationarchitectureusingexternalmeasurementsforcorrectionpurposes...... 138 Figure6.6:IMUplacementwithrespecttothevehicle...... 141 Figure6.7:SimplifiedINSmechanisationforlandvehiclenavigation...... 142 Figure 6.8: Integrated Navigation System mechanisation as designedfor land vehicle navigation. Closedlooparchitecture...... 148 Figure6.9:Referencetrajectory(red)andOEM4positionsolution(blue).Urbantrial...... 149 Figure6.10:Differentheadingestimatesascomputedduringtheurbantrial...... 150 Figure 6.11: Standalone Inertial Navigation System position solutions using different heading sources...... 150 Figure 6.12: INS/GPS position solution using filtered and nonfiltered heading. Two Doppler measurementsusedforhybridisationwhenavailable...... 151 Figure6.13:IntegratedNavigationSystemtrajectory.2Dopplerand2pseudorangemeasurements usedwhenavailable...... 152 Figure6.14:Biased(red)andunbiased(blue)alongtrackvelocityprofile...... 153 Figure6.15:Twoparticularvelocityprofilediscontinuities...... 153 Figure6.16:Satellitegeometryissue...... 154 Figure 6.17: Along track velocity profile corrected by the Inertial Navigation System when bad satellitesconfigurationsaredetected...... 154 Figure 6.18: Corrected and noncorrected Integrated Navigation System trajectories. 2 Doppler measurementsusedforhybridisationwhenavailable...... 155 Figure6.19:VerticalperformanceoftheIntegratedNavigationSystem(upperplot).Verticalprofile oftheexercisedtrial(lowerplot)...... 156 Figure6.20:Staticerrorsofthreedifferentinertialnavigationalgorithmsusinglowcostsensors.159 Figure 6.21: Position solutions as provided by threedifferentnavigation systems. Short dynamic test...... 160 Figure6.22:PNSpositionsolutionsusing100%ofGPSdataforvelocitymodelcalibration.Long dynamictest...... 160 Figure6.23:PNShorizontalRMSerror.Longdynamictest...... 161 Figure6.24:PNSpositionsolutionsusingthefirst10%ofGPSdataforvelocitymodelcalibration. Longdynamictest...... 161

Pagexvi ListofFigures

Figure6.25:Unconstrainednavigationsolutions...... 162 Figure6.26:Displacementdirectiondetectionresult...... 163 Figure6.27:Possiblemeasurementconfigurations...... 169 Figure6.28:Realtimesensorfusionarchitecture(closedlooploosecouplingarchitecture)...... 169 Figure6.29:Datasynchronisationprinciple...... 170 Figure6.30:IntegratedPedestrianNavigationSystem...... 171 Figure6.31:RealtimePedestrianNavigationSysteminterface[53]...... 171 Figure6.32:HSGPStrackingperformanceinurbanandindoorenvironments...... 172 Figure6.33:AGPStrackingperformanceinurbanandindoorenvironments...... 172 Figure6.34:HSGPS/IMUhybridisationresults...... 172 Figure6.35:AGPS/IMUhybridisationresults...... 172 Figure 6.36: Pedestrian trial inside and outside buildings. AGPS single point position solution (blue)andreferencetrajectory(yellowoutdoors,orangeindoors)...... 173 Figure6.37:AGPS/IMUhybridisation.Longtest...... 174 Figure 6.38: GPS measurements availability and regression coefficients (unitless) without variabilitydetection(realtimeresults)...... 175 Figure 6.39: GPS measurements availability and corrected regression coefficients (unitless) after variabilitydetection(postprocessingresults)...... 175 Figure6.40:AGPS/IMUhybridisationresults.Longtestwithcorrectedregressioncoefficients(post processingresults)...... 176

Pagexvii ListofFigures

Pagexviii ListofTables

List of Tables Table1.1–ApplicationsofMEMSAccelerometersandGyroscopesinConsumerProducts[54]....2 Table2.1:Lightindoorcoldstarttestresults...... 38 Table2.2:Lightindoortrackingtestresults...... 38 Table2.3:Urbanstreetcoldstarttestresults...... 39 Table2.4:Urbanstreettrackingtestresults...... 39 Table3.1:Accelerometertriadturnonbiasesandscalefactors...... 55 Table3.2:Gyroscopetriadturnonbiases...... 56 Table3.3:Candidateparameterstothepedestrianvelocitymodel...... 65 Table3.4:Correlationresults.Parameterscomputedeachstep...... 67 Table3.5:Correlationresults.Parameterscomputedevery2steps...... 67 Table3.6:Crosscorrelationcoefficients(1step)...... 68 Table3.7:Crosscorrelationcoefficients(2steps)...... 68 Table3.8:Distanceestimationaccuracy–Method2...... 71 Table3.9:Pedestrianmechanisationsimulationparameters...... 78 Table4.1:ToulouseEarth’smagneticfieldcharacteristics(year2005)[22]...... 85 Table4.2:Measurementunitconfigurationgiventypicaltestcases...... 102 Table 5.1: Number of frequency bins to explore given an initial user’s Doppler uncertainty of ±250Hz.Pedestriannavigationcase...... 129 Table 5.2: Number of frequency bins to explore given an initial user’s Doppler uncertainty of ±250Hz.Landvehiclenavigationcase...... 131 Table6.1:TypicalAllanconstantsfordifferenttypesofoscillators(unitsofseconds)[44]...... 146 Table6.2:OEM4trackingperformanceinurbanenvironment...... 149

Pagexix ListofTables

Pagexx Abbreviations

Abbreviations AGPS ...... AssistedGlobalPositioning OTD ...... ObservedTimeDifference System PDA ...... PersonalDigitalAssistant AOA...... AngleofArrival PDF ...... ProbabilityDensityFunction BER...... BitErrorRate PDR...... PedestrianDeadReckoning BTS ...... BaseTransceiverStation PLL ...... PhaseLockLoop C/A...... Coarse/Acquisition PND ...... PersonalNavigationDevice CDF...... CumulativeDensityFunction PNS ...... PersonalNavigationSystem CGI...... CellGlobalIdentity PPM ...... PartsPerMillion COO ...... CellofOrigin PPS...... PrecisePositioningService DCO ...... DigitallyControlledOscillator PRN...... PseudoRandomNoise DFT ...... DiscreteFourierTransform PSD...... PowerSpectralDensity DLL...... DelayLockLoop RAIM...... ReceiverAutonomousIntegrity DoF...... DegreeofFreedom Monitoring DOP...... DilutionofPrecision RTD ...... RelativeTimeDifference DSP ...... DigitalSignalProcessor SIS...... SignalinSpace EARS ...... Euler’sAnglesSingularity SMLC...... ServiceMobileLocationCenter Resolution SNR...... SignaltoNoiseRatio ECEF...... EarthCentredEarthFixed SPS...... StandardPositioningService ECEF...... EarthCentredEarthFixed TOA ...... TimeofArrival EKF ...... ExtendedKalmanFilter TTFF ...... TimetoFirstFix EOTD...... EnhancedObservedTime UMTS ...... UniversalMobile Difference TelecommunicationSystem FFT...... FastFourierTransform VDOP...... VerticalDilutionofPrecision FLL...... FrequencyLockLoop GNSS ...... GlobalNavigationSatellite System GPS ...... GlobalPositioningSystem GSM...... GlobalSystemforMobile communications HDOP...... HorizontalDilutionofPrecision HSGPS ..... HighSensitivityGlobal PositioningSystem IF ...... IntermediateFrequency ILSQ...... IterativeLeastSQuare IMU...... InertialMeasurementUnit INS ...... InertialNavigationSystem ISA ...... InertialSensorAssembly LBS ...... LocationBasedServices LMU...... LocationMeasurementUnit LO ...... LocalOscillator LoS...... LineofSight LSQ ...... LeastSquare MEMS...... MicroElectroMechanicalSystem MIM ...... MagneticInterferenceMitigation MSL ...... MeanSeaLevel

Pagexxi Abbreviations

Pagexxii Introduction

Chapter 1: Introduction 1.1 Background

Service sets around the location of a mobile, often referred as Location Based Services (LBS),arecurrentlygainingmoreandmoreimportanceinthealldaylife.Firstdrivenbyregulation issues under the E911 law dedicated to provide a location mean to the emergency call, many commercialapplicationsorservicesareavailabletoday.Someareaimedatreachingalargepublic with massmarket perspectives such as invehicle or personal navigation, the others focus on specificapplicationssuchasfleetmanagement,etourism,andlocationofworkers… Several techniques can be usedtoenable the location ofoneuser in many environments. Amongthem,GPSbasedtechniquesaretodayveryattractiveduetothegreateffortmadebythe industrytominiaturisefrontendsandprocessingcoresintoonesinglechipsetwhileincreasingboth acquisition and tracking sensitivity and availability of the position solution especially in urban environments.Softwarebasedsolutionsarealsotakingmoreandmoreimportancesincetheyoffer moreflexibilityandcosteffectivemeanstoenableGPSinhandsets,eveniftheyrequiretodaynon negligible computational load. The recent convergence of wireless communication providers and cellphone industry roadmaps alsotremendously accelerate the use ofthe GPSbased positioning techniquesandmorespecificallyAssistedGPS(AGPS).Forallthesereasons,itseemsobviousthat satellitebasedtechniqueswillbecomeanessentialpartofseamlesspositioningsystems. However, GPSbased positioning techniques still encounter issues in indoor areas where users are very likely to go in. The processing of GPS signals is indeed very challenging as the chipsets have to deal with signals of very weak power. Receivers have to use long coherent integration time to reduce the effect of noise and increase the probability of detecting a specific satellite signal, but it makes them very sensitive to local oscillator stability, user’s Doppler contribution as well as crosscorrelation peaks that might be wrongly considered as a true correlation one (often referred as near far effect). Strong multipath may also affect incoming signals,reducingatthesametimetheaccuracyofthepositionsolution. As a consequence, even if GPS is a good mean to fulfil the needs of most of location applications,itstillencountersbigissuesinharshenvironments.Itisthereforeverylikelyinmany indoorcasestohaveacompleteinterruptionofthepositioningservice.Inordertogetthepositiona userwhateverhislocation,alternativesystemsshallbecoupledwithGPS.Manyexistbasedonthe processingofWIFI,UWB,pseudolites,TVormobilephonesignals,withalldifferentaccuracies. However, all the previously mentioned augmentations require infrastructure that can largely be foundinurbanenvironmentsbutcertainlynotinruralareasmakingindoorlocationstillanissue. Selfcontained augmentationshave the advantageof being available wherever the useris. Inertial sensors, and more generally small sensors, are the typical example of selfcontained augmentation that does not requireany extrainfrastructureto give informationabout the motion experienced by a mobile. As they are currently gaining more and more importance in many products,theirusetosupportorreplaceGPSinsidebuildingscanbeagreatopportunitytoimprove the performance of the positioning system, even if their respective intrinsic performance is somewhattoopoortoallowtraditionalinertialnavigation.

Page1 Introduction

1.2 Motivations and Objectives

Theeffortsofthesemiconductorindustrytoproducesmall,lowconsumptionandpowerful chipsetsarebearingfruitfornowacoupleofyears.Today,manyportabledevicessuchasPDAor cellphonesarenowequippedwithsmallGPSchipsetsthatincludesboththeRFfrontendandthe basebandsignalprocessor.Thistrendisallthemorestressedinthesensorindustryasthedemand isfarmoreimportant[54].Automotiveindustryiscurrentlytheleadingsectorthatdrivesthedesign andtheperformanceofthemassmarketsensors,butapplicationsatconsumerlevelaretakingmore andmoreimportance.Table1.1illustratestherecentneedsforaccelerometerandgyroscopesensors inconsumerproductsaccordingto[54]. Consumer MEMS inertial Status of Function Examples of products product device(s) commercialisation

Pedometer,imagerotation, NTTDoCoMopedometer(2003) Accelerometerincell menuscroll,gaming,freefall imagerotation(2004) 2or3axisaccelerometer, phonesince2003 Cellphones detection(HDDprotection), SamsungSGHE760,Nokia3230 1or2axisgyroscope Gyroscopeexpectedin navigation (navigationandgaming) 2007–2008

NavigationIMU,Webcontent 2or3axisaccelerometer Demonstratorin2002at PDA PocketPCe740 navigation 2axisgyroscope ParisPDAshow

AllPanasonicDSCs,e.g.Lumix Two1axisgyroscopesor Gyroscopeestablished DigitalStill Imagestabilisation ($200),PentaxOptioA10($350) one2axisgyroscope sincelate1990s Cameras(DSC) Canon,SonyDSCs Two2axisaccelerometers Accelerometeremerging

Imagestabilisation,freefall Upperend:Panasonic(over$1500) Two1axisgyroscopesor Gyroscopeestablished Camcorders detection(HDDprotection) Highend:JVC30Gb,Toshiba60Gb one2axisgyroscope sincelate1990s

Freefalldetection Freefalldetection(HDD established Laptops protection),GPSdead IBM,Toshiba,Applelaptops 2or3axisaccelerometer Otherapplications reckoningassist(antitheft) emerging

MP3players Freefall(HDDprotection) iPodwithharddiscdrive 3axisaccelerometer Established

Others:toys, Nintendo’sKirby“TiltnTumble” games,personal GameBoy,Microsoftgamepad 2or3axisaccelerometers, Realisticmotion Established transporter, “SidewinderFreestylePro”,Segway, 1or2axisgyroscopes robots SonyAiborobot,SonyPS3

Table 1.1 – Applications of MEMS Accelerometers and Gyroscopes in Consumer Products [54]. The use of such sensors is all the more interesting as the sensor industry is constantly improvingtheirintegrationinsmallpackageswhileloweringtheirpowerconsumption.Threeaxis accelerometersarenowwidelyavailable,asforinstance[56],aswellasthreeaxismagnetometers [57]. Gyroscopes are more difficult to integrate in a single chip due to the more complex measurement procedure. However, a major integration step has been reached with the recent announcementofmassproductionofatwoaxislowcostgyroscope[55]inasinglesmalldie. At the time this thesis started, the market perspectives of MEMS inertial sensors were obviouslynotknownbutsomewhatexpectedduetotheincreaseoftheiruseinconsumerproducts. Furthermore, the packaging of these lowcost sensors was already small enough to make them easilyincorporableinPersonalNavigationDevices(PND)suchascellphones,PDAevenGPSfor cars. Studying the pertinence of their use to supply GPS in order to meet LBS requirement was thereforealreadymotivated. AllalongthethreeyearsthisPh.D.lasted,theMEMSperformanceandmarketperspective

Page2 Introduction evolutionshasstrengthenedtheideathattheycouldrepresentacosteffectiveaugmentationsystem. TheuseofsuchsmallsensorsincombinationwithhardwarebasedorsoftwarebasedGPSreceivers is very likely to become a real lowcost possibility in a quite near future. As a result of these motivations, several objectives were set along this thesis with respect to typical navigation use cases.Theyallcanbesummarisedinthreemaincategories. Givenasetoflowcostsensors,afirstobjectivewastodeterminewhatimprovementcould be brought in the different inertial navigation algorithms used for land vehicle or pedestrian navigation in order to enhance the navigation systems performance. Several points were of particularinterest,andmorespecificallythoselistedbelow: • Theeffectivenessofusingapressuresensor. • Theeffectivenessofusingatriadofmagnetometers. • Thepossibilityofreducingtheimpactofthetypicalerrorsthatdramaticallyaffecttheinertial navigationsystems(gyroscopebiases,accelerometerbiases). • Theperformanceofselfcontainedaugmentationsbasedonthesetoflowcostsensors. Asecondobjectivewastoanalysethefeasibilityofcombininginformationfromthesetof lowcost sensors to reduce the HSGPS/AGPS processing core complexity or equivalently computational load when dealing with weak signals. The following points were consequently investigated: • Improvement of the acquisition stage (especially in cold start mode) within the scope of a softwarebasedreceiver. • DecreaseoftheTimetoFirstFixusingtheexternalsetoflowcostsensors. • Decreaseofthecomputationalload/increaseofsensitivity. Finally, the last objective was to get insights of several hybridisation schemes. The main goalwastoimprovethepositionsolutionavailabilityandaccuracyinharshenvironmentswhere GPS modules (either HSGPS orAGPS) can not provideaccurate andreliable positionsolutions. Thefollowingpointswerethusaddressed: • Investigationofthefeasibilityofintegratingthesetofsensorsinhandhelddevices. • Improvement of both availability and reliability of the position solution as provided by the integratednavigationsystem. • UseofveryfewGPSmeasurementstoenablethecorrectionoftheerroraffectingthelowcost sensorsoutput. • ResearchofcriteriatomonitorthequalityofGPSmeasurementsintheperspectiveofGPS/INS hybridisationforPedestrianNavigationSystem. 1.3 Contributions

The different topics studied in this thesis are detailed throughout the report. Here are summarisedthemainsubjectsthatwereinvestigated.Someofthesepointshavebeenpublishedin conferences (papers published are mentioned in the different chapters of this report – see the bibliographyfordetails).

Page3 Introduction

• Simulation of the performance of a software-based AGPS acquisition stage .Themaingoal of this simulation methodology is to assess the performance that can be expected from a softwarebased AGPS in order to estimate the computational load for a given use case and consequently the acquisition time performance of such a receiver in typical urban / indoor environments. • Analysis of the performance of both HSGPS and AGPS in typical urban environments . This analysis is done through field test trials in real conditions in order to analyse the performanceoftheAssistedsolutionwithrespecttotheHighSensitivityoneintermsoftimeto fix and accuracy. In the same time, the position solutions quality is compared to determine whichmoduleismoresuitedtohybridisationwiththelowcostsensors. • Optimisation of INS algorithms for both land vehicle and pedestrian navigation . An exhaustiveanalysisofthemechanisationsisprovidedwithaparticularfocusonthePedestrian NavigationSystem(PNS).Adetailedanalysisoftherelationshipbetweenparameterscomputed fromtheaccelerationmagnitudeandthevelocityofthepedestrianisdone,aimingatelaborating asimplebutreliablemodelthatisusedtocompensateforaccelerometerbiases. • Euler’s angle singularity resolution algorithm . Within the scope of this thesis and in the particular case of the pedestrian navigation, the possibility of combining a GPS chipset with lowcost sensors in a handheld device is investigated. As a consequence, the Portable Navigation Device (PND) may experience all possible attitudes including those introducing singularity in the computation of the Euler’s angles (and so the heading). A specific compensationalgorithmisdescribedinthethesisthatpreventfromusinganunreliableheading informationcausedbypitchanglevaluesof+/90°,allowingthetrackingoftheheadingofa PNDwhilemovedduringthewalk. • Improvement of the heading accuracy .Anattitudefiltercapableofestimatingthegyroscope biasesastheyoccurduringthemotionisprovidedinthisthesis.Thecapabilityofestimating these biases while the unit is in motion is especially addressed and discussed. This filter includestheEuler’sanglessingularityresolutionalgorithmmentionedabove.Italsoincludesa magneticmitigationtechniquethatpreventsmagneticinterferencesfromdramaticallydegrading theheadingaccuracy,especiallywhentheuserisnearbyironobjects. • Tracking of the pedestrian heading with respect to a moving handheld device .IfthePND contains the lowcost sensorsthat shall be combined with GPS datato providean integrated navigation system, and because the PND may be handheld while the user is requesting its location,theheadingofthePNDmaydifferfromthatoftheuser.Analgorithmdedicatedto keeptrackofthetruepedestrianheadingisproposedformediumhandsetmotions. • Analysis of the improvement brought by the use of a barometer .Thepossibilityofusinga pressure sensor in order to get absolute or differential altitude measurements is studied to enhance the position solution using less than four GPS measurements. Discussion of the methodologyusedtoincorporatethealtitudemeasurementsisalsodone. • Improvement of the GPS acquisition stage . The processing of attitude and velocity information provided by the sensors assembly is used to estimate the user’s Doppler, which consequentlyallowareductionofthenumberofDopplerbinstoexploreandthereforereduces the acquisition complexity. The capability of the attitude filter to provide sable attitude measurementsistestedwithinthiscontributionfor“ondemand”user’sDopplerestimation.

Page4 Introduction

• Tight integration architecture taking advantage of very few GPS measurements .Designed forlandvehicleapplication,theproposedtightintegrationarchitectureisdemonstratedtoallow the navigation using only 2 Doppler measurements, but accumulating errors. As soon as 2 pseudorangesareadded,theintegratednavigationsystemdoesnotaccumulateerrorsanymore andaccuracywithin40mfromthereferencetrajectoryisshownpossiblewithlowcostsensors. However,theproposedhybridisationarchitectureisverysensitivetogeometryofthesatellite usedintheintegrationfilter. • Real time low-cost sensors/AGPS (or HSGPS) integrated pedestrian navigation system .A real time integrated navigation system prototype that fuses MEMS sensors with AGPS (or HSGPS) is developed to ease the characterisation of such a seamless positioning system especially in outdoor to indoor and indoor to outdoor transition phases. Several GPS quality monitoring criteria are proposed and their pertinence is tested on actual data, which demonstrateda2Derrorwithin10metresfromthereferencetrajectoryevenduringGPSoutage ofabout2minutes. 1.4 Thesis Outline

Thisthesisreportisorganisedasfollows: Chapter 2 recallsthebasicsoftheGPSpositioningtechniquesandgivesinsightsofcurrent enhancements in the processing core of massmarket receivers such as HSGPS and AGPS. Simulationsaredonetoestimatesignalprocessingperformancesuchastimetofixwithrespectto typical satellite configurations. Both types of lowcost receivers are tested in urban and indoor environmenttoassesstheirrespectiveperformancesandfindthemodulethatgivesthebestones. Chapter 3 introducesthealternativenavigationsystemsbasedoninertiaprinciples.Firstthe classicalInertialNavigationSystem(INS)mechanisationisderivedindetailsanditsperformance relativetothequalityofthesensorsusedwithinthescopeofthisthesisisdiscussed.Theparticular caseofthepedestriannavigationisthenaddressedingreatdetailsandthemechanisationchosenin thethesisisjustified.Theperformanceofsuchamechanisationissimulatedaccordingtoseveral errormodelsandcomparedtowhatcanbeobtainedusingtheclassicalINS. Chapter 4 dealswiththepossibleselfcontainedaugmentationsthatcanbeimplementedin order to improve the performance of the algorithms described in chapter 3. In particular, the additionofapressuresensorandmagnetometersarediscussed.Severalwellknownerrorlimitation principlesarerecalled.Thischapterfocusesalsoonthedynamicestimationofgyroscopedriftsand an attitude filter capable of providing stable heading information is proposed. The possibility of mitigatingmagneticinterferencesisalsoaddressed. Chapter 5 focuses on the improvement of the HSGPS/AGPS processing stage and more specifically on the acquisition stage. The different Doppler contributions affecting the incoming signalareanalysed,withmoreattentionpaidtothatoftheuser.Thepossibilityofestimatingthe user’sDopplerpriortoengagetheacquisitionprocessandassumingtheunitcontainingboththe GPSchipsetandthesensorsassemblyinmotionistheninvestigated.Thesensorsfusionalgorithm istestedforpedestrianandlandvehiclenavigations.Bothstaticanddynamiccasesarestudied. Chapter 6 addresses more specifically the improvement of the position solution via the

Page5 Introduction hybridisation of the different navigation systems described in chapter 2 and chapter 3. The land vehicle navigation case is studied through a tight integration scheme which differs from the standard one usually used to fuse GPS and INS. The pedestrian navigation case is addressed through aloosecouplingscheme.A realtimepedestriannavigationsystemisdeveloped forthat purpose. These different hybridisation algorithms are tested in typical urban conditions and respectiveperformanceresultsaredetailed.

Page6 GPSBasedPositioning

Chapter 2: GPS-Based Positioning This chapter is dedicated to the presentation of the GPSbased positioning technique for personalpositioning. In afirstpart,theGPSfundamentalsarerecalledandafocusisputonthe measurements available at the output of a GPS receiver for further integration with another navigation system and more specifically with an Inertial Navigation System (INS). The main processing stages of a standard GPS receiver are then briefly presented. In a third time, new architectures such as HSGPS and AGPS are discussed. The weakest points of the standard GPS processing are highlighted and solutions implemented in the new processing architectures are described.Theperformanceofeachtypeofpositioningmethodisfinallydiscussedintermsoftime toacquire,timetofixandpositionaccuracy.AcomparativetestbetweenHSGPSandAGPSisalso presentedintypicalindoorenvironmentsandtheneedforaugmentationsinharshenvironmentis demonstrated.

Page7 GPSBasedPositioning

2.1 The Global Positioning System 2.1.1 Fundamentals TheGlobalPositioningSystem(GPS)isasatelliteradionavigationsystemthatcanprovide any user on Earth at any time with the signals necessary for an accurate determination of its position,velocityaswellasthebiasofitsownclock,independentlyofweatherconditions. ThebasicprincipleofgettingitspositionusingGPSreliesonrangemeasurement.Auser equippedwithareceivercomputesitslocationbymeasuringthedelayofpropagationofthesignals comingfromseveraltransmittingsatellites.Thesesatelliteshaveaknownposition,sothatoncethe clockbiasofthelocalreceiveroscillatorwithrespecttothesatellitetransmitterhasbeensolved, thesepropagationdelayscanbeconvertedintogeometricdistance,allowingtheresolutionofthe 2D/3Duser’sposition.Thevelocityoftheusercanalsobecomputedusingtherateofchangeof thesepropagationdelays. In such a positioning system, timing is a very critical point. Indeed, the satellites are transmitting permanently continuous waveforms (the GPS signal) that are designed to be easily related with a time scale. Transmitters and receivers are aware of the signal characteristics and properties, so that the demodulation ofthe GPSnavigationmessageis done trougha processing designedtotakeadvantageoftheGPSsignalmodulation.Thepropagationdelayisthusmeasured by comparing the received signal to a locally generated copy of that signal. However, as the receiverclockisnotsynchronisedwiththesatellitesclocks,thetimedelaymeasurementisbiased bytheclockbiasbetweenthereceiverandthesatellite.Thus,inordertodeterminedthatbias,GPS satellitesbroadcastintheirnavigationmessagesatelliteclocksbiaseswithrespecttothatreference time.Asaconsequence,thepropagationmeasurementscanbeconsideredtobeonlybiasedbythe receiverclockbiassothatthisremainingunknownisjustsimplyaddedtothethreebasicunknown user’scoordinates.Foursatellitesarethusatleastneededtocomputetheuser’slocation. GPS is composed of three segments defined as space, control and user. They all are describedinthefollowingsubsections. 2.1.1.1 Space Segment The space segment is the satellite part of the positioning system. It is composed of 24 satellitesorbitingin6differentorbitplanesinclinedatabout55°,witharadiusofabout26600km [1].TheperiodofrevolutionofaGPSsatelliteis12siderealhours,sothatthegroundtrackofeach satellitesisrepeatedevery24siderealhours,thatis23h56min.Thesatellitepayloadcontainsfour atomicclocks,twobasedonRubidiumandtwoonCaesium,foraprecisesignalgeneration.The satellites are currently emitting a signal propagated on two carriers (L1, L2) with the following properties: – L1at1575.42MHzwithaQPSKmodulation.Theinphasechannelismodulatedbyaknown Goldcodeoflength1023,theC/Acode,witharateof1.023MHz.Thequadraturechannelis modulated by a known P code or unknown encrypted version Y code, both clocked at 10.23MHz. – L2at1227.6MHz,withaBPSKmodulationofthecarrierbytheP(Y)code.

Page8 GPSBasedPositioning

C/AcodesarewidelyknownsothattheserviceprovidedthroughtheL1C/Acarriercalled StandardPositioningService(SPS)isaccessiblebyeverybody.Opposite,thePrecisePositioning Service(PPS)supportedbyL2andthequadraturechannelatL1isreservedtoUSmilitaryandtheir alliessincetheyaretheonlyonescapableofdecodingtheYcode.TheserviceprovidedonL2and L1withtheP(Y)codeisnotwithinthescopeofthisthesis.Consequently,thefollowingwillfocus ontheL1C/Acarrier. All the satellites use the same frequencies to transmit the GPS navigation message. The generationoftheL1signalisasdescribedbelowinFigure2.1.Thetransmittedsignalistheresult ofthe2modulosumofthespreadingcodes cand p(or y)andthenavigationmessage d,whichare thenQPSKmodulated.Thespreadingcode cusedonGPSmodulationisaGoldcode,withlength N=1023 bits. Its rhythm is larger than the data rate, sothat the modulation is a spreadspectrum modulation.

Figure 2.1: GPS L1 signal generation architecture. ThesignaltransmittedonL1bytheGPSsatellite iisacombinationoftheC/AandP(Y) codes,whichis3dBWlowerthantheC/Acomponent.OmittingtheP(Y)component,theGPSL1 signaltransmittedbysatellite iisthenaswritteninequation(2.1): i = ⋅ i i ( π ) s (t) A d (t)c (t) cos 2 L1t (2.1) where: − d i istheP/NRZ/Lmaterialisationofthesatellite i navigationmessageat50Hz. − ci istheP/NRZ/Lmaterialisationofsatellite i C/Acodeat1,023MHz. − m istheP/NRZ/Lmaterialisationwaveform. − A istheamplitudeoftheC/Acomponent. It is then straightforward to compute the Power Spectral Density (PSD) of the signal transmittedonL1,accordingtoequation2.1.TheL1PSDisthusasfollows[3]:  δ ( f − L ) + δ ( f + L )  ()()()= 2 ⋅ ⊗ ⊗ 1 1 S i f A S f S f   (2.2) s d c  4  where:

– Tc isthespreadingcodechipperiod.

Page9 GPSBasedPositioning

– Sd ( f ) isthePSDoftheGPSnavigationdata.

– Sc ( f ) isthePSDoftheC/Acode.

– fR istherepetitionfrequencyofthespreadingcodec. = ( )⊗ ( ) ThePSDofthebasebandC/Acomponent Sdc (f ) Sd f Sc f isplottedinFigure2.2. The total bandwidth of the transmitted GPS signal on L1 is larger than 20 MHz. Due to the spreadingcodeproperties,thespectrumliesbelowthenoisespectrum.

Noiselevel

Figure 2.2: Baseband C/A PSD. 2.1.1.2 Control Segment The role of the control segment is to ensure the surveillance of the received signal characteristics,tocomputetheephemerisdataandthesatellitesclockcorrections,andtodownload the navigation message into the satellites payload. The control segment is composed of 5 surveillancestationsscatteredaroundtheglobe, 1maincontrolstationcalledtheMasterControl Station (MCS) located in Colorado, 4 download stations. These stations perform normally 1 downloadperdaypersatellite,withthepossibilitytodo3downloadsperdaypersatellite. GPSWeekNumberSpaceVehicleAccuracyandHealthSatellite Subframe1 TLM HOW ClockCorrectionTerms Subframe2 TLM HOW EphemerisParameters

Subframe3 TLM HOW EphemerisParameters AlmanacandHealthDataforSatellites2532,SpecialMessages, Subframe4 TLM HOW SatelliteConfigurationFlags,andIonosphericandUTCData AlmanacandHealthDataforSatellites124andAlmanacReference/ Subframe5 TLM HOW TimeandWeekNumber

30bits 300bits Figure 2.3: Structure of a GPS frame. Thenavigationmessagegeneratedforeachsatelliteisnecessaryforthereceiverstocompute

Page10 GPSBasedPositioning thepositionandthevelocityoftheuser.This50bitsperseconddatastreamissynchronouswiththe 1kHzC/Aspreadingcodeepochs.Thenavigationmessageisperiodic.Itcontains37500bits,and thus,lasts12,5min.Thedataisformattedinto30bitsword,andwordsaregroupedintosubframes of10words.Asubframeisthencomposedof300bits,andlasts6seconds.Fivesubframesforma frame. Therefore, a frame is composed of 1500 bits, and lasts 30 seconds. Frames are grouped together,andthe25framesof37500bitscomposethenavigationmessage.Figure2.3illustratesthe navigationmessagestructure. Inthemessage,muchofthedataisrepeatedeveryframe,andsomeeverysubframe.The navigationdataframes areperiodicallyupdated, approximately every2hours,andarevalidfor4 hours.Accordingtotheabovedescription,itisclearthatwithoutanyexternalaid,theminimum timerequiredforareceivertoincorporatethepseudorangemeasurementsmadeonanewspecific satelliteinthepositionsolutionisthen30secondsbecausesatelliteclockcorrectionandephemeris dataarerepeatedineachframe.Detailsaboutthemessagescanbefoundin[1]. 2.1.1.3 User Segment That segment is composed of the authorised users (military) and nonauthorised users (civilians).ThereceiverscanbestaticonEarth,ormobileinavehicleonEarth,inanaircraftora spacecraft. They permanently collectGPS signals and process themto compute the position and velocityoftheuser.Attheinputofthereceiver’santennaandcomparedtowhatistransmittedby the different satellites, the GPS signals are affected by delays accumulated during the different phasesofthepropagation.Attheoutputofthereceiver’santenna,thesignalisasfollows: r(t) = g(t) ⊗ s(t) + w(t) + (tj ) (2.3) where: − g isthepulseresponseofthepropagationchannel. − w isanadditivewhitenoise. − j isthesumofthejammersignals. Assumingthatthepropagationchannelmodifiesthereceivedsignalsuchas gisapuredelay ( g(t) = δ (t −τ ) ),attheoutputofthereceiver’santenna,thecompleteexpressionofthecontinuous signalisthengivenbyequation(2.4):  N M i −1  = i ⋅ i −τ i ⋅ i −τ i ⋅ ()π −θ i + + r(t) ∑ ∑ Ak d (t k ) c (t k ) cos 2 L1t k  (tj ) w(t) (2.4)  i=1 k=0  where: − i Ak istheamplitudeofthereceivedsignalatepoch k .Itistimedependent. − τ i k isthepropagationdelayaffectingthereceivedsignalatepoch k .Itistimedependent. − θ i k isthecarrierphaseshift,includingDopplereffectatfirstorderatepoch k . − N isthenumberofreceivedsatellitesignals. − M i isthenumberofsatellite i signalreplicaduetomultipath.

Page11 GPSBasedPositioning

2.1.2 GPS Signal Processing The main elements of a GPS receiver are illustrated in Figure 2.4. The purpose of the receiveristomakethepseudorangemeasurementsanddemodulatethenavigationmessageinorder tocomputethepositionofthereceiver’santenna.Afterbeingdigitised,thesignalisprocessedto enablethedatademodulation.Itfirstgoesthroughthedetectionprocess,i.e.theacquisitionstage. Once the signal has been acquired on a specific receiver channel, the tracking of the signal is engaged.DLLareusedtotrackthespreadingcodephase,whereasPLL(orFLL)areusedtotrack thephase(frequency)ofthecarrier.Finally,theSISdataaredemodulatedandprocessedwiththe pseudorangemeasurementstocomputetheuser’slocation.Allthesestagesaredescribedinthenext subsections.

Figure 2.4: General GPS receiver architecture. Asafirstapproximationandneglectingmultipath,interference,andtheotherGPSsatellite signals,thereceivedsignalisamplified,filteredandthefrequencyofmodulationL1reducedtoan IntermediateFrequency(IF),asillustratedinFigure2.4.Thedigitisedreceivedsignalattheoutput oftheRFFrontEndcanthusbemodelledaswritteninequation(2.5).     r ()()()()k = r kT = Ad kT −τ c kT −τ cos 2πf kT −θ(kT ) + n(kT ) f f e e k f e k  14I 4e 244 3e  e (2.5)  ϕ : phase of the received signal  where: − c f istheresultofthefilteringofthecodemodulationofthesignalsensedbytheuser’santenna bytheselectionfilterH. − fI istheIF. 1 − n isawhiteGaussianthermalnoisewithPSD N0/2 dBW.Hz . − θ istherandomphaseoffsetaffectingthereceivedsignal. DetailsabouttherelationshipofthephaseofthereceivedsignalandtheDopplerfrequency canbefoundinappendixA.ItisjustrecalledheretoclearlyshowthattheGPSprocessingstages canbebasedontheprocessingofthephase θortheDopplerfrequency fd. ϕ 1 d = + fI fd (kTe ) (2.6) 2π dt = t kTe

Page12 GPSBasedPositioning where:

– fd istheDopplerfrequencyaffectingthereceivedsignalatepoch k . 2.1.2.1 GPS Signal Acquisition 2.1.2.1.1 Principle and General Architecture TheGPSsignalacquisitionisanenergysearchprocessthatrequiresthereplicationofboth code and carrier of the transmitted signal to acquire. Because of the propagation of the emitted signalandthevelocityofthesatellitesrelativetotheuser,thereceivedsignalattheinputofaGPS receiver is delayed and attenuated. Free space losses, user’s antenna pattern and the user’s environment (whether he is indoors, in urban canyons or outdoors…) are the main factors responsiblefordelaysandattenuations.Inorderforthetrackingprocesstobeproperlyinitialised, theinitialestimatesofthecodedelayτandthecarrierphaseshiftθmusthavealowuncertainty. Thegoaloftheacquisitionprocessisthendodeterminesuchvalues. ThisroughestimationisdonewhiletheacquisitionprocesstriestodetectaGPSsignal,i.e. whiletheacquisitionprocessissearchingfortherightPRNcodeusedfortransmissionandneeded to demodulate the navigation message. This PRN search is done by exploring all possible PRN codesaswellasallpossiblecodeandphaseshiftsbyperformingcorrelationswithalocalgenerated spreadingcodereplica.SinceC/Acodearecharacterisedbyahighcorrelationvalueandlowcross correlationvalues,thePRNisdeclareddetectedoncetheoutputofthecorrelatorishigherthana predeterminedthreshold. ThelengthofaC/Acodeisof1023chipssothatallthe1023C/Acodephasebinshaveto beexplored.Tobeinitiatedproperly,thecodetrackingloop(DLL)needsroughlyaprecisionof halfachiponthecodedelay.Thus,theacquisitionprocessexploresthecodewithahalfchipstep, whichis 2×1023 = 2046 C/Acodebins. ThephaseorDopplerresearchdependsdirectlyonthedynamicofthesatelliterelativetothe user’santenna.Accordingtosatelliteanduservelocities,theDopplervariationliesintherangeof ±5kHz(seeappendixAforemoredetails).Thisrangecanbeincreasedto±6kHzbecauseofthe drift of the receiver local oscillator. The true Doppler affecting the received signal is then to be foundinthatrange.TheDopplerbinsizeisdirectlyrelatedtothecoherentintegrationtimeusedin the acquisition process, as demonstrated in [4]. It is equal to half the inverse of the coherent integrationtimeT p. ThecoherentintegrationtimeT pcanvaryfrom1msuptothedurationofaGPSdatabit, thatis20ms.Wedefinethedwelltimeτ dastheproductofthecoherentintegrationtimeT pbythe numberofnoncoherentintegrationsM,asgiveninequation(2.7). τ = d MTp (2.7) ThemostclassicalacquisitionstructureisshownbelowinFigure2.5.TheoutputTisused τ ˆ as a test statistic to detect whether the estimatedcodedelay ˆ and the Dopplershift fd (orthe phaseshift θˆ )matchthetrueonesornot.

Page13 GPSBasedPositioning

T p 1 ∫ T p 0 ∑ M

T p 1 ∫ T p 0

Figure 2.5: Single dwell serial search acquisition structure. Thisclassicalacquisitionschemeiscalledthesingledwellserialsearchacquisitionscheme. ItisoneoutofseveraltechniquesthatcanbeusedtoacquireGPSsignals,whosebasicprincipleis toperformcoherentandnoncoherentintegrationsforagivenDoppler/Phasebinandcodebin.The signal is first correlated over the coherent integration time Tp, then squared and the process is repeated M times. After a given dwell time τd, the output signal T is compared to a decision threshold. If higher, the tracking mode is engaged for certain amount of seconds. If during this periodthetrackingloopsfailto computeanestimationofthecodedelay andtheDoppler/Phase shiftyieldingahighenergy,thesearchprocesscontinuesfromwhereithadstoppedtoswitchinto tracking mode, incrementing the bins according to the search strategy. If no signal has been detected after exploring the whole uncertainty region, the search process restarts from the beginning,orsearchesanotherGPSPRNcode. AssumingsomeDoppleraffectsthereceivedsignalmakingthesignalphasetimedependent, assumingalsothatnodatabittransitionwhilecorrelatingthesignal,equations(2.8)and(2.9)give theexpressionsoftheoutputsofthecorrelatorsforbothinphaseandquadraturechannels[3]: A  sin(π∆fT ) I = ⋅ d ⋅ p ⋅ R ()τ −τˆ ⋅cos()θ −θˆ + n ()k (2.8) k k  π∆  c f c k k k k I 2  fTp  A  sin(π∆fT ) Q = ⋅ d ⋅ p ⋅ R ()τ −τˆ ⋅cos()θ −θˆ + n ()k (2.9) k k  π∆  c f c k k k k Q 2  fTp  where: − n , n arecentredGaussiannoiseswithpower σ 2 and σ 2 respectively. σ 2 = σ 2 = N f 4 I Q nI nQ nI nQ 0 p − R is the crosscorrelation between the received filtered spreading code (which has been c f c filteredbytheRFfrontendfilter)andthelocalreplicacode. − τˆ istheestimationofthegrouppropagationdelay. − θˆistheestimationofthereceivedphaseshift. − ∆ ∆ = − ˆ f istheDoppleruncertainty. f f d f d .

Page14 GPSBasedPositioning

2.1.2.1.2 Statistical Hypothesis Test ThedetectionprocessofaGPSsignal,andthustheroughestimationofthecodedelayand carriershift,isbasedonastatisticalhypothesistest.Twobasicassumptionscanbemadeonthe acquisitionstatus,eithertheGPSsignaltoacquireispresentattheinputoftheacquisitionchannel ornot.AccordingtotheacquisitionstructureofFigure2.5,theoutputoftheacquisitionstageTcan bewrittenasgivenfollows: M = [ 2 + 2 ] T ∑ Ik Qk (2.10) k =1 IntheabsenceoftheGPSsignaltoacquire,theteststatisticTisequaltoT 0: M = [ 2 ()()+ 2 ] T0 ∑ nI k nQ k (2.11) k=1 σ 2 Becauseboth nI and nQ followanormaldistributionwithzeromeanandavarianceof n , σ σ theycanberewrittenas nn'I and nn'Q ,with n'I and n'Q twocentredGaussianrandomvariables with unitary variance. Thanks to Gaussian properties, the squared sum of these new centred Gaussianrandomvariablesbecomesanewstatistic,whichfollowsaChisquaredistribution,with σ 2 2Mdegreesoffreedom(M+M).Asaconsequence, T0 n isarandomvariablefollowingaChi squaredistributionwith 2M degreesoffreedom.Givenaprobabilityoffalsealarm Pfa definedas = [ > ] theprobabilitythatthestatisticT 0isgreaterthanapredeterminedthresholdT h, Pfa Pr T0 Th ,it isthenpossibletocomputethatdecisionthresholdT husingtheinverseofthechisquarecumulative distributionfunction. Opposite,inpresenceoftheGPSsignaltoacquire,theteststatisticTbecomes: 2  sin(π∆fT )    A ε p ε +   dk Rc c ( τ ) cos( θ ) nI (k) M  f π∆    2 fTp  T =   1 ∑ 2 (2.12) k =1   sin(π∆fT )    A p   + d R (ετ ) sin(εθ ) + n (k)   k c f c π∆ Q    2 fTp   where:

– ετ = τ −τˆ istheresidualcodedelayuncertainty. ˆ – εθ = θ −θ istheresidualphaseshiftuncertainty. Followingthesameapproachasinthepreviouscase,itcanbeshownthattheteststatistic σ 2 T1 n follows a noncentral Chisquare distribution with 2M degrees of freedom, whose non centralityparameterisgivenbelowinequation(2.13).Theprobabilityofsuccessfuldetection Pd is = [ > ] thendefinedas Pd PrT1 Th .

Page15 GPSBasedPositioning

 ()π∆ 2 2M C 2 sin fTP λ = Ε[]T = R ()ετ   (2.13) 1 c f c  π∆  f p N0  fTP  where: – C isthepoweroftheRFsignal. C = A2 2/ . 2.1.2.1.3 Performance and Mean Acquisition Time Thechoiceofthecoherentandnoncoherentintegrationtimesisoftremendousimportance. ThehigherthecoherentintegrationtimeT p,thelowerthedecisionthresholdbecausethecorrelator outputnoisepowerwillbelowered.However,thistimecannotexceedtheGPSdatabitduration, which is 20ms. Moreover, selecting a high value for the coherent integration time implies the reductionoftheDopplerbinsize,thustheincreaseofthenumberoffrequencybinstoexplore.Asa consequence, the acquisition time needed to successfully detect a GPS signal will increase significantly. The noncoherent integration time has also a great impact on the acquisition performance.Itisusedtoenhancethepropertyofnoisepowerreductionofthecoherentintegration time(whichcannotexceed20ms)butwithlessefficiency.Thereisacloserelationshipbetween thistimeandthemean acquisitiontimethroughthedwelltimeτ d,asitcanbeseenin equation (2.14)[4]: 2 + (2 − P )⋅(q −1)⋅(1+ K ⋅ P ) = d fa τ T d (2.14) 2Pd where: − q istheuncertaintyregion,whichisdefinedasthenumberofcellstoexploretoachievethe codeacquisition.ItisthentheproductofboththenumberofcodeandDopplerbins. − τ K isthepenaltyfactor, K d beingthetimespentbythetrackingloopstotryandtrackanon existingsignal. Forbothcoherentandnoncoherentintegrationtimes,atradeoffhasthentobefound.Asan example,Figure2.6illustratestheprobabilityofdetectingasignal,assumingnointerferences,no residualDopplereffect(f=0),andnoresidualcodedelayuncertainty(ε τ=0).Thefigureshows clearlythatthelargerthecoherentintegrationtime,themorethesignaldetectionstagewillsucceed inprocessingGPSsignalswithlowC/N 0. Onetheotherhand,thisstatementhastobebalancedwiththeincreaseoftheacquisition time.IndeedinFigure2.7isplottedthemeanacquisitiontimeforseveralcouples(M,T p)sothatthe dwelltimestaysalwaysequalto20ms.Forthissimulation,a12kHzDopplerrangehasbeentaken intoaccount,withaDopplerbinof1/2T p,sothattheuncertaintyregionequals40920000T pcells. ThepenaltyfactorhasbeenchosensuchasKτ d=1s.Foraconstantdwelltime,performancesin termsoftimetoacquirearebetterwithasmallcoherentintegrationtimeandahighnoncoherent integrationtime.Theseintegrationtimeshaveoppositeeffectsontheperformanceoftheacquisition process.Theirtuninghasthentobecarefullyaccordingtotheaimedapplication.

Page16 GPSBasedPositioning

Figure 2.6: Probability of detection for a constant Figure 2.7: Single dwell serial search mean dwell time of 20ms. acquisition time for a constant dwell time of 20ms 2.1.2.2 GPS Signal Tracking To continuously estimate the code delay and the phase shift in order to enable the demodulationofthesignal,thetrackingofthesignalaroundtheinitialestimatesprovidedbythe acquisitionstagehastobedone.Thistrackingisachievedtroughtheuseoftwodifferentloops.The firstoneisthecarriertrackingloop(PLL)dedicatedtotrackthecarrierphase.Afrequencyloopcan beusedinsteaddependingonthereceiver’srequirements.Thesecondloopisthecodetrackingloop (DLL), which tracks the code propagation delay affecting the received signal. Both loops are describedinthefollowing.Onlythebasicsarepresentedhere. 2.1.2.2.1 Phase Lock Loop Figure2.8illustratestheblockdiagramofacarriertrackingloop.

Figure 2.8: Generic Phase Lock Loop architecture [3].

Page17 GPSBasedPositioning

ThisloopismainlycomposedofIntegrateandDumpfilters,acarrierloopdiscriminatorand acarrierloopfilterF.Thesethreecomponentsdeterminealsothecarrierloopthermalnoiseerror, andthemaximumdynamicstressthresholdoftheloop.Thelefthandsidepartoftheloopworksat thesamplingfrequencyandgenerallyishardwareimplementedintheGPSreceiver.Therighthand side part is software implemented. The software processing rate is generally different from the hardwareone,andcloselyrelatedtothedwelltimeusedintheloop. ThepurposeofthePLListogeneratealocalcarrier,whosephase θˆshallbeasidenticalas possibletotheoneofthereceivedcarrier θ.Themaindifficultyremainsintheestimationofthe Doppler affecting the received signal. The output of the prompt inphase channel and prompt quadraturechannelaregivenbytheequations(2.8)and(2.9).Thesetwooutputsarethenprocessed inadiscriminatorinordertodeterminethephaseoffsetbetweenthereceivedandthelocalphase. Theconfigurationofthecarriertrackingloopdependsonthedynamicofthesignaltobe tracked.Indeed,totoleratedynamicstress,thepredetectionintegrationtimeshouldbeshort,the discriminatorshouldbeaFLL,andthecarrierloopfilterbandwidthshouldbewide.Ontheother hand, to better resist noise andhave accurate Doppler phase measurements, a PLL discriminator shouldbetakenwithalongpredetectionintegrationtimeandanarrowloopfilternoisebandwidth. ThediscriminatorusedinthecarriertrackingloopdefinesthetypeofloopasPLL,Costas PLL(whichisaPLL,whosediscriminatortoleratesthepresenceofdatabitsinthebasebandsignal) or FLL (Frequency Locked Loop). PLL and Costas PLL are the more accurate, but also more sensitive to the dynamic stress than FLL.Their discriminatorsoutput phase errors, whereas FLL discriminator output frequency errors. Most of GPS receivers use a Costas carrier tracking loop because of its insensitiveness to 180deg phase reversal. Indeed, the 50Hz navigation message, whichiscomposedof“+1/1”remainsaftercarrierandcodehavebeenwipedoff. Product or Costas Discriminator: TheoutputofthephasediscriminatorV eistheresultofthemultiplicationofthepromptin phaseandthequadraturechannels,sothatV eisequaltoequation(2.15): 2 2  sin(π ⋅ ∆f ⋅T ) A  p  V ()()()n = I n ⋅Q n = R (ετ )sin()2εθ + n (n) (2.15) e P P c f c  π ⋅ ∆ ⋅  e 8  f Tp  ThisdiscriminatorisnearoptimalatlowSignaltoNoiseRatio(SNR).Veisaπperiodic signal,sothatwecanzerothesinewithouthavingexactly θ =θˆ ,butrather θ = θˆ + kπ , k ∈Ζ .It emphasizes the fact that the tracking loop can lock on the phase of the received signal with an ambiguity of π. Furthermore, this discriminator depends directly on the power of the received signal. In order to get rid of the signal amplitude, this discriminator is usually normalised. AssumingthatthevariationbetweentheDopplershiftandtheestimatedDopplerfissmall,and consideringasmallphasetrackingerror,equation(2.15)canbeapproximatedbyequation(2.16) [6],asgivenbelow: ( ) ≈ ε + ' ( ) Ve n θ ne n (2.16) Fromequation(2.16),itisobviousthattolockthephaseloop,theestimatedphaseandthe receivedphaseneedtobeequal.Inthereceiver,thisisdonebyzeroingV e.Indeed,ifV e>0thenthe

Page18 GPSBasedPositioning

loop filter F commands the DCO trough the signal V c to increase the estimate of the phase. Conversely,ifV e<0,thentheloopfiltercommandstheDCOtodecreasetheestimateofthephase. ThecontrolsignalV cisthefilteringresultofV ethroughthelowpassfilter(orloopfilter)F. Thevarianceofthenoiseaffectingthephaseestimate θˆisequalto[2](inrad):   σ 2 = BL + 1 ε 1  (2.17) θ ⋅ C N0  2C N0 Tc  where:

– BL isthePLLbandwidth. Arc Tangent Discriminator: Thisdiscriminatoristhetwoquadrantarctangentdiscriminator.Itisoptimalinthesenseof the maximum likelihood estimator, especially at high and low SNR. It is defined as given in equation(2.18).  Q (n) V ()n = arctan P  e  ()  (2.18)  IP n  GiventheexpressionofQ pandI p,itisstraightforwardtoexpandequation(2.18).Atfirst order,equation(2.18)canberewrittenasequation(2.19).Thisdiscriminatordoesnotdependon thesignalamplitudeitself. ( ) = ε ( )+ ( ) Ve n θ n ne n (2.19) Thevarianceofthenoiseaffectingthe phase estimate θˆ of the PLL implementing suchadiscriminatoriswellapproximatedby equation(2.17)[2].Asanillustration,Figure 2.9 shows the performance of some PLL discriminators. It can be seen that the more the discriminator is linear, the better is the correction that is applied on the local generatedcarrierphase.Thefigureoppositeis plottedundertheassumptionthatnonoiseis affectingthediscriminators.Inthecaseofthe presence of additive noise, these plots are flattened. Figure 2.9: Performance of several Costas PLL discriminators. 2.1.2.2.2 Delay Lock Loop Figure2.10illustratestheblockdiagramofacodetrackingloop.Thislooprequiresmore

Page19 GPSBasedPositioning

IntegrateandDumpfiltersthanthephasetrackingloop,sinceanearlyandlateversionofthesame PRNcodeisneededtofindthecodedelayaffectingthereceivedsignal.Asforthephasetracking loop,thelefthandsidepartworksatthesamplingfrequencyandisgenerallyhardimplementedin the GPS receiver. The right hand side part is soft implemented. The processing rate is generally different from the hard one, and is closely related to the dwell time used in the loop. The discriminatoriscompletelydifferentfromthepreviousonesdescribedabove.

Figure 2.10: Generic Delay Lock Loop architecture [3]. The DLL can be coherent or noncoherent. A DLL is said coherent if it requires a quite accurateestimationofthecarrierphaseorcarrierfrequencytoworkproperly.AnoncoherentDLL isaloopwhichcanestimatethecodedelaywithouthavingagoodestimationofthephaseshiftor frequencyshift.AccordingtoFigure2.10,thesignalsintheinphase(I)andquadrature(Q)Early andLatechannelsaregivenrespectivelyinequations(2.20)and(2.21).   sin(π∆fT ) A  Cs  p  I ()n = d R ετ +  cos()()εθ + n n E n c f c  π∆  I E  2  2  fTp   (2.20)   sin()π∆fT  A  Cs  p  I ()n = d R ετ −  cos()()εθ + n n  L n c f c  π∆  I L  2  2  fTp    sin(π∆fT ) A  Cs  p  Q ()n = d R ετ +  sin()()εθ + n n E n c f c  π∆  QE  2  2  fTp   (2.21)   sin()π∆fT  A  Cs  p  Q ()n = d R ετ −  sin()()εθ + n n  L n c f c  π∆  QL  2  2  fTp 

Page20 GPSBasedPositioning where: < – Cs isthechipspacingbetweenEarlyandLatechannels.Cs 2. Early Minus Late Power Discriminator: TheEarlyminusLatePowerdiscriminatorisdefinedhasfollows: ( ) = 2 ( ) + 2 ( ) − 2 ( ) − 2 ( ) Ve n I E n QE n I L n QL n (2.22) As a first approximation, it is here again assumed that the crosscorrelation between the filteredcodeandthelocalgeneratedcodeequalstheautocorrelationofthecode( R ≈ R ).Itis c f c c alsoassumedthattheDopplerfrequencyresidual ∆f issmall.Attheendoftheacquisitionprocess, ε ε < thepropagationdelaytrackingerror τ canbeconsideredlowenoughtohave τ Cs 2 (abasic value of chip spacing Cs is Tc , some narrow correlators have chip spacings of 0.1T c). As a consequence,theerrorsignalV ecanbeapproximatedbyequation(2.23)[6]: A2 ε  C  () ≈ − ⋅ τ  − S  + () Ve n 2  ne n (2.23) 2 Tc  Tc  TheerrorsignalV eisindependentfromthephasetrackingerrorε θ,sothatthisdiscriminator issaidtobenoncoherent.However,theerrorsignalV edependsonthesignalpower.Therefore,the useofthenormalisedEarlyminusLatePowerisoftenpreferred. The variance of the noise affecting the code delay estimate τˆ of a DLL using this discriminatorisgivenbyequation(2.24),[2](inchips):   2 BLCs 2 σ ε = 1+  (2.24) τ  ()− ⋅  2C N0  2 Cs C N0 Tc  Dot Product Discriminator: Thisdiscriminatorusesallthethreecodereplicasoftheinphaseandquadraturechannels.It isdefinedasgiveninequation(2.25): ( ) = ( ( )− ( ))⋅ ( )+ ( ( )− ( ))⋅ ( ) Ve n I E n I L n I P n QE n QL n QP n (2.25)

Again,assuming R ≈ R and ετ < C 2 ,theoutputofthediscriminatorisgivenby: c f c c s 2  ε   ε  () = − A ⋅ − τ ⋅− 2 τ  + () Ve n 1    ne n (2.26) 4  Tc   Tc  Equation (2.26) is not linear, not normalised but is independent from the phase tracking error,sothatitisanoncoherentdiscriminator.Oncelinearisedandnormalised,itrepresentsthe mostpopularDLLdiscriminator.Thevarianceofthenoiseaffectingthecodedelayestimate τˆ is

Page21 GPSBasedPositioning given in equation (2.27) in unit of chips.Compared to the previous one of equation (2.24), itis obviousthatforsignalswithlowC/N 0,thiskindofDLLislessaffectedbynoise.   2 BLCs 1 σ ε = 1+  (2.27) τ  ⋅  2C N0  C N0 Tc  2.1.3 GPS Measurements The basic GPS principle and the main processing stages of a GPS receiver have been described.Thissectiondealswiththemeasurementsthatareusedtocomputethelocationofthe receiver’santenna.Basically,onecivilianusercanprocessthreemeasurementsbysatellitetogetits position: the code phase, or pseudorange, the carrier phase and the Doppler. The carrier phase measurementsofferthebestaccuracy(centimetrelevel)whenusedtocomputetheuser’slocation compared with pseudoranges. It is however a more complex processing implementation that requiresaroverandamasterreceivertoprocessdatadifferentially,andatleast5satellitesinorder toremovethephaseambiguity.Itistypicallyusedinhighaccuracyapplicationsuchasgeodetic surveying.Itdoesnotcoverthescopeofthisthesis,sothatnofurtherdetailsaregivenaboutitin thefollowing.Manyreferencesareavailableonthistopic,asforexample[7].Thenextsubsections describethemeasurementsthatareusedinthisthesisanddetailtheirrespectivemodels. 2.1.3.1 Pseudorange Measurement As discussed in the above section, GPS receivers measure the propagation time of the transmitted signal from the satellite to the user, taking into account the fact that both user and satelliteclocksarenotaccurateandnotsynchronised.Thispropagationtimeoncemultipliedbythe velocityoflightrepresentsanapparentdistance,whichiscalledpseudorange.Thepseudorangeto satellite iisthusthetruerangebetweenthereceiver’santennaandthesatellite’santenna,plusthe offsetbetweenreceiverandsatelliteclockconvertedintodistance.Thegeneralpseudorangemodel isgiveninequation(2.28)[3]: ρ i = − i + + ∆ i − ∆ i + (∆ i + ∆ i + ∆ i )+ µ + c(tu ts ) cbu D c b c T I v nρ (2.28) where: − tu istheusertimeattimeofreception(s). − bu istheuserclockbias(s). = + tu 'tu bu isthustheactualuserclocktimeattimeofreception. − i th ts isthetimeoftransmissionofthei satellite(s). − ∆bi isthei th satelliteclockbias(s). i = i + ∆ i ts ' ts b isthustheactualsatelliteclockreading. − ∆Di isthei th satellitepositionbiaserroreffectonrange(m).Thistermhastobetakeninto accountifthepositionofthesatellitesismodelledwithsomeerror. − ∆T i isthetroposphericdelayregardingsatellite i (s). − ∆I i istheionosphericdelayregardingsatellite i (s). − ∆vi istherelativistictimecorrectionforsatellitei (s),usuallynegligible.

Page22 GPSBasedPositioning

− µ isthemultipathaffectingthemeasurement(m).

− nρ isthenoiseaffectingthepseudorangemeasurement(m). − cisthevelocityoflight.c=299792458m/s. All the above errors terms will be briefly discussed in the next section. For practical considerations,themeasuredpseudorangeofequation(2.28)canberewrittenasequation(2.29). i = ( − i )2 + ( − i )2 + ( − i )2 + + i (2.29) y xu xs yu ys zu zs cbu e − yi isthepseudorangetosatellite i attimeofreception. − xu , yu , zu aretheuserpositioninECEFcoordinates. − i i i xs , ys , zs arethesatellitepositioninECEFcoordinates. − ei isthevectorcontainingalltheresidualerrorsaffectingthemeasurementofthegeometric distance(exceptreceiverclockbias)aftercorrectionusingdoublefrequencymeasurementsor modelsinvolvingdatatransmittedinthenavigationmessage. Thethecomputationoftheuser’spositionrequiresatleastfoursatellitepseudoranges.The unknownsaretheuser’scoordinateandthereceiver’sclockbias.Sincepseudorangesinvolvethe positionoftheuser,theyarewellsuitedforcorrectionpurposesifusedasareferencewithanother navigationsystem. 2.1.3.2 Doppler Measurement TheDopplerfrequencyiscloselyrelatedtotheinstantaneousrateofchangeofthereceived carrierphase.ItisusuallymeasuredinL1cyclespersecond(Hz).Themodelusedinthefollowing isgivenbelowthroughequations(2.30)and(2.31).

r,i L1 i & & i &i & i &i i f = − ⋅ [ (tc & − t& )+ bc + ∆D − c∆b + c(∆T − ∆I + ∆v& )+ µ& + nρ ] (2.30) d c u s u & where: r,i − f d istheDoppleraffectingthereceivedsignalandmeasuredbytheGPSreceiver(Hz). − isthetimederivativeoperator. Asforpseudorangemeasurements,theerrorstermscanberegroupedintoonesinglenoise termsothatequation(2.30)canberewrittenasfollows: r,i = user + satellite + LO + fd fd fd fd n f (2.31) where: LO – fd isLocalOscillator’sDopplercontribution(Hz). user – fd istheuser’sDopplercontribution(Hz). satellite – fd isthesatellite’sDopplercontribution(Hz).

– n f istheoverallnoiseaffectingthemeasurement(Hz).

Page23 GPSBasedPositioning

These Doppler measurements can be used as a reference in order to correct any velocity errorofanothernavigationsystem. 2.1.3.3 Carrier Phase Measurement Anothermeasurementthatcanbeusedtocomputethepositionofthereceiver’santennais thephaseoftheincomingcarrier.Thegeometricdistancefromthesatellitetothereceiver’santenna isthenthenumberofcyclesthecarrierhasdonewhenpropagating.Asacarriercycleisabout20 centimetresatGPSL 1,thepositioningusingsuchameasurementprovidesamuchbetteraccuracy thanthepositioningusingpseudorangemeasurements,thecounterpartbeingamorecomplexdata processing.PhasemeasurementsareprovidedbythePLL.Thegeneralmodelisasfollows: ϕ = ()()()− 2 + − 2 + − 2 + ⋅()− − ∆ + ∆ + µ + ⋅λ + xuser xsat yuser ysat zuser zsat c buser bsat I T ϕ N nϕ where: − φisthecarrierphase(inmetre). − φisthemultipathcontributionaffectingthecarrierphasemeasurement(0λ/4metre). − Nisthecarrierphaseambiguity(randomnumber). − λisthecarrierphasewavelength. − nφisthenoiseaffectingthecarrierphasemeasurement(≈1millimetre). Carrierphasemeasurementswillnotbeusedinthisthesis. 2.1.4 Measurement Errors 2.1.4.1 Satellite Orbital Error D Thesatelliteorbitalerrorsarethediscrepanciesbetweenthetruesatellitepositionsandthe positionsthatarecomputedbytheuser’sreceivers.Thepredictionoftheorbitismodelledandsent aspartofthenavigationmessage[1].Althoughthesatelliteorbitsaremonitoredcontinuously,the accuracyofthesatellitepositionpredictionmodelinthenavigationmessageislimitedbecauseof theaccuracyoftheorbitmodelandthenumberoforbitalparameterstouploadperdaypersatellite. Theerroronthecomputedsatellitepositiontranslatesintoanequivalentmeasurementerror.That equivalentmeasurementerrorisequaltotheprojectionoftheusertosatellitepositionerroronthe satellite LineofSight (LoS). Therefore,that error is bounded bythesatellite position error. Itis usuallylimitedtoafewmetresinanominalmode. 2.1.4.2 Ionospheric Error I Theionosphereisthelayerextendingfromthealtitudeofabout50kmtoabout1000km.It iscomposedoffreeelectronsandions,whosephysicalpropertieschangewidelybetweendayand night[8].Thefreeelectronsdisturbtherefractiveindicesofthevariouslayersoftheionosphere, affectinginthesametimethepropagationoftheGPSsignals(changeinpropagationvelocity[9]). When using double frequencies measurements, the ionospheric error can be almost completely removed(notinthescopeofthisthesis).Toreducetheerrorduetothepropagationthroughthe ionosphere, special algorithms have to be used, as for example the Klobuchar algorithm. This algorithm requires coefficients thatare transmittedin thenavigationmessage in orderto remove

Page24 GPSBasedPositioning nearly50%oftheionosphericerror[1].Inanominalmode,thetypicalionosphericerroriswithin0 to50m. 2.1.4.3 Tropospheric Error T ThetroposphereistheneutralregionoftheEarth’satmosphereextendingfromtheEarth’s surface up an altitude of 50 km.The propagation delayintroduced bythe troposphere has a wet componentandadrycomponent[9].Thedrycomponentisresponsibleforabout90%ofthewhole errorandcanbewellpredicted.Thewetcomponentisfarmoredifficulttoestimatebecausevapour densityvarywiththelocalweather.Thetypicaltroposphericerroriswithin230m.Therearemany modelstocorrectthetroposphericerror.Ithastobecomputedbytheuser,becausenoinformation istransmittedtroughthenavigationmessage.OnesimplemodelthatisoftenusedistheHopfield model[59],[12]. 2.1.4.4 Multipath Multipathreferstothephenomenonofasignalreachinganantennaviatwoormorepaths along with the direct LineofSight GPS signal. It generally occurs when the user is near tall building, inside buildings, under trees… Its mitigation is very hard to completely achieve. Multipathcanintroducenegativeandpositiveerroronthepseudorangemeasurementdependingon the phase of the multipath signal. The position solution accuracy may be very affected by such error,especiallyinurbanenvironments.Inanominalmode,thiserrorisboundedby±150m[2].For nonLoSsignals,oftencalledechoonlysignals,thiserrorismuchgreaterthanthepreviousone.As discussed in [10], it depends on the reflected signal geometry. Several techniques have been developedformitigatingmultipathbasedonthedesignofthereceiverbutalsotheantenna.Oneof themosteffectivetechniquesbasedonthedesignofreceiverarchitectureistheNarrowCorrelator technique[11],whichisextensivelyused. 2.1.4.5 Time Synchronisation b EvenifhighaccuracyclocksareusedtogenerateGPSsignalsonboard,thesatelliteclocks are affected by some drift. The clock correction for each satellite clock is transmitted in the navigationmessage.Itiscomposedofseveralparametersthatrepresentasecondorderpolynomial in time [1]. Taking also into account some relativistic effects and the group delay [1], the error introducedbysatelliteclockbiascanbereducedtoonly0.1m. 2.1.4.6 Tracking Loops Jitter As discussed above, the tracking loops, namely PLL (or FLL) and DLL continuously estimatethecarrierphaseshift(orDoppler)andthecodedelay.Giventhediscriminatorusedinthe loops,thestandarddeviationoftheestimationsmayvarybutwhateveritstype,thetrackingprocess introducesnoiseonthephaseshiftandcodedelaymeasurements,whichconsequentlyincreasesat someextendtheerroronthepseudorange.Expressionsofphase(PLL)andcode(DLL)jittersdue tothermalnoisearegiveninsection2.1.2.2.

Page25 GPSBasedPositioning

2.2 GPS Processing Enhancement 2.2.1 Positioning Technologies and Issues TheGPSispartofaseriesofcomplementarylocationsolutions.Indeedvariouspositioning technologies have been developed for GSM/EDGE & UMTS applications in order to enable the localisationofoneperson. TheCellId(CellIdentity)alsocalledCOO(CellofOrigin)orCGI(CellGlobalIdentity)is the simplest networkbased technology. The network based solutions rely only on intrinsic capabilities of the network such as the identity of the originating cell for the standard CellId technology.Severalothertechniquesarededucedfromit.ItisthecaseforCellId+timingadvance for instance. This technique involves the timing advance measurement giving information of the distanceseparatingtheuserfromtheBTS.CellId++isalsoaderivationfromCellId.Itaddsa measurementofsignalstrengthviewedfromseveraladjacentcells(calledNMRtechniques).The performancesofsuchmethodsdependonthedensityofthecells.Itcanbebetween100mtoseveral kilometres. The Time of Arrival (TOA) and Angle of Arrival (AOA) are networkbased positioning technologies.Bothareuplinkmethodswhereaknownsignalissentbythemobileandreceivedby threeormoreBTSequippedwithLocationMeasurementUnits(LMU).TheCellIds,TOAvalues andTOAmeasurementqualityarereturnedtotheServiceMobileLocationCenter(SMLC)wherea hyperbolictriangulationisperformedbyusingaPositioningCalculationFunction(PCF),basedon the known Relative Time Difference (RTD) and the BTS positions. The TOA method is standardised, the available standards are within GSM TS03.71, under ETSI 101 724. It is to be notedthattheBTSarenotsynchronisedintheGSMarchitecture.OneofakeyroleoftheLMUis tomanagethesynchronisationwithanexternalsystem,typicallyGPS.Theperformancesarewithin 50mto100m,withnonnegligibledifficultiestoenablethe3Dlocationoftheuser. The Enhanced Observed Time Difference (EOTD) technology is one of the various handsetbasedtechnologies.Itisadownlinkmethodwherethehandsetmeasurestherelativetime of arrival of the signals transmitted by at least 3 BTS: this difference is called Observed Time Difference(OTD) and allowstriangulationcomputation. ItistheoppositeoftheTOA. Itis also standardised.TheperformancesandthelimitationarequiteidenticaltotheTOA. Allthesesolutionsarecomplementaryandeachsolutionismoresuitedtotherequirements ofagivenapplication.Buttheyallinvolvesomeextrainfrastructuremakingsomesolutionnotcost effective,andtheaccuracyofthepositionsolutionismedium.GPS,andevenmoreGNSS,ismore adaptedtoapplicationsrequiringprecisepositioning.Italsorequiresnoextrainfrastructurebuta chipsettodecodeandprocessGPSsignals.Asaconsequence,thismakesitverysuitabletofulfil thelocationrequirementsofapplicationssuchas: – Emergencyservices:E911,E112,guidanceofrescueteamsetc… – Trackingservices:fleettracking,dangerousgoods,workersafety… – Billing:variablebillingdependingonthelocationoftheuser,tailoringbillingetc… – Navigationservices:informationtofindagivendestination,realtimetrafficinformation Nevertheless, the technique has limitations due to errors that affect the incoming signals. Indeed,suchLocationBasedServicesarelikelytobedeployedinurbanareas.Highmultipathmay affectthesignalscontributingtoahighpositionbias.Moreover,GPSsignalsmaybeblockedor

Page26 GPSBasedPositioning faded by buildings, which consequently will decrease the availability of the positioning service. Improvementsarethusneeded. 2.2.2 High Sensitivity GPS 2.2.2.1 Principle To deal with weak GPS signals, new techniques have been developed since now several years. As discussed in the above section dealing with the GPS processing core, the noise power affecting the incoming GPS signal is reduced after the correlation with a local replica of the spreadingcodetodetect.Foragivenintegrationduration,thehigherthecoherentintegrationtime, the better the reduction of the noise power at the output of the correlator, i.e. the higher the probabilityofdetection(seeFigure2.6). ToenhancethesensitivityandthustheavailabilityofthepositionsolutionusingGPS,High Sensitivitytechniquesbasedontheuseoflongintegrationtimeshavebeendeveloped[13],[14]. Theprocessinggainistremendouslyincreasedwithsuchlongcoherent/noncoherentintegration timessothattheprocessingofsignalwithpower aslowas188dBW ispossible,asdonewith currentHSchipset(seeforinstance[23]or[24]). Oneofthemaindrawbacksofsuchtechniqueisthecomputationalburdenthattremendously increasesforatypical12channelsreceivertryingtoprocessweakGPSsignals.AsshowninFigure 2.11, the acquisition of signals with very low C/N 0 (let say below 25dBHz) requires long dwell time.Asaconsequence,thetimeneededtosuccessfullyacquiresuchsignalsdramaticallyincreases, asshowninFigure2.12forthetypicalsingledwellserialsearchtechnique.Computationresources arealsoneededtofightheavymultipathandcrosscorrelationsthataffecttheincomingsignals.

Figure 2.11: Single dwell serial search probability of Figure 2.12: Single dwell serial search mean detection for a constant dwell time of 500ms. acquisition time for a constant dwell time of 500ms Tofacetheincreaseof thecomputationalloadduetotheprocessingofsignalswithvery weak power, two techniques are mainly used. The first one handles the computational issue by integratinghundredthousandscorrelatorinasingledie[15].Themassivecorrelationcapabilitiesof suchhardwaredesignedHSGPSreceiverallowthenavigationinlightindoorlikeenvironmentsas wellasinmostofurbanstreets.

Page27 GPSBasedPositioning

The second technique is rather based on a software implementation of the correlation process. To reduce the acquisitiontime, a technique based onthe WienerKinchtine relationand basic Fast Fourier Transform (FFT) is used. Instead of having a coherent integrator where the spreadingcodesarecorrelated,thenewmethodbasedonFFTperformsdirectlythecorrelationsfor allcodebinsatonce.Tocomputethecrosscorrelation,weneedatleastoneperiodsamplesofthe spreadingcode.Ifnot,onlypartialcorrelationcanbecomputed,whichdecreasestheperformances. SincethespreadingcodeisperiodicwithperiodN,thecrosscorrelationisalsoperiodicwiththe sameperiod.Itisthenpossibletoexpressthecrosscorrelationfunctionofthespreadingcodeasa function of Discrete Fourier Transforms (DFT). The digital crosscorrelation function of a spreadingcodecanbewrittenasgiveninequation(2.32). N −1 = 1 − Rc (m) ∑c(n)c(n m) (2.32) N n=0 where: − kn 1 N 1 i2π − c(n) = ∑C(k)e N N k=0 − NistheperiodoftheC/Aspreadingcode(1ms). Thecrosscorrelationofthespreadingcodeisthusasgiveninequation(2.33): − − lm − (k+l)n 1 N 1 N 1 1 −i2π N 1 i2π = N N Rc (m) ∑∑ 2 C(k)C(l)e ∑e (2.33) N k=0 l=0 N n=0 Giventhefactthatthesumofcomplexexponentialsisequaltozeroif k+l isdifferentfrom zero,thecrosscorrelationofthespreadingcodeisthusasfollows: N−1 π km 1 i2 1 − = − N = 1[ [][]⋅ ] Rc (m) 2 ∑C(k)C( k)e DFT DFT c(n) DFT c(n) (2.34) N k=0 N where: – DFT[c(n)]isthecomplexconjugateoftheDFTofthespreadingcode.

∑ M

Figure 2.13: FFT-based acquisition scheme. OncethereceivedsignalhasbeencumulatedoverT pseconds,theFFTprocessisengagedto

Page28 GPSBasedPositioning compute the correlation between the incoming signal and the locally generated spreading code. SinceT pequalsatleasttheperiodofthespreadingcode,weobtainedafteroneprocessingthecross correlation function over the coherent integration time T p for a given Doppler shift. The basic schemeofanFFTacquisitionstructureisshownbelowinFigure2.13. 2.2.2.2 Performance Overview Even with the increase of correlation computation capabilities, the sensitivity of HSGPS founditslimitationinthetrackingofweaksignals.Oncethesignalisacquired,thetimeandthe frequencyshallindeedbetrackedandthenavigationdatahavetoberetrieved.Themostproneto difficultiesstepsareontheonehandthecarrierphasetrackingforsensitivitypurposesandonthe otherhandthedatademodulationforsensitivityreasonsaswellbutalsoforTimetoFirstFix. Thefirstlimitationisthephasetracking.ThejitterofatypicalCostasPLLappliedtoaGPS L1signalisgiveninequation(2.17).Giventhetypicalusecaseofatrackingloopbandwidthof 20Hzandanintegrationtimeof20ms,the3sigmatrackingjitterisrepresentedinFigure2.14.A goodruleofthumbforsuchatrackingloopisthatthe3sigmajittershallnotexceed45°tokeep thelooplocked.ThisyieldstheworkingthresholdofsuchaPLLtobeapproximately25dBHz.Asa consequence, the carrier phase tracking of signal weaker than 25dBHz is not possible. HSGPS performsthencodeonlytracking. Thesecondlimitationcomesfromthedemodulationofthedata.Tobeabletocomputea position, the receiver shall demodulate a number of absolutely necessary data such satellite ephemeris,satelliteclockcorrections,handoverword(HOW),ionospherecorrections(evenifitis not absolutely necessary if we can tolerate an error of several metres). This limitation is also twofold. First, for a functioning point of view, where the probability of making no error on the demodulationoftheephemeris/clockblockishigherthan0.9(i.e.withaverylowBitErrorRate), theminimumrequiredsignaltonoiseratiois25dBHz,asshowninFigure2.15.Second,theTTFF isatleast30secondssincetheephemerisandtheclockblockarebroadcastevery30seconds,asit wasexplainedinaprevioussection.

Figure 2.14: Costas Phase Lock Loop tracking Figure 2.15: Probability of no error (BER of 0) in performance. the demodulation of the ephemeris/clock block (White Gaussian Noise Channel).

Page29 GPSBasedPositioning

An overview of the performance that can be achieved with a HSGPS receiver is shown opposite. In this test, a HSGPS SiRF Star III based receiver was put on the dashboard of a car. In the same time, a geodetic grade GPS receiver OEM4 from Novatel was also embedded with its own antennasetoutsidethevehicle.Thetesttook place in a residential area of Toulouse with medium buildings and streets bordered with trees. The OEM4 position solution is clearly not relevant of the true trajectory followed duringthetest(showningrey).Opposite,the Start redpathoftheHSGPSpositionsolutionisfar morerelevantofthetruetrajectory,evenifin someareaslargemultipathaffectthesolution. The HSGPS outperforms the geodetic grade receiverinsuchurbanenvironment. Figure 2.16: Comparative navigation test in urban environment. 2.2.3 Assisted GPS 2.2.3.1 Principle TheAssistedGPS(AGPS)technologyappearedinrecentyearsandrepresentsakeyturning point.Itstandsindeedforthetechnologywhichpavesthewayformassmarketlocationoriented applications.Thegreatsuccessofsuchatechnologyfindsitsoriginsinapowerfulhybridisation between a world wide location means – GPS – and a mass market communications means – GSM/UMTS. AGPS is a breakeven technology since it significantly compensates the major difficultiesencounteredwhenprocessingweaksignalsusingHighSensitivitytechniques. AGPS is a positioning system sharing the same processing core as HSGPS, but using externalsourcestohelpthereceivertoperformrangingmeasurementsandpositioncomputation. Theseexternalsourcesaremainlycomposedofanassistanceserverandareferencenetwork.The assistancedataprovidedtotheAGPSreceiverbytheassistanceserveraretransmittedthroughthe referencenetwork.TheassistancefromthenetworkmakestheAGPSreceiveroperatefasterthanit wouldunassisted,asforexampleHSGPS,becauseasetoftaskitwouldnormallyhandleisshared withtheassistanceserver. Basically,AGPSprovidestheuserwithsomeinterestingfeaturescomparedwithstandard GPSandHSGPS: – ItreducestheTTFF(veryshortlatency)togetapositionbysendingsatellitedatamuchmore rapidly through the mobile network instead of demodulating the GPS signal in space. As a consequence,AGPSimprovesthepowerconsumptionoftheGPSchipset. – Itincreasesthesensitivity,andthenincreasestheavailabilityofthelocationservice,particularly indenseurbanareaandindoorenvironments Aspresentedearlier,theprincipleofassistedGPSconsistsofcouplingsatellitepositioning andcommunicationnetworks,sendingassistancedatatothereceivertoimproveitsperformance. ItsbasicprincipleisillustratedinFigure2.17anddescribedindetailsbelow.

Page30 GPSBasedPositioning

GPS

 Satellite data is  GPS measurements collected permanently are done once data received

Wireless Network  On demand assistance data is sent  GPS position is instantaneously computed Figure 2.17: Assisted-GPS basic principle. Step 1 : TheAGPSserverisintegratedinthemobileoperatornetworkandcollectspermanentlythesatellite dataprovidedbytheGPSconstellation. Step 2 : Thelocationcanberequestedbythemobileuserorbyanexternalapplicationonthenetwork.To helpitslocationprocess(satellitesignalsacquisition,pseudoranges(PR)measurement),themobile phonerequestssomeassistancedatatotheAssistedGPSserver.Themobilechoosesthetypeof assistance data it requires among the standardised data defined in the 3GPP TS 44.031 for GSM/EDGEandTS23.371forUMTS. AssistancedatahelpimprovingbothacquisitionandtrackingofGPSsignals.Fortheacquisition phase, the sensitivity and the TTFF are tremendously improved. The very first step of the acquisitionphaseistosynchroniseontheGPS signalinspace.Thisprocessisbasedon atime frequencysearchinagivendomain,asillustratedinFigure2.18.

 Reduced Time range Reduced (pre synchronisation) Frequencyrange (ephemeris+CellId) Figure 2.18: AGPS acquisition enhancement. The frequency range research is linked to uncertainties coming from the preponderant

Page31 GPSBasedPositioning unknownsatellitesDoppler,thelocaloscillatordrift,andtheuserdynamic.Thesensitivity,andthe complexityofthereceiverprocessingaredirectlylinkedtothefrequencyrangetobechecked.The assistance data allows a terminal to pre compute the satellite Doppler, and to remove the local oscillatordrift.Thereductionofthescannedfrequencydomaindirectlyimprovesthesensitivityand the time to fix. In the same sensethetimeuncertainty to besweptisdirectlylinked to the time uncertaintyofthereceiver.Theassistancedataallowsthereceivertoreducethistimeuncertainty and then to focus even more the processing on the smaller timefrequency domain, and then improvethesensitivity. Afterthefirststepoftheacquisitionprocessandbeforebeingabletoprovideapositionsolution,a standalonereceivershalldemodulatethenavigationmodel.Thenecessarydataarebroadcastevery 30 seconds, which presents a TTFF limitation for a standalone GPS receiver. This limitation is completely removed thanks to the assistance data. In addition, the demodulation of the SIS data presents a great limitation in terms of sensitivity. The constraints being removed thanks to the assistancedata,thesensitivityisalsoimproved. For the tracking phase, the sensitivity is again increased. Thanks to the assistance data, the processingcanbeimprovedinordertofocusonthecodetracking.Ittremendouslyimprovesthe trackingsensitivitywithrespecttoastandardstandaloneprocessing. TheAGPSserverelaboratesandsendstheassistancedatawithrespecttothedatarequestedand the location of the users. For the time being, there are two standardised ways to transmit the assistancedata: – Control plane implementation . This implementation uses the signalling layers of the communication network to convey the assistance data to the mobile phone and to retrieve positioninformationfromthetelephone.TheprotocolisstandardisedintheTS44.031(RRLP) for GSM and the TS23.371 (RRC) for UMTS. The advantage of the control plane implementationispreciselythatitusesthelowlayersofthecommunicationswhichmeansthat assistancedatacanbeconveyedtotheuserseveniftheyhavenoSIMcards(E112emergency callsrequirements). – Secure User plane Implementation ; This implementation uses the high level layers of the communication network, i.e. the applicative layers. This is dealt with by the OMA standardisation group. Nevertheless the protocol used for assistance data transmission is the protocol defined at 3GPP level (RRLP for 2nd generation cellular networks, RRC for 3rd generationcellularnetworks).ThedataarethenexchangedthroughIP.Theadvantageofsucha solution is that the applicative layer has a much higher data rate. Nevertheless, the user can accesstothislayeronlyifithassubscribed,whichraisesanissuewhenitisquestiontodeal withemergencycalls. Step 3 and 4 : ThehandsetequippedwiththeAGPSreceiverprocessestheGPSsatellitessignalsandcomputesits position.Therearetwowaystocomputethelocation: – MSBased:theAGPSchipsetinthemobilephonecomputesitselfthelocation. – MSAssisted:thepseudoranges aresentbacktotheserver.Theserver computesthelocation thatissentbacktothehandset. 2.2.3.2 Enhanced AGPS The Enhanced AGPS is the technology developed byAlcatel Alenia Space thatenhances

Page32 GPSBasedPositioning

AGPSinusingEGNOSdatatoaddinthestandardassistancedata.EGNOSisasystemforwhich Thales Alenia Space is the prime contractor. It is composed of a network of stations deployed worldwide,collectingGPSdataandmeasurementstodelivermeasurementcorrections,enduser accuracyestimationandalarmstoanyuservia3geostationarysatellites.Thesystemisoperational since2005. The Enhanced AGPS technology provides a number of enhancements compared to the standardAGPS.First,theaccuracyisimprovedthankstothecorrectionscomputedbytheEGNOS system(correctionofthepropagationerrorsaswellassatelliteorbitalandonboardclock errors) and transmitted to the handset receiver. It enables to reach the best achievable accuracy performancesthankstoanoptimalcombinationofthelocaldifferentialdataandtheEGNOSwide areadata.Moreover,EGNOSmayenabletheincreaseofthepositionsolution,particularlyinurban areaswherethereceiverfacesanimportantmaskingangle,sothatthesatellitegeometrymaybe verypoorleadingtoadegradedaccuracy.Asanexample,foranidealreceivertheaccuracyover FrancewithonlyoneAGPSserverisillustratedinFigure2.20.

Figure 2.19: EGNOS coverage. Figure 2.20: Positioning server accuracy. EGNOSalsoallowstheincreaseofintegritythankstothedetectionandcorrectionofany GPS system failure using EGNOS integrity function even in indoor conditions, typically where classicalRAIMtechniquesfail[50]. 2.2.3.3 Acquisition Performance ToanalysetheperformanceoftheacquisitionstageofanAGPSreceiverintermsoftimeto successfullyacquireonesignal,severalstatisticsimulationsareconducted.Morespecifically,the analysis focuses on the performance of a softwarebased acquisition stage. As described in a previoussectionandalsodetailedin[16],itispossibletogiveanexpressionoftheteststatisticTat theoutputoftheacquisitionstagegiveninequations(2.11)and(2.12).Therefore,itispossibleto simulate the entire acquisition process by directly generating the output T as a function of the coherentintegrationtimeandnoncoherentintegrationtime.Consequently,inordertoestimatethe performance of the acquisition stage to successfully acquire one GPS signal, the output of the acquisitionloopisgeneratedaccordingtoarandomlychosencorrelationpeakpositionandgiven thenumberofnoncoherentintegrations,coherentintegrationsaswellastheC/N 0ofthesignalto

Page33 GPSBasedPositioning acquireandtheresidualDoppler. OncethecriterionTisgenerated,thedetectionprocessbasedonmaximumpeakdetectionis done. If the detection fails, the dwell time is increased until the correlation peak is successfully detected.ForeachC/N 0withintherange17dBHz–30dBHz(whichisconsideredastypicalC/N 0s encountered indoors and in urban environements), the acquisition procedure is repeated 10000 timestogetastatisticestimateoftherequiredsignaldurationProbabilityDensityFunction(PDF) andCumulativeDensityFunction(CDF).Simulationsarerunforastaticuserandtypicalindoor C/N 0s(C/N 0svalueshavetobeunderstoodasC/N 0sattheoutputofthequantifierstage,whichis thelastfilteroftheRFfrontendpart). Foreachsimulation,themeantimerequiredtohaveasuccessfulacquisitioniscomputed. Figure2.21presentsthesemeantimesasafunctionoftheC/N 0,givenafalsealarmprobabilityof 10 5 and for three different coherent integration times of 1ms, 10ms and 20ms (20ms being the uppercoherentintegrationlimitduetothenavigationmessagedatabittransition).Asexpected,the higherthecoherentintegrationtime,thelowerthelengthofsignalthathastobeprocessed.Signal durationsareverysmallcomparedtotheonesobtainedwithastandardsingledwellserialsearch procedure (see Figure 2.7). This demonstrates that the FFT acquisition strategy based on a maximumdetectiontestismuchmoreefficient.

Figure 2.21: Mean signal duration required for a successful acquisition. Pfa = 1e-5, no frequency error. Followingtheresultoftheabovesimulation,theoveralltimeneededtoacquireonesatellite withrespecttoitsC/N 0isdeduced.Thistimecanbedividedintotwoparts,thefirstonebeingthe useful signal duration (or required signal duration, as estimated above), the second one the time neededtoprocessthatsignal.Theprocessingtimeisrelatedtotheperformanceoftheprocessor usedforcomputations.ThistimecannotbeneglectedsincemanyFFToperationsaredoneinthe acquisition stage. In the following the processing time is estimated based on the mean signal durationasshowninFigure2.21. The time needed to process the required mean signal duration is analysed with the characteristicsofaTMS320C55xDSPfromTexasInstrumentswithaclockspeedof168MHz.The overallmeanacquisitiontimetakingintoaccountboththemeansignaldurationandtheprocessing

Page34 GPSBasedPositioning time for three coherent integration times is plotted in Figure 2.22. For light indoor environment whereC/N 0saretypicallybetween20dBHzand30dBHz,theoveralltimeneededtosuccessfully acquireonesatelliteiswellbelow5secondsforlargecoherentintegrationtimes,andlessthan8 secondsfortheothercases.Obviously,thelowertheC/N0s,the greaterthetimetosuccessfully acquireonesignal. From these simulations, it is interesting to notice that long coherent integration times are neededinordertoacquireandconsequentlyuseweaksignalstocomputethepositionoftheuserin indoorenvironments.Evenifthecomputationalpowerhaswellincreasedintheuptodatechipsets which makes possible the use of suchlongintegrationtimes, it nevertheless makes the receivers verysensitivetotheuser’sdynamic.Anymotionmayindeedchangethepositionofthecorrelation peakinthesearchmatrixasshowninFigure2.18whileperforminglongintegrations,whichinturn mayreducethecorrelationprocessinggainattheoutputofthecorrelationstage.Suchaneffectis partiallyhandledwiththecomputationalpoweravailableinthereceiver,butstillisonemajorissue inharshenvironments.

Figure 2.22: Mean acquisition time for a successful acquisition. Pfa=1e-5, no frequency error. 2.3 HS-GPS / AGPS Performance Analysis 2.3.1 HSGPS / AGPS Modules InordertoanalysetheperformanceofAGPSversusHSGPS,acomparativetestcampaign has been conducted within the Thales Alenia Space field trial. A complete report of the test campaign can be found in [17]. It consists in using an A835 and A1000 Motorola handset, an assistedGlobalSatBT338andanHP6515handsetconnectedtotheThalesAleniaSpaceserverthat provides with assistance data. The aforementioned handsets are fully implemented with AGPS technology. Pictures as well as basic characteristics are given below. The performance of the differentnavigationmodulesarecomparedwiththoseobtainedwithastandaloneHSGPS BT338module.Inallthefollowingtestcases,itisconsideredthatavalidpositionfixisobtained whenthelocationprocedure(includingprotocolswiththeassistancedataserver,ifany) endsup

Page35 GPSBasedPositioning withatleast4acquiredsatellitesandpositionsolutionaccuracybetterthanthecellsizetheuser relieson.

HP6515 GlobalSatBT338 MotorolaA835 MotorolaA1000 (GlobalLocate) (SiRFstarIII) (SiRFstarII) (Motorola) MSBased Standalone/MSBased MSBased MSBased 2.3.2 Performance Assessment The performances of the AGPS modules are assessed through the position accuracy with respecttoareferenceposition,theTTFFandtheavailabilityofthepositionsolution.Thereference position is whether computed using geodetic grade receiver whose antenna is placed outdoors approximatelyattheverticalofthepositionoftheindoorhandsets,orusingareferencepointona digitalmap.Inbothcases,theaccuracyofthereferencepointisknownatmostwithin±3metres. 2.3.2.1 Accuracy Theaccuracyofthepositionsolutionischaracterisedbythreedifferentquantities.Thefirst one is the RMS error computed according to equation (2.35), which involves as a first approximation the latitude and longitude errors. The 2D bias affecting the different position solutions is defined according to equation (2.36), whereas the sigma 2D error is computed accordingtoequation(2.37).  N  = 1 ()2 + 2 errorRMS ∑ long _ error lat _ error  (2.35) N  i=1  where: – Nisthenumberofvalidpositionfixes – long_erroristhelongitudedifference[m]betweenthe‘true’positionandthemeasuredone. – lat_erroristhelatitudedifference[m]betweenthe‘true’positionandthemeasuredone. N = 1 2 + 2 bias2D ∑ long _ errori lat _ errori (2.36) N i=1 σ = σ 2 ()()+σ 2 2D long _ error lat _ error (2.37) where: λ ϕ th – k ,k arethelongitudeandlatituderesultofthek trial.

Page36 GPSBasedPositioning

ϕ – ref isthelatitudeofthereferenceposition.

– Rt istheearth’sradiusatequator. 2 1 N   1 N  σ () = λ −  λ  ⋅ ϕ ⋅ – long _ error ∑ k ∑ k  cos( ref ) Rt N k =1   N k =1 

2 1 N   1 N  σ () = ϕ −  ϕ  – lat _ error ∑ k ∑ k  N k=1   N k =1  2.3.2.2 Time-To-First-Fix Itcorrespondstothetimetogetavalidpositionfixwhenactivatingthelocationfunction.It isonlyrelevantwhenperformingacoldstartfix.FortheAGPSreceivers,theTTFFincludesthe transmissiondurationoftheassistancedatafromtheAGPSservertotheAGPShandset. 2.3.2.3 Availability Itcorrespondstotheratiobetweenthenumberofvalidfixesandthetotalnumberoftrials.It isexpressedinpercentage.Afixisconsideredvalidonlyifitiscomputedwithatleast4satellites andwithin2minutestimeout. 2.3.3 Comparative Test Results Thetestsareperformedintwotypesofenvironments.Thefirstenvironmentislightindoors intheofficeofabuildingwithsteelwalls,asshowninFigure2.23.Thesecondenvironmentisa urbancanyonasillustratedinFigure2.26.Outdoorstestsunderclearskyconditionshavealsobeen conducted, but since the positions where all accurate, no detail about the performance of the differentlocationmodulesaregiveninthefollowing.Thissectionendswithkinematictests. 2.3.3.1 Light Indoor Environment Table2.1givesthecoldstartresultsinsidethelightindoorenvironmentshowninFigure 2.23ofthethreetypesofhandsets.Asexpected,theMSbasedhandsetsgivethebestperformance in terms of TTFF (21s for the Motorola A835, 15s for the BT338) compared to the reference HSGPS(BT338instandalonemode).Theaccuracyofthefirstpositionsolutiondependsonthe chipsetthatisused,butcomparinghandsetsusingthesameSiRFstarIIIprocessingcore,theAGPS solutionisofbetteraccuracythanthoseoftheHSGPSreferencereceiver,maybeduetoabetter DilutionofPrecision. These results are just an illustration of the performance that can be achieved with such receiversandshallnotbeconsideredastypicalcoldstartperformance,asthenumberoftrialsis sometimesquitesmall.

Page37 GPSBasedPositioning

BT338 BT338 Handset A835 Standalone MSBased Nboftrials 200 4 4 Bias2D 5.21m 3.5m 0.1m Bias3D 5.9m σ2D 57m 0.2m 0.6m σ3D 45m 0.7m 2.9m TTFF 21s 68s 15s Availability 100% 100% 100% Table 2.1: Light indoor cold start test results. Figure 2.23: Light indoor environment. ThetrackingtestresultsaresummarisedinTable2.2forallthehandsetsusedinthefieldtrial.All thereceiversgiveanaccuratepositionsolution(excepttheA1000handset).Thesolutionprovided bytheassistedreceiversislessnoisy,asitisshowninFigure2.24andFigure2.25.Thismaybe explained by the better DOP experienced by AGPS receivers that improves the accuracy of the positionsolution. BT338 BT338 Handset A835 HP6515 A1000 Standalone MSBased Nboftrials 152 200 645 182 264 RMSError 9.9m 11.8m 1.1m 6.9m 35m Bias2D 9m 3m 0.6m 7m 23m Bias3D 9m 9m 11m 35m σ2D 4m 11m 0.9m 1m 26m σ3D 23m 20m 2.6m 1.7m 60m Availability 100% 99% 100% 99.5% 100% Table 2.2: Light indoor tracking test results.

Figure 2.24: 2D plot of BT-338 (standalone) in light Figure 2.25: 2D plot of BT-338 (MS-based) in light indoor environment. indoor environment

Page38 GPSBasedPositioning

2.3.3.2 Urban Street Environment ThistestwasconductedinaverynarrowstreetinToulouse,France.Figure2.26andFigure 2.27giveanoverviewofthelocationwherethetestwasconducted.Allthehandsetswereputon theroofofavehiclesothattheantennaswerepointingtotheskywithnoobstacle.

Figure 2.26: Urban street environment (heading Figure 2.27: Urban street environment (heading north). south). Inafirsttime,staticcoldstartpositioningwastested.ResultsaregiveninTable2.3usinga maskangleof5degrees.ItisobviousthattheAGPSreceiversoutperformtheHSGPSreference receiverintermsofTTFF.Providingthroughthecellularnetworktheephemerisofthesatellitein visibilityisaclearlyadvantagethatfacesquitewelltheissueofthereductionofthenoisepoweras wellasthedemodulationofthenavigationmessageforeachsatellite. BT338 BT338 Handset A835 Standalone MSBased Nboftrials 85 5 4 TTFF 42s 2min30s 31s Availability 76% 100% 100% Table 2.3: Urban street cold start test results The tracking of the position of the user shows again that AGPS receiver gives the more accuratepositionsolutioninsuchharshenvironment,asitcanbeseeninTable2.4. BT338 BT338 Handset A835 HP6515 Standalone MSBased Nboftrials 152 >1000 79 >1000 RMSError 18.8m 23m 8.5m 17.5m Bias2D 17m 20m 8.3m 5m σ2D 7m 10m 1.8m 17m Availability 100% 100% 100% 100% Table 2.4: Urban street tracking test results. ThedifferentpositionsolutionsareagainlessnoisywithAGPSreceivers.Asacomparison,

Page39 GPSBasedPositioning thepositionsolutionscomputedwithbothBT338(oneHSGPS,oneAGPS)areplottedinFigure 2.28andinFigure2.29.Toexplainsuchresults,itwouldhavebeenusefultoanalysetonumberof satellitesusedtocomputethepositionaswellastheDilutionofPrecision.However,bothquantities werenotavailableinthedatarecordedduringthetrials.

Figure 2.28: 2D plot of BT-338 (standalone) in Figure 2.29: 2D plot of BT-338 (MS-based) in urban urban street environment. street environment. 2.3.3.3 Kinematic Urban Test Adynamictesthasbeenconductedindenseurbanareatoassessthetrackingcapabilitiesof thedifferentchipsets.Itclearlyappearsthatonceagain,AGPSoutperformsHSGPS,asillustrated inFigure2.30andinFigure2.31. Tall buildings area

Figure 2.30: 2D plot of BT-338 (standalone) in Figure 2.31: 2D plot of BT-338 (MS-based) in urban urban dynamic test. dynamic test. Thereisindeednoneedtodemodulatetheephemerisofthesatelliteinvisibilitysincethey aretransmittedthroughtheassistancedata.Asaconsequence,assoonasasatelliteisacquiredand tracked,itcanbeintegratedintothesetofmeasurementsusedtocomputetheuser’sposition.This isaclearadvantageofAGPSagainstHSGPS.TheDOPsarethereforebetterinthatcase,whichin

Page40 GPSBasedPositioning partexplainswhythepositionsolutionismoresmoothedandaccurate. 2.3.3.4 Indoor Test TheperformancesofAGPSandHSGPSreceiversinharshenvironmenthavebeenfinally tested. The results presented hereafter have been obtained using one GlobalSat BT338 module whichcanbeconfiguredwhetherinAGPSorinHSGPSmode. ThetrackingresultofapedestriangoinginsideandoutsidebuildingsareshowninFigure 2.32andinFigure2.33fortheAGPSandHSGPSmoderespectively.Inbothcases,thepedestrian starts its walk outside and follows the trajectory as illustrated by the yellow dashed plot in the directionindicatedbythearrow.Hethenentersthebuildingin‘A’andkeepswalkinginsideuntil point‘B’,andfinishesitswalkoutside. Asitcanbeseeninthetwofigures,thetrajectoryofthepedestrianinsidethebuildingis clearlynotobservablewiththeoutputsoftheGPSmodules.Assoonasthepedestrianentersthe building,thepositionsolutionsbecomeveryinaccurateduetomultipathandcrosscorrelationthat dramatically affect the position computation stage. This clearly demonstrates the need of an alternativepositioningsystemthatwouldreplaceGPSduringoutagesinordertoprovidepositions insidebuildings.

A B A B

Figure 2.32: AGPS tracking result of a pedestrian Figure 2.33: HSGPS tracking result of a pedestrian going outside / inside buildings. going outside / inside buildings. 2.4 Conclusion

ThissectionrecalledthebasicsoftheGPSpositioningtechnique.Thetypicalissue(weak signal processing, multipath and crosscorrelation impact, quality of the position solution…) encounteredwhenusingGPStolocatepeopleinurbanareas(evenindoor)havebeendiscussed. New GPS architectures designed to face these issues such as HSGPS and AGPS have been presented,andtheirperformancehavebeenanalysedintermsoftimetoacquire,timetofixand positionaccuracy.BothAGPSandHSGPShaveshownsensitivityandavailabilityimprovementas compared to standard GPS. Even if the number of trials that have been excersised are not large

Page41 GPSBasedPositioning enoughtodrawdefinitiveconclusions,itneverthelesstendstodemonstratetheybotharesuitable forurbanpositioning,althoughtheirrespectiveaccuracydegradeswhenthereceiveroperatesclose totallbuildingsorinsideinfrastructures. The improvement of the processing core (HSGPS) andthearchitecture of the positioning system(AGPS)aresomehowuselessinveryharshenvironmentssuchasinsidebigbuildingsorin deepurbanareas,asshownwiththetwolatterpositionsolutionsinFigure2.32andFigure2.33. Thereisthereforeaneededforaugmentationsifonewouldliketoincreasethepositionavailability. In the frame of this thesis, the alternative system used to support or replace GPS during outages will be made of lowcost inertial sensors. The next chapter will present navigation algorithmsbasedonthesesensors.

Page42 GPSBasedPositioning

Page43 InertialNavigationSystems

Chapter 3: Inertial Navigation Systems Thischapterdescribesthenavigationalgorithmsthatcanbeusedwithinertialsensors(i.e. accelerometers and gyroscopes). In a first time the basics on inertial navigation are recalled and notationsusedthroughoutthisthesisaredefined.Aparticularattentionisthenpaidtothesensors, their intrinsic accuracy and expected performance with respect to their grade. In particular, the sensorsunitassemblyusedinthisthesis(theMTiIMUmadebyXsens)isanalysed.Asthetypical inertial sensors issues are described, this chapter details then the standard Inertial Navigation System (INS) mechanisation and discusses its performance regarding the sensors that are used. Finally,aspecificanalysisofthesocalledPedestrianDeadReckoningmechanisationisgivenand aperformancecomparisonwiththestandardINSisdone.

Page44 InertialNavigationSystems

3.1 Inertial Navigation Overview 3.1.1 Basic principle The inertial navigation relies on the measurements provided by sensors contained in an InertialMeasurementUnit(IMU).TheIMUisbasicallycomposedofatriadofaccelerometersand gyroscopesorthogonallymounted.Suchsensorscanbeintegratedintotwomaintypesofinertial systems, namely gimbaled and strapdown systems. Gimbaled systems are actuated platforms, whose principle is to maintain the platform frame aligned with a specific navigation coordinate system. When achieved, the accelerometers mounted on the platform are used to measure the specific force alongthe navigationaxes.These measurementsarethen processedtocomputethe positionofthevehicle.Theattitudeofthevehicleismeasuredastherelativeanglesbetweenthe platformandthevehicleaxes.Gimbaledsystemsareexpensiveandoftenusedforhighaccuracy applications(aircraft,spacecraft…). Instrapdownsystems,theinertialsensorsarefixedtointhevehicleitself,ratherthanina stabilisedplatform.Thesensorsmeasurethedynamicofthevehiclesothattherelationshipbetween the measurements and the navigation state of the vehicle must be permanently computed. As a result, the computation load is increased compared to gimbaled systems. Such a drawback is currentlyofnoproblemduetomajorimprovementsincomputertechnology.Moreover,strapdown systemsallowthereductionoftheIMUsizeaswellasitscostbutattheexpenseofsomeaccuracy. More details about gimbaled and strapdown systems can be found in [18] and [19]. Strapdown systemswillbeusedwithinthescopeofthestudy,sincetheyarelessexpensiveandmoresuitedto miniaturisation. AnInertialNavigationSystem(INS)isasystemcomposedofanIMUandacomputer.It estimatesthepositionofamobiletheIMUismountedonbyprocessingthemeasurementsofthe sensorscontainedintheIMU.ItreliesonNewton’slawsofmotion.Anyexternalforceappliedto anIMUgeneratesaccelerationandarotationsignalthatareexpressedinaspecificreferenceframe. Thesemeasurementsareprocessedtogettheposition,velocityofthevehicleinacoordinatesystem adaptedtothenavigationofthevehicle.Severalcoordinatesystemsandtransformationsarethus requiredtoenablearelevantprocessingoftheinertialdata. 3.1.2 Frames and Coordinates Therelationshipoftheinertialmeasurementswiththenavigationstateofavehicleinvolves fourreferenceframes. InertialReferenceFrame (I) : It is a nonrotating Galilean frame, attached to the centre of the Earth with the Z I axis pointing towardtheNorthPole,whereasX IandY Iaxesbothlieintheplaneofequator,withtheX Iaxis pointing toward the vernal pointdirection (i.e.the intersection between the orbital plane and the equatorialplane).Thethreeaxesarealwayspointingtowardtheirrespectivedirection.Theinertial referenceframeisillustratedinFigure3.1. EarthCentredEarthFixed(ECEF)ReferenceFrame (e) : TheECEFreferenceframeislinkedtotheEarth.Itisdeducedfromtheinertialreferenceframeby

Page45 InertialNavigationSystems

arotationaroundthecommonZaxis(Z Iorz ECEF )ofangle E.x ECEF oftheECEFcoordinatesison theGreenwichmeridian.TheECEFframeisillustratedinFigure3.1.

ZIz ECEF Forwarddirection Ω Greenwich E Meridian xm NorthPole n e P

ym d O mobile

XI Ω t E z Equator m

yECEF xECEF YI Figure 3.2: Navigation (n) frame. Figure 3.1: Inertial (I) , ECEF (e) and navigation (n) frames. LocalGeodeticReferenceFrameorNavigationFrame (n) : Itisdefinedbyatangentplane,whichisattachedtoafixedpointonthesurfaceoftheEarth.This pointistheoriginofthelocalframe.Thenorthaxispointstowardthetruenorth,theeastaxispoints totheeastandthedownaxiscompletestherighthandedcoordinatessystempointingtowardthe interioroftheEarth,butnotnecessarytotheEarth’scentre.Thedownaxisisperpendiculartothe referenceellipsoid.ThenavigationframeisillustratedinFigure3.1. MobileReferenceFrame (m) : Themobilereferenceframeisdefinedbytheorthogonaltriad(x m,y m,z m)ofFigure3.2attachedto themobile.TheaxesareassumedalignedwiththeIMUframe.Incasewherex misdefinedasthe forward axis, i.e. the axis in the direction of displacement, x m is called the roll axis. y m is then definedasthepitchaxisandz mcompletingthedirectreferenceframeistheyaworheadingaxis. 3.1.3 Sensors

3.1.3.1 Accelerometer A simple and quite general way of understanding the principle of an accelerometer is to imagine it as a device that measures the force applied on a proof mass to accelerate it. Rigidly mounted in a vehicle, it then measures its acceleration. Details about various accelerometer operationprinciplescanbefoundin[18],butbasically,itcanbeconsideredasaspringwithaproof massatanextremity(theotherbeinglinkedtothehostvehicle).Accordingtothefactthatthe proofmassisapunctualmassatposition M ,thesecondNewton’slawappliedtotheproofmassin aninertialreferenceframe (I) yieldsthefollowingequation: r r r µ ⋅ r = + + µ ⋅ aM / I FR FD GM (3.1)

Page46 InertialNavigationSystems where: r − a istheinertialaccelerationofthepunctualproofmass µ atposition M ,relativeto (I) . rM / I − FR istheresultingforceappliedontheproofmassbytherestoringspring,andcausedbythe vehiclemovement. r − F isadisturbingforceregroupingalleffectscausedbyfriction,mechanicaldamping… rD − µ GM istheuniversalgravitationalforce,appliedat M onthemass . r Neglectingthedisturbingforce FD ,equation(3.1)canberewrittenasfollows: r r r = µ = r − f FR aM / I GM (3.2) where: r − f iscalledthespecificforce.Itisthetrueaccelerationthatismeasuredbytheaccelerometer. Theaccelerometersareorthogonallymountedintoameasurementunit,whoseaxescanbe asillustratedinFigure3.2.Sincethismeasurementunitisalsorigidlymountedonthevehicle,the accelerationmeasurementisdoneinthereferenceframelinkedtothemobile(thevehicle),i.e.the mobileframe.Asaconsequence,theaccelerometerdoesmeasurementswithrespecttotheinertial frame (I) thatareexpressedinthemobileframe (m) . Duetothemanufacturingprocessofthesensor,themeasurementsareaffectedbyerrorsthat varywithtime,temperature,aswellasthemotionexperiencedbythesensor.Theimpactofthese errors on the measurements accuracy is closely related to the quality of the sensor and the technologyused.Nevertheless,acommonoutputmodelcanbederivedinallcases.Equation(3.3) givesthegeneralfirstorderaccelerometeroutputmodel: out = ( + )⋅ + + a 1 SFa f ba na (3.3) where: – aout istheoutputoftheaccelerometer. – SF aisthescalefactoraffectingthetrueacceleration. – baisthebiasaffectingthemeasurement. – naistheaccelerometernoise.

3.1.3.2 Gyroscope ThegyroscopeisthesensorusedtocomputetheattitudeofanInertialNavigationSystem.It senses the rotation rate along the axis it is placed with respect to the inertial frame (I) . As for accelerometers,therotationrateisexpressedintheframethesensorsareattached,i.e.themobile frame (m) .Detailsaboutvariousgyroscopetechnologiesandprinciplesofoperationcanbefound in, for example, [18] and [19]. The general first order output model of a gyroscope is given in equation(3.4): out true ω = (1+ SFω )⋅ω + bω + nω (3.4)

Page47 InertialNavigationSystems where: – ωout istheoutputofthegyroscope. – ωtrue isthetruerotationrateexperiencedbythesensor. – SF ωisthescalefactoraffectingthetruerotationrate. – bωisthebiasaffectingthemeasurement. – nωisthegyroscopenoise.

3.1.3.3 Measurements Errors Both gyroscope and accelerometer measurements areaffected by the same type of errors. Theimpactoftheseerrorsontheaccuracyofthemeasurementsisverydependentonthequalityof thesensorsthatareused.Comparedtothedynamicthatismeasuredbythesensors,theseerrors have quite low magnitude, but since measurements are likely to be integrated, they dramatically decreasetheinertialnavigationperformanceastimeincreases. Thenoiseaffectingthemeasurementistheresultoftheelectronicequipmentneededforthe sensor to work properly. It has random properties and usually can not be removed with deterministicmodels.ItisratherconsideredasafirstapproximationaszeromeanwhiteGaussian noise. In datasheets, it is often characterised by velocity random walk for accelerometers and angularrandomwalkforgyroscopes,withadensityexpressedinunitofsignal/√Hz. Thebiasismainly composedoftwoparts.Thefirstoneistheturnonbias,whichvaries everytimethesensorispoweredon.Therepeatabilityofthispartisquitepoorfortypicallowcost sensors,andthusshouldoftenbeestimated.Thesecondpartistheinrunbias,whosevariationis closelyrelatedtothemotionexperiencedbythesensor.Thelattercontributionisthemoredifficult toestimatesincethemovementofthesensorisunpredictable.Itwillconsequentlyintroducenon negligiblesystematicerrorsinthemeasurementsandthusmustbemodelled.Bothbiascomponents dependalsoontheoperatingtemperature. The scale factor is the ratio usually expressed in PPM that characterises the non linear changeintheoutputwithrespecttothechangeintheinput,asshowninequations(3.3)and(3.4).It isanondeterministicerrorthatalsodependsonthemotionandthetemperatureexperiencedbythe sensor. TheIMUperformanceisdrivenbythethreemainerrorsdescribedabove.However,italso depends on the manufacturing process in the construction of the sensor triad. As a result of the possiblemisalignmentofthesensors,eachaxisisaffectedbymeasurementsoftheothertwoaxes in the body frame. Usually, such error is calibrated in laboratory by the manufacturer quite accurately.Thiskindoferroristhereforenottakenintoaccountinthefollowing. 3.2 Strap Down Attitude Computation

Asdescribedabove,navigationandmotionmeasurementsaredoneintwodifferentframes. Itisusualtoexpressthenavigationstatussuchaspositionandvelocityinthenavigationframe (n) North,East,Downratherthaninanyotherreferenceframe.Aspartasinertialsensorsproperties, measurements are done in the mobile frame (m) that is attached to the vehicle. To express the

Page48 InertialNavigationSystems measurements in the navigation frame and perform inertial navigation, the relative orientation betweenthesetwoframeshastobeknown.

xm n

ym

zm e mobileframe navigationframe

d Thisrelationshipcanbefullydescribedbythepositionofthemobileframeoriginexpressed in navigation coordinates and the rotation matrix fromthe mobileframe to the navigation frame involving Euler’s angles. Euler’s angles are defined as three distinct rotations around particular axes,asshownbelowinFigure3.3.Theyalsoareknownasroll,pitchandyaw(heading)angles.

x’ x’’ x’’,x’’’ n ψ θ x’

e ψ y’,y’’ φ y’’ θ φ z’’ y’ z’’’ y’’’ d,z’ z’ z’’ Yawrotation Pitchrotation Rollrotation Figure 3.3: Euler’s angles definiton. ThetriadofgyroscopesintheIMUprovidestherotationratesalongthethreeaxesofthe mobile frame. The global rotation rate of the vehicle the IMU is mounted on is thus given by equation(3.5): r Ω(m) = ⋅ r + ⋅ r + ⋅ r m / I p xm q ym r zm (3.5) where: r Ω(m) – m/ I istheglobalrotationratevectorofthemobilewithrespecttotheinertialframeexpressed inthemobileframe. – p istherollanglerateasmeasuredbythegyroscopealongthex maxis.

– q isthepitchanglerateasmeasuredbythegyroscopealongthey maxis. – r istheyawanglerateasmeasuredbythegyroscopealongthez maxis. 3.2.1 Attitude Algorithm Severalmethodsexisttocomputetheattitudeofamobilewithrespecttoaparticularframe.

Page49 InertialNavigationSystems

Amongthem,themostwellknownandwidelyusedareEuler’sanglesandtherotationquaternion. Euler’sanglemethodologywasthefirstmethodusedtocontinuouslytracktheattitudeofavehicle. It relies on the integration of non linear differential equations as given in equation (3.6) [20]. However,thismethodrequiresnumeroustrigonometricoperationsandsingularityissuesmayaffect thecomputationoftheEuler’sangles,especiallyforpitchanglesof ±90°. φ&  1 sin(φ) tan(θ ) cos(φ) tan(θ)   p   θ& =  φ − φ  ⋅     0 cos( ) sin( )  q  (3.6) ψ&   φ ⋅ −1 θ φ ⋅ −1 θ      0 sin( ) cos ( ) cos( ) cos ( ) r  A more convenient and efficient method based on Hamilton quaternion [21] is used throughoutthisthesis. AQuaternionisahypercomplexnumberinventedbyW.R.Hamiltonfor mathematicalpurposes.Itisacombinationofrealandcomplexvalues,andisoftenwrittenasgiven inequation(3.7).Therealpartofaquaternioniscalledthescalarpart,whereastheimaginarypart isoftencalledthevectorpart.Theunitvectorsarethecomplexnumbersi,j,k. r r r r q = q + q ⋅i + q ⋅ j + q ⋅ k {0 11 4442 4434 3 (3.7) scalar part vector part The quaternion as defined abovecanalso beused to representa rotation of a vector in a threedimensionsspace.Therotationofangle θaboutthefixedaxis Dcanberepresentedbythe quaternionq,whosecorrespondingdefinition(equivalenttothatofequation(3.7))isgivenbelowin equation(3.8).Arotationquaternionisthusofunitarymagnitude. θ  r θ  q = cos  + u sin  (3.8)  2   2  where: r – u isaunitvectoroftherotationaxis D. Accordingtoquaternionoperationrules,itcanbedemonstratedthatforasmallrotation,the timederivativeofquaternionqcanbeexpressedasafunctionofitselfandtherotationratesofthe mobiletocharacterise[21].Theclassicalquaterniondifferentialequation,asgiveninequation(3.9) isusedastheinputofthequaternionbasedattitudedeterminationalgorithmdetailedin[20]and recalledinappendixB.Itallowsthenthecomputationoftherotationquaternionfrom (m) to (n) in realtime. 1 q& = q oω (m) (3.9) 2 m / n From a practical point a view, once the rotation quaternion has been computed, the relationshipwiththemoreconvenientEuler’sanglesisusedfornavigation.Asitisshownin[20] or[21],therotationmatrixfromthemobileframe (m) tothenavigationframe (n) canbeexpressed as a function of quaternion’s components but also as a function of Euler’s angles. The two expressionsaregivenbelow,wherethisrotationmatrixfrom (m) to (n) isnotedR m2n ,acosineis notedcandasines.

Page50 InertialNavigationSystems

c(θ )⋅c(ψ ) s(ϕ)⋅ s(θ )⋅c(ψ )− c(ϕ)⋅ s(ψ ) c(ϕ)⋅ s(θ )⋅c(ψ )+ s(ϕ)⋅ s(ψ ) =  ()()()()()()()()()()()()θ ⋅ ψ ϕ ⋅ θ ⋅ ψ + ϕ ⋅ ψ ϕ ⋅ θ ⋅ ψ − ϕ ⋅ ψ  Rm2n c s s s s c c c s s s c  (3.10)  − s()()()()()θ s ϕ ⋅c θ c ϕ ⋅c θ  q2 + q2 − q2 − q2 2(q q − q q ) 2(q q + q q )   0 1 2 3 1 2 0 3 1 3 0 2  = ()()+ 2 + 2 − 2 − 2 − Rm2n  2 q1q2 q0q3 q0 q2 q3 q1 2 q3q2 q0q1  (3.11)  ()()− + 2 + 2 − 2 − 2   2 q1q3 q0q2 2 q2q3 q0q1 q0 q3 q1 q2  It is then straightforward to determine the attitude angles based on the rotation matrix expressionsasafunctionofquaternion’scomponents.Thethreeequationsaregivenbelow: θ = (− ( + )) arcsin 2 q1q3 q0q2 (3.12)  2(q q − q q )  φ = arctan 3 2 0 1  (3.13)  − + ()2 + 2   1 2 q0 q1   2(q q − q q )  ψ = arctan 1 2 0 3  (3.14)  − + ()2 + 2   1 2 q0 q3  3.2.2 Attitude Initialisation One issue dealing with gyroscopes measurements is that only relative rotation rates are sensed.Theanglesofattitudehavethustobeinitialisedfirstbeforeanyrealtimetrackingcanbe done. The initialisationof these angles is of tremendous importance since it can introduce some permanentangleoffsetsintheestimatedattitude.Theattitudeinitialisationcanbedividedintotwo procedures. They are the horizontal and azimuth alignment. The horizontal or inclination initialisation is often performed with the use of accelerometer measurements. Indeed, when the IMU is not moving, the accelerometers are likely to sense the gravity vector, as shown with equation(3.15).Onecanthenusethegravityvectorcomponentstodeterminetheinclination,i.e. therollandpitchanglesexperiencedbytheIMU,asgiveninequation(3.16)and(3.17).  (m) (n) − ()θ ax 0   s        = ⋅ = ⋅ ()()θ ⋅ φ (3.15) ay  Rn2m 0  g c s    g c()()θ ⋅c φ  az      φˆ = ( ) arctan ay az (3.16) θˆ = (− 2 + 2 ) arctan ax az ay (3.17) The accuracy of the inclination estimation is very dependent on the quality of the accelerometers that are used. The inclination measurement procedure is illustrated in Figure 3.5. Assume an accelerometer whose measurements are affected by a bias, the estimated inclination anglemaybecorrupteddependingontheintensityofthatbias.InFigure3.4isshowntheimpactof typical biases on the estimation of the inclination angle (whether the pitch or roll angle) given typicaltrueinclinationangles.Obviously,thelargerthebias,thelargertheerrorontheestimation oftheinclination.Moreover,theerrorincreasesastheinclinationtoestimateincreasesaswell.

Page51 InertialNavigationSystems

accelerometeraxis accelerometer ofmeasurement

inclinationangle r g

Figure 3.4: Estimated inclination angle error as a Figure 3.5: Accelerometer inclination measurement function of several accelerometer biases. scheme. Azimuthinitialisationrequiresfairlyaccurategyroscopesensorstoperformgyrocompassing [19].Insuchaninitialisationmethod,gyrosaffectedbyadriftratefarbelowtheEarth’srotationare required.OthermethodsusingexternalsensorssuchasGPSormagnetometerscanbeemployedfor azimuthinitialisation.TheGPSbasedmethodisthemostrobustonebutneedsspecialconditionsto giveaccurateresults.First,GPSazimuthisonlyavailablewhilethemobileisinmotion,sothatno static calibration can be done. Second, measurements are likely to be affected by noise and multipath in harsh environment such as indoors or in urban canyon, so that the GPS heading informationmaybeverynoisyaswell. Magnetometers can also be used to initialise the heading computed based on IMU measurements. The magnetic heading is computed using the Earth’s magnetic field vector horizontal components (i.e. perpendicular to the gravity vector). This heading differs from the geographicnorthbyananglecalleddeclination,whichisknownandcanbefoundforexamplein [22].Themagneticheadingaccuracydependsonthequalityofthemagneticmeasurementsandon theinterferencesthatmayoccur.Itisalsorelatedtotheaccuracyoftheinclinationangles(i.e.roll andpitchangles)usedtorotatethemeasurementsfromthemobileframe (m) toahorizontalframe. 3.2.3 Euler’s Angles Singularity Issue TheusualdefinitionoftherotationsassociatedtoEuler’sanglesφ,θandψaregivenbelow. TherotationmatrixR n2m from (n) to (m) isthesuccessivecompositionofthethreerotationsdefined above,i.e.R n2m =R φ×R θ×R ψ.TherotationmatrixR m2n from (m) to (n) iscomputedbytransposing thetranspositionofR n2m .

Whenthepitchangleθreaches±90°,whichmayoccurespeciallyiftheIMUiscarriedina handhelddevice,singularitiesappearinthedefinitionoftheotherattitudeanglessothatbothroll

Page52 InertialNavigationSystems andheadinganglescomputedbasedonequations3.14and3.15arenomorerelevantofthetrue ones.Indeed,asdefinedinequation3.11,therotationmatrixR n2m forsuchextremevaluesofpitch becomesasfollows:  0 s(ϕ)c(ψ )− c(ϕ)s(ψ ) c(ϕ)c(ψ )+ s(ϕ)s(ψ )  0 s(ϕ −ψ ) c(ϕ −ψ )      R = 0 s()()()()()()()()ϕ s ψ + c ϕ c ψ c ϕ s ψ − s ϕ c ψ = 0 c()()ϕ −ψ − s ϕ −ψ m2n θ =±90°     −1 0 0  −1 0 0  Onlythedifferencebetweentherollandheadinganglesisobservable.Bothanglescannot beextractedasindividualvaluesfromthismatrix.Thisissueisalsowelladdressedifequation(3.6) is used to compute the attitude angles. Figure 3.6 illustrates the problem of the attitude angles restitution.Inthistest,theIMUisintendedtobemovedsuchasthepitchanglereaches90°.Asthe pitchexperiencesextremevalues,bothrollandyaw(heading)arenomorereliable. Togetridofthissingularityissue,abasicideaistovirtuallyrotatetheIMUwhenthepitch anglecrossesapredeterminedthreshold.Ifthepitchanglegoesabovethisthreshold,theIMUis rotatedbyanangleθ’alongthepitchaxiswhilekeepingbothyawandrollconstanttodecreasethe pitchanglevalue.Theattitudeiscomputedtakenintoaccountthisvirtualrotationinorderforthe attitudeanglestoberelevantofthetrueattitudeexperiencedbytheIMU.Thenewrotationmatrix availableforEuler’sanglesestimationisthenasfollows: new = × T × T × T Rm2n Rm2n Rψ ' Rθ ' Rϕ ' (3.18) where: T ψ = T = – Rψ ' isyawrotationwith ' 0 .Thus Rψ ' I3 . T θ = − θ − – Rθ ' isthevirtualpitchrotation. ' ( threshold) . T ϕ = T = – Rϕ ' isrollrotationwith ' 0 .Thus Rϕ ' I3 . The effectiveness of this method is illustrated in Figure 3.7. Corrected angles are plotted usingthicklines.Asthepitchanglereaches±90°,bothrollandyawarestillobservableandcanbe usedfornavigationpurposes.Theefficiencyofsuchanalgorithmisalsodemonstratedinchapter6 inthecaseofapedestriannavigationwheretheIMUisworninapocketwitharandomattitude.

Singularityleadingtounreliable rollandyawestimates

Figure 3.6: Euler’s angles singularity issue. Figure 3.7: Euler’s angles singularity resolution.

Page53 InertialNavigationSystems

3.3 MEMS Sensor Unit Performance Overview

Theobjectiveofthissubsectionisnottobuildameasurementunitfromsensorsinorderto meetanysizeconstraint,sensorsassemblycostoraccuracyrequirements,butrathertoanalysethe performanceofatypicalcurrentofftheshelfIMU.Asaconsequence,nodetailisprovidedinthe followingaboutthesensorstechnologyortheintegrationissues.Thefocusisratherputhereonthe errors that affect the different measurements of the sensors assembly. The Xsens Mti sensors assemblywasselectedregardingitscostandsizeforanypossiblefurtherintegrationinahandheld device.Asaconsequence,theMEMStechnologyisofparticularinterest.Thefollowingpresents theIMUusedthroughoutthethesis. 3.3.1 Xsens Motion Tracker TheofftheshelfIMUusedinthisthesisisatypicallowcostMEMSbasedIMU.Figure 3.8 presents the Xsens Motion Tracker as well as the sensors performance as given by the manufacturer.ThisIMUiscomposedofatriadofaccelerometers,atriadofgyroscopesandatriad ofmagnetometers.Atemperaturesensorandamicrocontrollerarealsocomprisedinthesensors package. This measurement unit is capable of outputting raw measurements affected by noise, temperatureandbias,asperformedbyanInertialSensorAssembly(ISA),aswellascalibrateddata asdonebyanIMU.

Figure 3.8: Xsens motion tracker and sensors performance. Laboratory calibration procedures are done to minimise the impact of the measurements errorssuchasbiases,scalefactorsortemperaturedependency.Asaconsequence,theycontributeto theincreaseoftheoverallIMUcost.TheXsensMTipriceisabout$2000,whichstillmakesita lowcostIMU,becauseeachsensorisabout$10ifboughtinlargevolume. SincetheIMUismadeoflowcostMEMSsensors,itsperformancecanbeexpectedtobe low as well. The next subsections deal with the sensors of the MTi as part of the IMU, i.e. accelerometersandgyroscopes,andgivearoughoverviewoftheirintrinsicperformance.

3.3.1.1 Accelerometer TheaccelerometertriadoftheIMUiscomposedofasetofAnalogDevicesaccelerometers orthogonally mounted [27], [28]. According to the corresponding datasheet, they are capable of

Page54 InertialNavigationSystems

0.001 m/s²/√Hz noise for a bandwidth of 30 Hz. To roughly characterise the turnon biases and scalefactorsthataffecttheaccelerometermeasurements,10datasetshavebeencollectedwhilethe IMUwasidling.Theprocedurewastoleteachaxisofmeasurementidlewhilesensingthegravity vectoralongthelocalverticalupwardsandthendownwards.Thebiasesandscalefactorsaffecting themeasurementsareestimatedaccordingtothefollowingequations: = + + = ( + ) Measurementn°1: m1 1( SF)g b Estimatedturnonbias: b m1 m2 2 = − + + = ( − − ) Measurementn°2: m2 1( SF)g b EstimatedScaleFactor: SF m1 m2 2g Tolimittheimpactofthenoiseonthebiasestimation,theoutputoftheeachaccelerometer is averaged for 1 minute for both upward and downwards measurements. Then, bias and scale factorsareestimatedbasedontheseaveragedmeasurements.Theprocedureisrepeatedforeachof thethreeaxesoftheIMU.ResultsaregiveninFigure3.9andinFigure3.10.

Figure 3.9: Accelerometers turn-on bias. Figure 3.10: Accelerometer turn-on scale factor. Table 3.1 summarises the errors as mean value and standard deviation for each axis of measurement.Turnonbiasesandscalefactorsarequitestableregardingthequalityofthesensors. Xaxis Yaxis Zaxis Bias S.F. Bias S.F. Bias S.F. Mean 0.061m/s² 0.096% 0.005m/s² 0.076% 0.182m/s² 0.058% Std 0.003m/s² 0.028% 0.001m/s² 0.004% 0.004m/s² 0.008% Table 3.1: Accelerometer triad turn-on biases and scale factors.

3.3.1.2 Gyroscopes ThegyroscopesoftheIMUarealsofromAnalogDevices[26].Theyareaffectedbya0.1 deg/s/√Hznoiseforabandwidthof40Hz.Theturnonbiasofthethreesensorsischaracterised usingtheabove30measurementsbyaveraging each gyroscopestaticoutput.Thescalefactorof eachsensorcanbetheoreticallycomputedasgiveninthetablebelow.However,measurementsare affectedbynoisesuchastheEarth’srotationrate(oftheorderof4.10 3)isnotdistinguishable,as illustratedinFigure3.12.Therefore,novaluablescalefactorestimationwasfoundpossibleusing thismethodology,andconsequentlynocharacterisationhasbeendone.

Page55 InertialNavigationSystems

= + ⋅Ω λ + Measurementn°1: m1 1( SF) E sin( ) b = − + ⋅Ω λ + Measurementn°2: m2 1( SF) E sin( ) b = ( + ) Estimatedturnonbias: b m1 m2 2 = ( − − Ω λ ) Ω λ EstimatedScaleFactor: SF m1 m2 2 E sin( ) 2 E sin( ) Figure3.11showstheresultsofthegyroscopesturnonbiasesestimation.Comparedtothe results obtained for accelerometers, the stability of the gyroscopes turnon bias is worse. Nevertheless, it can be considered to stay within acceptable limits regarding the quality of the sensors.Table3.2summarisesthebiasmeanandstandarddeviationforeachaxisofmeasurement.

Figure 3.11: Gyroscopes turn-on bias. Figure 3.12: Gyroscope triad static outputs. Xaxis Yaxis Zaxis Mean 0.122deg/s 0.381deg/s 0.622deg/s Std 0.033deg/s 0.060deg/s 0.036deg/s Table 3.2: Gyroscope triad turn-on biases. 3.3.2 Gyroscope Output Approximation As pointed out in the above section, the output of each gyroscope is used to update the rotationquaternionthatcharacterisestheattitudeoftheIMU.TherotationratesoftheIMUwith respecttothenavigationframe (n) isthenrequired.Omittingtheeffectofthenoise,biasandscale factor,theoutputofagyroscopecanbedecomposedasgiveninequation(3.19).Therotationrateof the mobile with respect to the navigation frame (n) , expressed in the mobile frame (m) is more specificallydetailed. ω (m) = ω (m) − (ω (n) +ω (n) ) m / n m / I Rn2m n / e e / I (3.19) TherotationrateoftheEarth(i.e.ECEFframewithrespecttoInertialframe)iswellknown andisequaltoω E.Usingthecoordinatetransformationasdetailedin[9],therotationrateof (e) with respect to (I) and expressed in (n) is given in equation (3.20). Figure 3.14 illustrates the componentsinthenavigationframeofsucharotationratefortypicallatitudeangles.Themaximum

Page56 InertialNavigationSystems rateisobtainedeitherwhenthecentreofthenavigationframeisattheequatororattheEarth’s pole.ItisequaltotheEarth’srotationratemagnitude4.17×10 3deg/s. ω (n) = ⋅ω (e) = ω ⋅[ λ − λ ]T e / I Re2n e / I E cos( ) 0 sin( ) (3.20) where: − ω ≈ ⋅ −5 = ⋅ −3 E istheEarthrotationrate.( .7 2924 10 rad / s 4.17 10 deg/ s ) The rotation rate of (n) with respect to (e) and expressed in the navigation frame (n) is application dependent. In the navigation frame, the rotation vector can be expressed as given in equation(3.21)[9]: ω (n) = [Φ& λ − λ& − Φ& λ ]T n / e cos( ) sin( ) (3.21) where: − λ isthegeodeticlatitudeofthemobile. − Φ isthegeodeticlongitudeofthemobile. − λ& isthelatituderate. − Φ& isthelongituderate. Thelongitudeandlatituderatesarenotdirectlyusedasmeasurements.Itisratherpreferred tointroducethevelocityofthemobileinthenavigationframe,usingthebasicthreerelationships givenbelow[9].Consequently,therotationvectorfrom (n) withrespectto (e) ,expressedin (n) is givenbyequation(3.22). − 2 & vNorth a 1( e ) 1. λ = with Rλ = + 3 2 2 2 Rλ h 1− e sin (λ)

vEast a 2. Φ& = with RΦ = ()+ ⋅ λ 2 2 RΦ h cos( ) 1− e sin (λ) & = − 3. h vDown where: − histhegeodeticheightofthemobile. − Rλistheradiusofcurvatureinameridian. − RΦisthetransverseradiusofcurvature. − aisthesemimajoraxisoftheWGS84ellipsoid. − eistheeccentricityoftheWGS84ellipsoid. T  v v v tan(λ) ω (n) = East − North − East (3.22) n / e  + + +   RΦ h Rλ h RΦ h  In Figure 3.13 is plotted the corresponding three components and the rotation rate magnitude, assuming no altitude (h=0) and North andEast velocitiesof140 km/h, suchthat the velocity magnitude is roughly equal to 200 km/h, which is an extreme use case given the

Page57 InertialNavigationSystems applicationfieldofpersonalpositioning.Foragyroscopeusedinmediumlatitudes(asitisthecase forFrance),itcanbeconsideredthattheupperbounddoesnotexceed1.4×10 3deg/s.

Figure 3.13: Rotation rate of (e) with respect to (I) Figure 3.14: Rotation rate of (e) with respect to (I) expressed in (n) . v N=v E=140 km/h, h=0. expressed in (n) . Fromthepreviousstatementsandtakingintoaccounttheperformanceofthegyroscopesin theIMU,thetwoaboverotationratescanbeconsideredofnegligiblemagnitude.Inotherwords, 3 theycanbeconsideredasactingasaconstantbiasb rr ofmagnitudeabout5.5×10 deg/s,whichis farbelowthenoiseaffectingthemeasurements. Asaconsequence,itisassumedthroughoutthe thesisthattherotationrateofthemobile withrespecttothenavigationframecanbeapproximatedbytheoutputofthegyroscope,i.e.the rotationrateof (m) withrespectto (I) ,aswrittenbelowinequation(3.23). ω (m) = ω (m) + ≈ ω (m) m / n m / I brr m / I (3.23) 3.4 Classical Inertial Navigation System

In this section, the relationship between the specific force sensed by the accelerometers as defined in equation (3.2), and the velocity of the mobile with respect to (e) expressed in (n) is derived in order to establish the basic INS mechanisation. In the following, superscript between brackets willstandforthecoordinatesystemin whichvectors areexpressed,whereasindexwill standforframesinwhichtheexpressionsarecomputed. 3.4.1 Fundamental Inertial Differential Equation LetMbeapointofamovingmobile,Otheoriginoftheinertialframe (I) ,andO’thoseof theECEFframe (e) .ThetimederivativeofthevectorassociatedtothepositionofMwithrespect to (I) andexpressedin (I) ,isgivenbyequation(3.24). r r r r  d (I )  =  d (e)  = r (I ) + Ω(I ) ∧ (I )  M   Re2I M  vm / e e / I M (3.24)  dt I  dt  I

Page58 InertialNavigationSystems where: − R istherotationmatrixfrom (e) to (I) . re2I − M (I ) isthepositionvectorofthemobile,expressedin (I) . r − M (e) isthepositionvectorofthemobile,expressedin (e) . r − Ω(I ) e / I istherotationvectorof (e) relativeto (I) ,expressedin (I) . − r (I ) vm / e isthevelocityofthemobilerelativeto (e) ,expressedin (I) . − ^isthecrossproductoperator. The acceleration of M expressed in the inertial frame (I) is then deduced from equation (3.24)asitstimederivative.Itsexpressionisgivenbelowinequation(3.25).  2 r   r  r r r r r  d (I )  = d (I ) + Ω(I ) ∧ (I ) + Ω(I ) ∧ ()Ω(I ) ∧ (I )  2 M   vm / e  e / I vm / e e / I e / I M (3.25)  dt I  dt  I The accelerometers measure a specific force as described in equation (3.2), which is the accelerationofthemobilethesensorsaremountedonwithrespectto (I) andexpressed (m) .Onthe other hand, the acceleration of the mobile relative to (I) and expressed in (m) is also given by equation(3.26). r  2 r  (m) = ⋅ d (I )  am / I RI 2m  2 M  (3.26)  dt I where: − RI 2m istherotationmatrixfrom (I) to (m) . Thecombinationofequations(3.2)and(3.26)yieldsthefollowingequationinvolvingthe accelerationofthemobile,thespecificforceandthegravitationalfield:  2 r  r r  d (I )  = (I ) + (I )  2 M  f GM (3.27)  dt  I Equation (3.27) shows that the acceleration of the mobile can be fully expressed as a function of two known variables that are the specific force f and the gravitational field G M. Equation(3.25)canthenbetransformedintoequation(3.28),asdetailedbelow: r r  d r (I )  = (I ) + r (I ) − Ω(I ) ∧ r (I )  vm / e  f g M e / I vm / e (3.28)  dt I where: r r r r − r (I ) (I ) − Ω(I ) ∧ (Ω(I ) ∧ (I ) ) gM isthelocalgravityvector,whichisdefinedas GM e / I e / I M . The (e) frameisusedasareferencefornavigationpurposes(i.e.alldisplacementsaredone relativetothatreference).However,itismoresuitabletoexpressthedisplacementdirectionsinthe navigationframe,whichismoreadaptedtounderstandthechangeinpositionvelocityandattitude. Consequently,equation(3.28)shallberewritteninthenavigationframeforfurtheruse.

Page59 InertialNavigationSystems

r r r  d r (n)  = (n) + r (n) − (Ω(n) + Ω(n) )∧ r (n)  vm / e  f g (M ) n / e 2 e / I vm / e (3.29)  dt n where: r − v (n) isthevelocityofthemobilerelativeto (e) ,expressedin (n) . rm / e − Ω(n) istherotationvectorof (n) relativeto (e) ,expressedin (n) . r n / e − Ω(n) e / I istherotationvectorof (e) relativeto (I) ,expressedin (n) . The rotation vector from the navigation frame (n) with respect to the ECEF frame (e) is applicationdependent.Ithasbeendetailedintheprevioussubsectionanditsexpressionisgivenin equation(3.22).Itisobviousthattherotationvectorfrom (e) withrespectto (I) andexpressedin (e) hasonlyonecomponentalongthezaxisoftheECEFframe (e) .Theexpressionoftherotationrate of (e) withrespectto (I) andexpressedin (n) isgiveninequation(3.20).Allthetermsinequation (3.29)arethenfullydescribedasfunctionsofknownquantities.Theclassicalinertialdifferential equationinvolvingthevelocityofthemobileexpressedin (n) is: (n) (m) ξ (n) ( + ) Ω λ v&North  ax   g    vEast RΦ h   E cos  vNorth               & = ⋅ + −η − − ()+ + ⋅ ∧  vEast  Rm2n a y   g    vNorth Rλ h  2  0   vEast  (3.30)   v&  a   g  − v ⋅ tanλ ()R + h  − Ω sin λ v   Down   z   n    East Φ   E   Down  n where: – a = [a a a ]T istheaccelerationmeasuredbytheaccelerometersin (m) . x y z m r = [ξ −η ]T – g g g gn is the local gravity vector, expressed in (n) . The gn component can be computedusingforexampletheSomiglianamodel[20]. 3.4.2 INS Mechanisation in the Navigation Frame

(n) (n ) ( n ) (n) a m / I am / e vm / e pm / e

(m) Rm2n am / I

ω (m) m / I ω (m) n / I

Figure 3.15: Inertial Navigation System (INS) mechanisation.

Page60 InertialNavigationSystems

Accordingtoequation(3.30),themechanisationoftheclassicinertialnavigationsystemis illustratedaboveinFigure3.15. 3.4.3 Expected Accuracy The accuracy of the navigation system presented in Figure 3.15 mainly depends on two factors.ThemostimportantoneisthequalityofthesensorsusedintheIMU,whichreliesonthe manufacturing process and the sensor technology. Both accelerometers and gyroscopes measurements are indeed affected by biasesand scalefactorsthat introduce drift atthedifferent stages of the INS mechanisation. All these errors contribute to the decrease of the overall INS accuracy. The second factor responsible for position, velocity and attitude errors comes from the approximationsmadeintheINSmechanisation.Theseapproximationsaretwofold:thefirstorder Taylorexpansionmodelsusedtocomputesomeparameters(asforexamplequaternion),andthe use of some quantities estimated at epoch k for the computation process at epoch k+1. These approximationsareneverthelessconsiderednegligiblewithrespecttotheimpactofthebiases. In order to model the performance of such a mechanised Inertial Navigation System, a propagationerrormethodologyisused.ThederivationofthedynamicerrormodeloftheINSinthe navigationframe,whosemechanisationisillustratedinFigure3.15,isfullydescribedin[9].No moredetailaboutitisgiveninthefollowing.Accordingto[9],thestatetransitionmodelofthe position,velocity,attitudeandsensorserrorsisthoseofequation(3.31),whereallsubmatricesare developedindetailsin[9]. δ δ  p&  Fpp Fpv Fpρ 0 0   p   n p          δv& Fvp Fvv Fvρ F ε 0 δv n + nε    v a     v a  ρ ρ ρρ +  δρ&  = F p F v F 0 Fρε  ⋅  δρ  + nρ nε  (3.31)    g     g  εδ & 0 0 0 Fε ε 0 δε nε  a   a a   a   a       εδ &  0 0 0 0 Fε ε δε  nε  g   g g   g   g  where: – δpisthepositionerrorinthenavigationframe. – δvisthevelocityerrorinthenavigationframe. – δρistheattitudeerror. – δε aistheaccelerometersbiasandscalefactorerror. – δε gisthegyroscopebiaserror. Theminimalstatevectorisaugmentedbyaccelerometerserrorsδε aincludingbiasandscale factor models, and gyroscopes errors δε g only including the bias model. The performance of the IMUcanthenbeassessedusingthepropagationmodelofequation(3.31)andthesensorserrorsas determined in subsections 3.3.1.1 and 3.3.1.2. Gyroscope scale factors are not modelled in the followingsincenoactualcharacterisationhasbeendone,asjustifiedinsubsection3.3.1.2. ThehorizontalRMSpositionerrorpredictedthroughthepropagationofthe INSerrorsis illustratedinFigure3.16.Itcorrespondstothedashedblueplot.Giventhelowcostsensorsusedin theIMU,thehorizontalRMSerrorispredictedtobenearly570metresafter60seconds.

Page61 InertialNavigationSystems

Inordertoassessthissimulationresult,realdatawerecollectedfromtheidlingXsensIMU over 60 seconds and processed through the navigation algorithm of Figure 3.15. Prior to data collection,theIMUwasswitchonabout10minutesinorderforthetemperatureinsidethesensors assemblytobequitehomogenous,preventinginrunbiasesfromintroducingadditionalerrors.The resultinghorizontalRMSerrorisplottedFigure3.16astheredsolidcurve.BothhorizontalRMS errorsareclosefromeachother.Thereisonlyaslightdifferencemainlyduetotheaccuracyofthe stochastic models chosen for biases and scale factor modelling, which certainly do not match perfectlythereality.Nevertheless,theerrorpropagationmodelmatchesquitewellthe INSstatic behavioursothattheerrormodelisusedinthefollowingtofindwaysforimprovingthenavigation solution. ToanalysethecontributionofeacherrorfactorontotheoverallhorizontalRMSerror,three independenterrorpropagationsimulationsareconducted.Theyallinvolveonlyoneerrorparameter amongaccelerometerbias,accelerometerscalefactorandgyroscopebiastoavoidanyinterference betweenthesefactors.Thevaluesusedinthedifferenterrormodelsareagainthesedeterminedin subsections 3.3.1.1 and 3.3.1.2. The results of the three simulations are plotted in Figure 3.17. Among the three error sources, the bias affecting the gyroscope measurements has the highest impactonthehorizontalRMSaccuracy,asshownbythebluesolidcurve(morethan650metres errorduetogyroscopebiasonly).ItsignificantlydegradestheINSpositionaccuracy.Opposite,the accelerometer scale factor has a very little effect on the overall accuracy. The impact of the accelerometer bias is non negligible (about 100 metres per minute) but less important than the gyroscopeone.

Figure 3.16: Predicted and actual INS horizontal Figure 3.17: Biases and scale factor impact on INS RMS error. horizontal accuracy. As a consequence of the above simulations, theimprovement ofthenavigation algorithm reliesfirstonthereductionoftheeffectofthegyroscopebiasandthenaccelerometerbias.Scale factoreffectwillbeneglectedinthefollowing. 3.5 The Particular Case of the Pedestrian Navigation

According to the previous results, the inertial navigation using a lowcost IMU as for instancetheXsens’sMTiisverysensitivetolargeerrorsthataffectallthecomputationstagesofa

Page62 InertialNavigationSystems classic Inertial Navigation System. In order to enhance the accuracy of a lowcost INS, errors affectingthesensorshavetobeaccuratelymodelled.Thissectionfocusesontheparticularcaseof thepedestriannavigation,whichaimsatavoidingthedoubleintegrationoftheaccelerationinthe navigationframetolimittheimpactofthedifferentbiases.Itpresentsanotherapproachconsisting in the modification of the classicmechanisation taking intoaccountthe relationship between the accelerationofthepedestriananditsvelocityorsteplength. 3.5.1 Mechanisation in the Navigation Frame According to medical researches as introduced for instance in [29] and [30], one can establish a relationship between the velocity or step length of a walking pedestrian and some parametersthatcharacterisetheaccelerationexperiencedbythispedestrian.Thebasicrelationships aregivenbelowinequation(3.32)andequation(3.33). = s p f1 (individual parameters) (3.32) = v p f 2 (individual parameters) (3.33) where: − s p isthesteplengthofthewalkingpedestrian. − v p isthevelocityofthewalkingpedestrian. − f1 , f2 arethemodelfunctions.Theybothcanbelinearornonlinear. − individual parameters are the processing result of the acceleration magnitude. They are detailedinthefollowing. The individual parameters used to model the actual pedestrian velocity / step length are computedbasedonthemeasuredaccelerationofthewalkingpedestrian.However,thisacceleration is biased by the gravity vector so that the sensors mounted onto the pedestrian do not exactly measuretheactualacceleration.Moreover,theaccelerationmaychangeverymuchdependingon themeasurementdirection[29](thelongitudinalaccelerationpatternofapedestrianiscompletely different from the lateral one). To get rid of the orientation of the IMU containing the accelerometers,thecharacterisationofthepedestrianvelocity/steplengthisdoneusingtheglobal accelerationsignal(i.e.theaccelerationmagnitude)definedbelowinequation(3.34): = ( (m) )2 + ( (m) )2 + ( (m) )2 ak ax, k a y, k az, k (3.34) where: − ak istheglobalaccelerationmagnitudesensedbytheIMUatepochk. − (m) ax, k istheaccelerationalongthexaxisoftheIMU,expressedin (m) atepochk. − (m) a y, k istheaccelerationalongtheyaxisoftheIMU,expressedin (m) atepochk. − (m) az, k istheaccelerationalongthezaxisoftheIMU,expressedin (m) atepochk. Based on the global acceleration signal of equation (3.34), the individual parameters (as definedinthefollowing)arecomputedtomodelthevelocity/steplengthofthewalkingpedestrian. Theseparametersarechoseninsuchawaytheyreflectthebehaviourofthewalk(anonexhaustive

Page63 InertialNavigationSystems list is given in the next subsection 3.5.2.1). To fit the mathematical model with the actual velocity/steplengthmodel,aregressionalgorithm(LeastSquares)isthenappliedonthecomputed parameters, which requires an external positioning source to give a reference for velocity measurementsortravelleddistance. In the application aimed within this thesis (localisation of one user indoors), the user is likelytogoinlocationswhereGPSmeasurementsareveryaffectedbymultipath.Itiswellknown thatDopplermeasurementsarelessaffectedinsuchenvironments,sothatitistheoreticallymore interesting to use velocity measurements rather than position measurements for the model calibration.Asaconsequence,thefocusisfromthispointputonthemodellingofthepedestrian velocity,whichcanbeexpressedasgiveninequation(3.35).Thecurvilineardistancetravelledby thepedestrianisthenestimatedbyintegratingthemodelledvelocity. β β = α ⋅ 1 + +α ⋅ i v p 1 Param1 L i Parami (3.35) where: – iistheindexoftheparametersusedtomodelthepedestrianvelocity. − αxandβ xaretheregressioncoefficients. − Param xaretheparameterscomputedbasedonthetotalacceleration. Theazimuthofdisplacementmustthenbeestimatedtoreconstructthetrajectoryfollowed bythepedestrian.Therearetwotypicalwaysofestimatingtheazimuthofdisplacement,depending onthemotionoftheIMU,i.e.whetheritfollowsthoseofthepedestrianornot.Inthefirstcase,the headingcomputedbytheIMUisthedisplacementdirectionbiasedbyanadditiveconstantdueto the non alignment of the IMU heading axis with the direction of walk of the pedestrian. In the secondcase,thetrueazimuthofdisplacementisnottheheadingprovidedbytheIMU,sincethe IMUhasgotitsownmovementrelativetothepedestrian.Thisusecaseisverydifficulttohandle.It isspecificallyaddressedinsubsection3.5.4. Finally,oncethecurvilineartravelleddistanceandthedisplacementdirectionareestimated, thetrajectorycanbereconstructedthroughaclassicalDeadReckoningalgorithm,whoseequations aregivenbelow. = + ⋅ (ψ ) Nk+1 N k d[]k ,k+1 cos k (3.36) = + ⋅ (ψ ) Ek+1 Ek d[]k,k+1 sin k (3.37) where: − ψ k istheazimuthofdisplacementatepochk. − Nk isthepositionofthepedestrianatepochk. − Ek isthepositionofthepedestrianatepochk. − d[]k,k+1 isthecurvilineardistancetravelledbetweenepochkandk+1. Thefollowingfocusesontheparametersusedinthemodel,thechoiceoftheircombination andthemodeltoestimatethevelocityofthepedestrian.Thestabilityoftheregressioncoefficient andtheminimumamountofinformationneededtobuildanaccuratepedestrianvelocitymodelare alsoaddressed.

Page64 InertialNavigationSystems

3.5.2 Travelled Distance Estimation

3.5.2.1 Parameters A nonexhaustive list of potential parameters that may be used to model the pedestrian velocity is given below.As explained above,all the parameters are computed basedon the total accelerationexpressedinequation(3.34)togetridoftheIMUorientation.Theseparameterscanbe computedoveronestrideoroverapredeterminedtimewindowdependingonthetimetagthatis chosentoupdatethepositionsolution.Theparametersusedinthefollowingofthedocumentare definedinTable3.3andgivenaccordingtoatimetaggedreferencetime.Itisstraightforwardto derivethecorrespondingexpressionsforasteptaggednavigationsystem(i.e.navigationsystems basedonstepoccurrences). Parameter Equation Comments 1 k This parameter is the mean of the signal computed at a MEAN + ∑ i n 1 i=k−n epochkovernsamples ( ) This parameter is the variance of the signal computed VAR var a − 1 [k n,k ] fromthelastnsamplesofthetotalacceleration ThisparameterisslightlydifferentfromtheaboveVAR 1 2 k (a − MEAN ) parameter. Itrepresents the jerk relative to the mean of VAR i k 2 ∑ the total acceleration during the time span n instead of i=k −n+1 n thejerkrelativetocontiguoussamples.

RMS 1 VAR ,1 k ThisparameteristhesquarerootofVAR 1atepochk.

RMS 2 VAR ,2 k ThisparameteristhesquarerootofVAR 2atepochk.

k − ai MEAN k This parameter is the absolute value of the acceleration ABS ∑ amplitudeovernsamplesatepochk. i=k −n+1 n This parameter is the relative amplitude of the total accelerationinawindowoflengthn. max(a)step AMP k This parameter is more adapted to system with step max(a) − min(a) stepk stepk basedreferencetime,inwhichitisdefinedastherelative amplitudeoftheaccelerationsignalinonestride. Thisparameteristhethirdordermomentcomputedfrom k (a − MEAN )3 the total acceleration signal. Its main benefit is that the M i k 3 ∑ signofthisparameterdependsonthejerkofthesignal i=k−n+1 n usedforcomputation. – Stepdetection Thisparameteristhefrequencyoftheaccelerationsignal – Periodogram that can be estimated using the four methods listed FREQ – HRtechniques oppositeoveraspecifictimewindow.Theefficiencyof – Kalmanfiltering thefourmethodsisdiscussedinappendixD Table 3.3: Candidate parameters to the pedestrian velocity model. Once the parameters are defined, one has to choose some of them to establish a velocity model.Theselectionisbasedonacorrelationanalysisbetweenthesecandidateparametersandthe pedestrianvelocity.Inordernottogetthemodeltoocomplexandalsoavoidredundancy,asecond correlationanalysisbetweentheselectedparametersisalsoconducted.

Page65 InertialNavigationSystems

Two sets of data have been collected for parameters selection. For these two records,the IMUwasplacedinapocketofthepedestrianandnotmoved.Thewalkstookplaceinaflatsurface withvariouspacesinordertocoverthewholevelocityspectrumofapedestrian,asshowninFigure 3.18andFigure3.19(anothersolutionwouldhavebeentocollectdataforseveraltestsdonewith differentconstantvelocitiesandthenprocesstheseteststogethertofindthebestparameters).The velocityofreferenceiscomputedineachtestbydifferentiatingthepostprocessedDGPSpositions. BothroverandbasestationGPSdataarerecordedatasamplingrateof4Hz,andthenresampledto matchthesamplingfrequencyofIMUdata(50Hz).TheShannonrequirementisnotmetbythe GPS sampling rate, but the true mean velocity of displacement is nevertheless very accurately estimated.OnlythetypicaloscillationsofthewalkarenotclearlyobservableduetothelowGPS samplingrate,butthiswillnotimpacttheidentificationofthebestparameters.

Figure 3.18: DGPS velocity of reference. Walk n°1. Figure 3.19: DGPS velocity of reference. Walk n°2. Thecorrelationcoefficientusedtocharacteriseeachparameterisdefinedinequation(3.38). Correlationsarecomputedbeforetheregressionprocess,asexplainedinsection3.5.2.3.Ifalinear ornonlinearregressionprocesswouldhavefirstbeenappliedtofittheparameters’shapetothe velocity of reference, the correlation result would have been better. Nevertheless, the way the correlations are computed provides results representative of the importance of the different parameters. cov(p ,v ) = i ref Rp ,v (3.38) i ref ()⋅ () cov pi , pi cov vref ,vref where: − th pi isthei parameter. − vref isthevelocityofreference. − cov isthecovarianceoperator. The focus is first put on the characterisation of the parameters based on a steptagged reference time. In this approach, the parameters are computed between step occurrences. The correlationresultsfortheparameterscomputedeachstepusingthesignalbetweentwosuccessive step occurrences are presented in Table 3.4. The frequency FREQ is the only parameter that matchesthevariationsofthereferencevelocityquitewell,whateveristhetestwalk.TheMEAN andABSparametershavethenexttwobest(butpoor)correlationcoefficients. Thecorrelationresultsfortheparameterscomputedeverytwostepsusingtheacceleration signalbetweenthreesuccessivestepoccurrencesaredetailedinTable3.5.Alltheparametersare well suited to model the reference velocity, except the parameter M 3. The averaging effect of processingasignalwithalongerdurationincreasesthecorrelationpropertyoftheparameterswith

Page66 InertialNavigationSystems respecttotheactualpedestrianvelocity.However,thisreducesthecapabilityof estimatinghigh dynamicchangesinthepaceofthepedestrian,sothatatradeoffshallbefound.Fromthevarious teststhathavebeenconducted,ithasbeenfoundthata2stepssmoothingcanbeconsideredasthe upperboundofanaveragingtimewindow.

Parameters MEAN FREQ VAR 1 VAR 2 RMS 1 RMS 2 ABS AMP M3 Walkn°1 0.726 0.944 0.405 0.404 0.403 0.400 0.440 0.358 0.247 Walkn°2 0.692 0.942 0.379 0.379 0.399 0.386 0.421 0.419 0.269

Table 3.4: Correlation results. Parameters computed each step.

Parameters MEAN FREQ VAR 1 VAR 2 RMS 1 RMS 2 ABS AMP M3 Walkn°1 0.919 0.968 0.924 0.924 0.940 0.940 0.949 0.821 0.536 Walkn°2 0.897 0.966 0.894 0.893 0.908 0.906 0.939 0.906 0.567

Table 3.5: Correlation results. Parameters computed every 2 steps. Forbothreferencewalkn°1andn°2,theparameterswiththehighestcorrelationcoefficient areplottedinFigure3.20andFigure3.21.Therelationshipbetweentheparametersandthetrue displacement velocity computedwith DGPSmeasurements is clearly observable. Among all, the frequencyFREQisthebestonethatcloselymatchesthepedestriandisplacementvelocity.

Figure 3.20: Best parameters computed every 2 Figure 3.21: Best parameters computed every 2 steps. Walk n°1. steps. Walk n°2. Asafirstconclusionforsystemsbasedonstepoccurrences,theparametersthataresuitable tomodelthevelocityofthepedestrianare FREQ,MEAN,VAR 1orVAR 2,RMS 1orRMS 2and ABS.Amongtheseparameters,somemaybecorrelatedtoeachothersothatitwouldbeworthto decreasethemodelcomplexityattheexpenseofsomelossofaccuracybyremovingsomeofthem. Thecrosscorrelationbetweentheselectedparametershasbeencomputedforeverycouple ofparameters.ResultsaregiveninTable3.6forparameterscomputedeachstep,andinTable3.7 forparameterscomputedeverytwosteps.Fromthesetables,itcanbeseenthattheparameterABS hasagoodcorrelationwithallthethreeotherparameters,whateverthecomputationtimewindow.

Page67 InertialNavigationSystems

As a consequence, ABS is no more considered as part of the pedestrian velocity model. The remainingandretainedparametersarethusMEAN,FREQandRMS 1.

MEAN FREQ RMS 1 ABS MEAN FREQ RMS 1 ABS MEAN 1 0.602 0.027 0.026 MEAN 1 0.871 0.821 0.876 FREQ 0.602 1 0.463 0.498 FREQ 0.871 1 0.895 0.922

RMS 1 0.027 0.463 1 0.989 RMS 1 0.821 0.895 1 0.982 ABS 0.026 0.498 0.989 1 ABS 0.876 0.922 0.982 1

Table 3.6: Cross-correlation coefficients (1 step). Table 3.7: Cross-correlation coefficients (2 steps). Thesameselectionmethodisappliedusingatimetaggedreference.Severaltimewindows havebeentested(spansof1s,2sand5s),onwhichtheparametersarecomputedwitharateequalto the IMU sampling rate. This high computation rate allows a better dynamic restitution of the velocityofthepedestrian,asitisillustratedinFigure3.22andFigure3.23.Theaccuracyofthe modelisthusincreased.Thesameconclusionasforstepoccurrencesbasedanalysiscanbedrawn. TheparametersFREQ,MEAN,RMS 1andABShavethebestcorrelationcoefficientsandthecross correlationbetweentheparametersshowsthatABScanberemovedfromtheparameterssetthat matchthebetterthedynamicofthepedestrianvelocity.

Figure 3.22: Best parameters computed over 2s. Figure 3.23: Best parameters computed over 2s. Walk n°1. Walk n°2.

3.5.2.2 Velocity Models The selection of the parameters as discussed in the previous subsection focused on the correlation between the parameters and the GPS velocity of reference. Because the computed correlationvalueisrelevantofalinearcorrelation,theparametersMEAN,FREQandRMS 1shall bepartofalinearmodelofthepedestrianvelocity.However,anonlinearmodelmightgivebetter results.Consequently,thetwopossiblemodelsarestudiedinthefollowing.Thegeneralvelocity modelisgiveninequation(3.39),whereasthesimplerlinearmodelisgiveninequation(3.40).

Page68 InertialNavigationSystems

β β β = α ⋅ 1 +α ⋅ 2 +α ⋅ 3 v p 1 Mean 2 Freq 3 RMS1 (3.39) = γ ⋅ + γ ⋅ + γ ⋅ v p 1 Mean 2 Freq 3 RMS1 (3.40) where: α β – i and i aretheregressioncoefficientsofthenonlinearpedestrianvelocitymodel. γ – i aretheregressioncoefficientsofthelinearpedestrianvelocitymodel.

3.5.2.3 Regression Coefficients Thepurposeofthissubsectionistoassesstheefficiencyofthevelocitymodelsdefinedin equations(3.39)and(3.40).Italsoaimsatanalysingwhetheritisworthusinganonlinearmodelor alinearmodel,regardingtheexpectedperformancewithrespecttotheincreaseofcomplexity.

3.5.2.3.1 Impact of the Velocity Thissubsectionanalysestheimpactofthevelocityofwalkontheregressioncoefficients. Severalstraighttestwalkswithdifferentpaceswererecordedforthatpurpose.Inallthetests,the IMUisplacedinapocketofthepedestrianandnotmoved.Threetypicalvelocityranges(namely low,normalandhigh)havebeenmorespecificallytested,asillustratedinFigure3.28.Theblue plotwithsquaresstandsforthemeanpedestrianvelocitycomputedbasedonDGPSmeasurements. Thedashedredplotistheaveragedvelocityfortypicaltestsinthesamerangeofvelocity. The nonlinear model is first analysed. For that purpose, both nonlinear iterative least squareestimation(ILSQ,seeAppendixC)methodandtheMatlableastsquare(LSQ)curvefitting functionhavebeentested.Thetwomethodshavebeentestedonthedatarecordedduringthetrials and it sometimes appeared that the nonlinear model could not be estimated because of the divergenceoftheLSQalgorithm.Tocopewiththisissue,thenonlinearregressionwasperformed independently for each parameterand the modelwas reconstructed with equal weightforall the singleregressionmodels.Evenifthemethodologyisnotrigorous,itcanneverthelessbeusedasa firstapproximation. Theregressioncoefficientsassociatedtothenonlinearvelocitymodelcomputedfromthe elevenreferencetestsareplottedinFigure3.24.Asitcanbeseenonthefigure,theyaresometimes badlyestimated.ThecoefficientsassociatedtotheparameterMEANareindeederroneousfortests 1,4,6,7and9.Thereasonsofthisbadestimationlieinthenonlinearestimationwhichdoesnot seemrobustenough,especiallyinthatcasewheretheparametersarewellcorrelatedbetweeneach other.However,theotherregressioncoefficientshavebeenestimatedcorrectly.Theirvariationsare zoomed in Figure3.25. Obviously, theycan not beconsideredconstant whatever the velocity of walk.Evenforthesamevelocitiesofwalk,thesecoefficientsarenotconstant,especiallythepower oftheFREQparameter. Thelinearvelocitymodelisstudiedfollowingthesameprincipleasforthenonlinearone. Two regression techniques are here again tested, whether the regression is performed for all parametersatonceorforeachoneseparately.TheresultsofthefirstmethodareplottedinFigure 3.26.Theestimationmethodseemsmorerobustsincetheregressionsucceededforallthereference tests.Asexpectedfromthenonlinearregressionresults,thecoefficientsarenotconstantwhatever

Page69 InertialNavigationSystems thevelocityofwalk. To avoid any interference due to the crosscorrelation effect between the selected parameters,separateleastsquareestimationsaredoneforeachparameterandthethreeresultsare then combined to obtain the velocity model. The pedestrian velocity model could have been composedofonlyoneofthethreeselectedparameters,butthiswouldhavebeenattheexpenseof the model accuracy. Therefore,this second method is test evenifit is not optimum. Results are illustratedinFigure3.27.TheregressioncoefficientsseeminthatcaseconstantoverthethreeGPS velocity ranges identified in Figure 3.28. The dashed lines are the mean of the regression coefficientsonthethreetestedvelocityranges.

Figure 3.24: Regression coefficients. Non-linear Figure 3.25: Regression coefficients. Non-linear model. model (close-up).

Figure 3.26: Regression coefficients. Linear model. Figure 3.27: Regression coefficients. Linear model. 1st method. 2nd method. Accordingtotheabovetests,thenonlinearmodeldoesnotseemrobustenoughtosupport themodellingofthepedestrianvelocity.Opposite,thelinearmodelgivesgoodresultsintermsof robustness,i.e.thereisalwaysasuitablesolutionforanyofthereferencetests.Asaconsequence, thenonlinearmodelwillnotbeusedinthefollowingandthelinearmodelwillbepreferred.Two methodscanbeusedtomatchthelinearvelocitymodeltotheDGPSmeasurements.Ithasbeen

Page70 InertialNavigationSystems shownthatthesecondmethodbasedontheseparatefittingoftheparametersisinterestingsinceit providescomputedparametersthatdonotvaryverymuchforagivenvelocityofwalk.However,it could be expected that the finalmodel of the pedestrian velocityisless accurate thanthemodel obtainedusingthegloballeastsquareestimationmethod. Figure 3.29 illustrates the accuracy of both methods on the eleven reference tests. The distance resulting from the integration of the estimated velocity modelled using the computed regressioncoefficientsiscomparedtotheDGPSreference.Theazimuthusedtogetthepedestrian trajectory is provided by the processing of DGPS measurements in order to analyse more specificallytheimpactofthevelocitymodels.Thedistanceestimationerroristhencomputedand expressedinpercentofthetruetravelleddistance,whichiscomputedwithDGPSmeasurements. Figure3.29showstheimprovementbroughtbythesecondmethodas comparedtothefirstone, evenifthisdifferenceisnotofgreatimportance.

Figure 3.28: Mean DGPS velocity profile of the Figure 3.29: Curvilinear distance estimation error eleven reference tests. with respect to DGPS measurements. As said above, the second method has the property of providing constant coefficients for typical ranges of velocity. This property is very interesting within the scope of a pedestrian navigation algorithm since it would allow the offline establishment of a velocity model for differentvelocityranges.Thatisifoneisabletoestimatethecurrentstateofthepedestrianpace, one could use a predetermined model for distance estimation until external measurements are availabletodetermineamoreaccuratevelocitymodel.TheFREQparametercanbeusedtofulfil this requirement, since it is has the best correlation with the velocity of the pedestrian, as demonstrated in Table 3.4 and Table 3.5. Once the frequency of walk estimated, the navigation systemcouldfindinatablethemostadequatevelocitymodelforthenavigation.Asanillustration, amodelimplementingthemeanvalueoftheregressioncoefficientscomputedforlowvelocities (trialsfrom5to8)istested.Followingthesameprocedureasabove,thetravelleddistanceisthen estimatedusingthesemeanregressioncoefficientsandcomparedtothereferencedistanceasshown inFigure3.29.ThecorrespondingaccuraciesaregivenbelowinTable3.8.Theerrorisatmost2.92 percentofthetruetravelleddistance,whichcanbeconsideredasfairlygood. TestNumber 5 6 7 8 DistanceError(regressioncoefficients) 0.18% 0.37% 0.71% 0.43% DistanceError(meanregressioncoefficients) 2.92% 1.23% 1.78% 1.85% Table 3.8: Distance estimation accuracy – Method 2.

Page71 InertialNavigationSystems

3.5.2.3.2 Impact of the User Thissubsectionanalysestheimpactoftheidentityofthepedestrianusingthenavigation system on the regression coefficient as defined above. Only the linear velocity model is studied here.Fournormalwalkswererecordedfortwodifferentpeoplewalkingastraightandflatpath. ThecorrespondingmeanDGPSvelocitiesareplottedinFigure3.30. TheregressioncoefficientsareplottedinFigure3.31.Thepedestriann°1correspondstothe fourfirsttests(1to4),whereasthesecondpedestriancorrespondstothefourlasttests(5to8).For both users, the coefficients are stable but differ from each other. This is basically due to the behaviouroftheuserswhilewalking.Indeed,themovement’sfrequencyofthelegsisdependenton theheightoftheperson.Tokeepanidenticalvelocityofwalk,asmallpersonshouldmovehislegs fasterthanatallerone.Toreducethisanatomicaldifference,itcouldbeinterestingtonormalisethe velocity of reference. However, the results conducted with the references trials showed that the regressioncoefficientwerestilldifferent.Nogeneralvelocitymodelcanconsequentlybefoundfor severalusers,becauseregressioncoefficientsaredependentontheidentityoftheperson.

Figure 3.30: Mean DGPS velocity profile of the Figure 3.31: Regression coefficients. Linear velocity eight reference tests. model. 2 nd method.

3.5.2.3.3 Impact of the Reference Measurement Quality In this subsection, the impact of the quality of the external measurements on the computationoftheregressioncoefficientisanalysed.TheDGPSreferencemeasurementsusedin the above subsections were the result of the postprocessing of the rover and base station phase measurementsusingtheGraphNavsoftware. In the particular case of the pedestrian navigation, it is unlikely to have differential measurementstocalibratethevelocitymodel.Atrialinanenvironmentpronetomultipathisthus done to simulate a typical urban navigation. Only the measurements of the rover are used for calibration. Figure 3.32 shows the reference velocities. The blue solid plot stands for the DGPS velocity, whereas the red dashed plot stands for velocity estimated using the rover receiver measurements only. As it can be seen, the standalone solution is very noisy and inaccurate comparedtotheDGPSone,witha2Dstandarddeviationofrespectivelyabout4mand0.04m.

Page72 InertialNavigationSystems

The single point velocity solution yields a distance estimation error of 27% when using the linear velocity model presented in subsection 3.5.2.2 compared to the true travelled distance computed with DGPSmeasurements.Thiserrorisreducedto 1% if the pedestrian velocity model is calibrated with DGPS data. This test is very representative of an initialisation in urban or in indoor environments. It also reveals the needofanalternativecalibrationprocedurein such harsh environments, as for examplethe procedurerelyingontheFREQparameteras describedattheendofsubsection3.5.2.3.1. Figure 3.32: Reference velocity used for regression.

3.5.2.3.4 Impact of the Amount of Data Used for Calibration Theimpactoftheamountofreferencedataontheaccuracyofthepedestrianvelocitymodel is analysed in this subsection. The analysis is addressed through the reference test presented in Figure3.19andinFigure3.33(upperpart)withadifferentscale.Onlyapercentageofthereference velocity is used to calibrate the velocity model, which goes from 2% up to 100%. For each regression,theerrormadeonthetravelleddistanceisestimatedrelativetothetrueDGPSdistance of reference. Both linear regression methods are studied hereafter (as defined in subsection 3.5.2.3.1). Results are plotted in Figure 3.33 (lower part). Figure 3.34 clearly shows the convergence of the regressioncoefficients as soonas about20% ofGPS dataare used. There is thereforenoneedofalargeamountofdatatoenabletheestimationofthetravelleddistancewithan acceptableaccuracy(errorwithin±5%ofthetruetravelleddistance).

Figure 3.33: DGPS velocity profile (up) and Figure 3.34: Regression coefficients. Linear model. distance estimation error (down). 2nd method. 3.5.3 Displacement Direction Estimation Aspresentedinsubsection3.5.1,thepedestriannavigationreliesonthedistanceestimation

Page73 InertialNavigationSystems and the displacement direction (i.e. heading) estimation. The heading estimation is a process completely independent of the distance estimation. It relies on gyroscopes measurements as describedinsection3.2. Amongthethreeattitudeangles,onlytheheadingangleisusedasaninputofthePedestrian DeadReckoning(PDR)algorithm.Pitchandrollanglesshallneverthelessbeproperlyinitialisedin ordertoallowagoodcomputationoftheheading.Accelerometersarewellsuitedforthatpurpose. Theyallowanautonomousinclinationinitialisation,whoseaccuracyiscloselyrelatedtothebias affecting the measurements. According to the characterisation of the sensors as described in subsection3.3.1.1andsummarisedinTable3.1,itcanbeassumedaremainingturnonbiasinthe accelerometermeasurementsoflessthan0.05m/s².AsplottedinFigure3.4,theinclinationofthe IMUcanthusbeestimatedwithinanaccuracyof±1°.Ifmagnetometersareusedtoinitialisethe heading,thisinclinationerrorbudgetwillintroduceabiasofabout±1°asillustratedinchapter4, whichremainswithinacceptablelimitsaccordingtothequalityofthesensorsoftheIMU. Theheadingaccuracyreliesonthegyroscopesbiasesthatvaryintimeinrelationshipwith theoperatingtemperatureandthemotionexperiencedbythesensors.Duetothelowcostproperty of the sensors, it is likely that the computed displacement direction will drift over time. One improvementwouldbetolimitthatdriftusingexternalmeasurementsasforexamplethoseofthe magnetometers.Thisimprovementisdiscussedingreatdetailsinchapter4. 3.5.4 Unconstrained Navigation Issue ThecrucialpointofthepedestrianmechanisationliesintheclosecouplingoftheIMUwith the pedestrian. In other words, any movement of the IMU with respect to the user’s body will dramatically impact the algorithm performance in terms of travelled distance and displacement directionestimation.Thisisoneofthemaindrawbacksofsuchmechanisation,whichconsequently ismoresimilartoaconstrainednavigation.Theissueisthusraisedwhenthepurposeistolocatea pedestrianastheinertialsensorscanbeputinsideahandhelddevicesuchasacellphoneoraPDA. The constrained assumption is no more valid so that all the benefits brought by the new mechanisation(i.e.nodoubleintegrationoftheaccelerationbiases)maybelost. Asdetailedintheabovesubsections,thedistanceestimationreliesonthecomputationof parameters that characterise the dynamic of the pedestrian. Figure 3.35 illustrates the selected parameterscomputedduringawalkwheretheIMUwasmovedtwice.TheteststartswiththeIMU inthepocketofthepedestrian,thentheunitismovedtotheearasacellphonewouldbeandfinally theIMUisreplacedinthepocket.Asitcanbeseeninthefigure,theparametersdonothavethe same shape as the velocity of reference provided by DGPS measurements. This is also clearly observable in Figure 3.36 where parameters such as MEAN are plotted with the acceleration magnitude.TheFREQparameterisneverthelessthemostreliablewhateverthelocationoftheIMU andeveninthetransitionperiods.Therearehoweverperiodsofinaccuracymainlyduetothefact thatthepedestrianstepfrequencyisblurredbytheintrinsicmotionoftheIMU. ThedisplacementdirectionofthepedestrianmaydifferfromtheheadingoftheIMUifthe measurement unit is moved while walking. It is of tremendous importance to keep the sensors assembly closely attached to the pedestrian or the vehicle in order to avoid any undetectable headingoffset.Indeed,theunconstrainednavigationimpliesthattheorientationoftheheadingaxis oftheIMUandthedirectionofwalkarenotcorrelated,makingthetrackingoftheIMUheadingno morerelevant.

Page74 InertialNavigationSystems

Figure 3.35: Parameters of the velocity model (unit Figure 3.36: Relationship between the acceleration m/s). IMU is moved while walking. magnitude and the parameters (unit m/s 2). As an alternative solution, the true displacement direction can be computed based on the northandeastvelocitycomponents.ThevelocitymodelelaboratedwithIMUmeasurementsisthe velocityoftheIMUrelativetothegrounddirectlyexpressedinthenavigationframe (n) .Itcanbe decomposedasfollows: (n) = (n) + (n) vIMU / ground vIMU / user vuser / ground (3.41) where: (n) – vIMU / ground isthevelocityoftheIMUwithrespecttotheground,expressedin (n) . (n) – vIMU /user isthevelocityoftheIMUwithrespecttotheuser,expressedin (n) . (n) – vuser / ground isthevelocityoftheuserwithrespecttotheground,expressedin (n) . AssumingthevelocityoftheIMUrelativetotheusernegligiblecomparedtothoseofthe userrelativetotheground,theeastandnorthvelocitycomponentscanthenbeusedtocomputethe truedisplacementazimuthα,asgiveninequation(3.42). α = ( ) arctan vE vN (3.42) These components are not directly available. However, it is possible to project the accelerationmeasurementsinthenavigationframeusingtherotationmatrixfromthemobileframe to the navigation frame. Assuming a nondrifting attitude and avoiding the integration of these projectedaccelerationstolimittheimpactofthebiases(i.e.estimatingthenorthandeastvelocities as it is done with the pedestrian velocity), it is then possible to get an estimate of the different velocitycomponents,andconsequentlythetruedisplacementdirection. The unconstrained navigation is much more complex to handle than the constrained one. EvenifthetravelleddistancecanbeestimatedthroughtheparameterFREQwithmediumaccuracy, thetrackingofthetruedisplacementdirectionismoredifficulttoachieve.Moreover,theestimation of the north and east components relies on the rotation matrix from the mobile frame to the navigationframe,whichisverysensitivetogyroscopesbiases.

Page75 InertialNavigationSystems

3.5.5 PNS Mechanisation Figure 3.37 summarises the Pedestrian Navigation System mechanisation as described above.ItmainlyreliesontheprocessingofthelowcostIMUdatatogetherwithGPSvelocityfor calibrationpurposes.

Figure 3.37: Pedestrian Navigation System (PNS) mechanisation. 3.5.6 Expected Accuracy Thepedestrianmechanisationaimsatavoidingthedoubleintegrationoftheaccelerationin thenavigationframeto limittheimpactofthe biases(fromgyroscopesandaccelerometers)that rapidly degrades the performance of the positioning system. Errors are nevertheless done while estimating the velocity of the pedestrian as well as the azimuth of displacement. The following proposesasimpleanalysisoftheperformancethatcanbeachievedwithsuchamechanisation. Itisverydifficulttoanalysetheperformanceofthepositioningtechniqueforapedestrian walkingfreely,sothatthestraightwalktestcaseismorespecificallyaddressed.Theworstcaseis considered, since the error affecting the velocity is assumedto be a constant bias aswell as the heading rate error, and the pedestrian is assumed to be continuously walking. In addition, the particularcaseofaGaussianheadingerrorisalsoassumedinordertopredicttheperformancethat canbeachievedifastableattitudealgorithmisusedtocomputetheheading. It is assumed in the following that the error on the 2D position of one user can be decomposedintotwononcorrelatedcontributions(distanceerrorandheadingerror).Inafirsttime, the error due to the velocity model parameters estimation is discussed. Assuming the estimated pedestrianvelocityisaffectedbyaconstantbias(whichobviouslyrepresentstheworsterrorcase), thetruevelocitycanbewrittenasgiveninequation(3.43). = +σ vt vˆ v (3.43) where:

– vt isthetruevelocityofthepedestrian. – vˆ istheestimatedvelocity. σ – v istheconstanterroraffectingtheestimatedvelocity. Itisthenstraightforwardtoestimatetheerrormadeonthetravelleddistance,asitisdefined inequation(3.44).

Page76 InertialNavigationSystems

σ = σ ⋅ d ,k v k (3.44) where: σ – d ,k istheerrormadeonthetravelleddistanceatepochk. The error due the estimation of the heading is twofold. It depends on the type of error affecting the measurements. Considering the first case of a constant and maximum heading rate bias,theerrortrajectoryisillustratedinFigure42.Theredandbluepathsarerespectivelytheerror trajectoryduetoapositiveandnegativeconstantheadingratebias.Theheadingerrorcontribution atepochkisthusdefinedasfollows: k k σ = σ = ⋅  tn α  h,k h,n d n sin & max dt  (3.45) ∑ ∑ ∫t n=1 n=1  1  where: σ – h,k istheheadingerrorcontributionatepochk α – &max isthemaximumheadingratebias.

– dn isthetruetravelleddistanceatepochn. Inthesecondcaseofaconstantheadingbias,thecorrespondingerrortrajectoryisplottedin Figure43withthesamenotationsasforFigure42.AteachestimatedpositionP i,theheadingerror ishereassumedtobewithinaspecificrangewhichdependsontheaccuracyofthealgorithmthat wouldestimatetheheading.Equation(3.46)givestheexpectedheadingerrorcontribution. k k σ = σ = ⋅ ()α h,k ∑ h,n ∑dn sin max (3.46) n=1 n=1 where: α – max isthemaximumheadingbias.

σd,k

+ Pk

Start σh,k Pk Direction P0 ofwalk

Pk

Figure 3.38: Error of a pedestrian walking a straight Figure 3.39: Trajectory error of a pedestrian walking path assuming constant velocity and heading rate a straight path assuming constant velocity and biases. heading biases.

Page77 InertialNavigationSystems

Once the two contributions are computed, the overall upper bound 2D RMS error that characterisesthepositionaccuracyisdeducedaccordingtoequation(3.47). ε = σ 2 +σ 2 2D d ,k h,k (3.47) TheperformanceofthepedestrianmechanisationisillustratedinFigure3.40andinFigure 3.41fortypicalerrorsrelevantoflowcostMEMSsensorsgiveninTable3.9.Duringthe whole simulation,thepedestrianisassumedwalking(i.e.nostopfor10min). Parameters Type Value HeadingBias Constant 5° HeadingRateBias Constant 300°/hour VelocityBias Constant 2.0m/s SimulationTime 10min Table 3.9: Pedestrian mechanisation simulation parameters. Whatevertheheadingerrormodel,thepedestrianmechanisationoutperformstheclassical INS, whose static performanceisshown inFigure 3.16. Figure3.40 shows that typical errors of about300m/120m2Dafter10minutesofnavigationcanbeachievedcomparedto600m2Dafter 1minuteofnavigationforastandardINSmechanisation.Itisobviouslynotrigoroustocompare theresultsofthePDRmechanisation(whichassumeawalkingpedestrian)tothestaticresultsof the INS.However,this canbejustifiedasonecanexpectaworsedynamicaccuracyoftheINS becauseofthebiasesintroducedduringthemotionoftheIMU.

Figure 3.40: 2D upper bound position error Figure 3.41: Detail of the contributions of each 2D assuming a constant velocity bias. upper bound position error. Thesimulatedpositionerrorissmallerinthecaseofaheadingaffectedbyaconstantbias, asillustratedinFigure3.40.Inthiscase,thereisindeednomemoryeffectsincethereisnodriftat all.Thepositionaccuracyisincreasedandtheavailabilityofthepositioningserviceisextended.

Page78 InertialNavigationSystems

3.6 Conclusion

This chapter recalled the basics of the inertial navigation principles. In a first time, the sensorscharacterisationwasintroducedforfurtherperformanceanalysis.Bothaccelerometersand gyroscopeswerestudiedaspartofanofftheshelfIMUusedthroughoutthisthesis(Xsens’sMTi). The standard inertial navigation system mechanisation was then derived and its performance relativetothequalityofthesensorsembeddedintheXsens’sMTiassessed.Ithasbeenshownthat theuseoflowcostsensorsmakesthestandaloneinertialnavigationonlyreliableforaveryshort time. Theparticularcaseofthepedestriannavigationhasbeenexhaustivelydetailed.Ithasbeen shown that the mechanisation can provide substantial benefits to improve the reliability of the systemworkingwithoutanyexternalupdate.TheaccuracyofthestandalonePedestrianNavigation System depends on two specific and distinct contributions: the travelled distance error and the pedestrianheadingerror.Theperformanceofsuchamechanisationrelativetoaconstantvelocity biasandseveraltypesofheadingerrorswasdiscussed.Itwasdemonstratedthatasystemaffected byaconstantheadingbiaswouldgivebetterlongtermaccuracythanthoseaffectedbyadrifting headingangle.

Page79 SensorBasedAugmentations

Chapter 4: Sensor-Based Augmentations Asdiscussedinchapter 2,GPSbasedpositioningsystemsare a goodmeanto enablethe locationofoneuserinmanyenvironments.Deepindooranddeepurbancanyonsarenevertheless very harsh environments in which the availability and the accuracyof the GPS position solution decreasesdramatically.AsanaugmentationtoreplaceGPSduringoutagesintheaforementioned environments,inertialnavigationsystemshavebeenpresentedinChapter3.Theweakestpointsas wellastheadvantagesofsuchnavigationsystemshavebeendiscussed.Theparticularcaseofthe pedestriannavigationhasalsobeenaddressedtomitigatetheimpactofthelowcostsensorsbias. Suchamechanisationincreasesthenavigationperformance,butasfortheclassicalmechanisation, thepositionisdriftingduetotheaccumulatingeffectofheadingdriftandvelocityerrors. InordertoimprovethedifferentcomputationstagesoftheINSandalsotheperformanceof GPS/INS hybridised systems, the addition of several lowcost MEMS sensors is studied in this chapter.Moreparticularly,theuseofapressuresensorandatriadofmagnetometersareaddressed. Inafirsttime,thetwosensorsaredescribed,theirexpectedperformancediscussed,andtheway theycanbeusedtoimprovetheGPS,INSorGPS/INSpositionsolutionispresented.Inasecond time,analgorithmdevelopedintheframeofthisthesisthatfusestheinformationofthedifferent sensorsinordertoenhancetheattitudecomputationbasedonIMUdataisdetailed.

Page80 SensorBasedAugmentations

4.1 Pressure Sensor 4.1.1 Principle and Output Model As a lowcost sensor, the pressure sensor is very well suited to improve the position accuracyandespeciallytheverticalchannel.Itmeasurestheambientpressureattheoperatinglevel, which can then be converted into altitude. The basic pressuretoaltitude relationship is given in equation(4.1).Thismodeldoesnottakeintoaccountspecialweatherconditionsliketemperature inversion as they often appear during the winter season, and also atmospheric pressure changes causedbychangesintheweather. ⋅γ − Ra T  P  g0 T z(P) = 0 ⋅  − 0 (4.1) γ   γ  P0  − g0 ⋅γ   Ra = ⋅ + γ z  (4.2) P(z) P0 1   T0  where: − z isthealtitudeprovidedbythepressuresensor,and P isthepressureataltitude z . = − P0 1013.25hPa . = ° = − T0 isthetemperatureat1013,25hPa. T0 15 C 288.15K . − γ isthegradientoftemperature,fixedfor z ≤11km to γ = dT / dz = − 5.6 °C / km. = − Ra isaconstant.Fordryair, Ra 287 1. J / kg / K . = 2 − g0 isthegravityaccelerationatMSLandlatitude45°N. g0 .9 80665m/ s . The pressure measured by the sensor converted into an altitude z is referenced from the 1013.25hPa pressure surface. Under standard conditions, the 1013.25hPa pressure surface is considered to be the Mean Sea Level (MSL) and as a consequence, the altitude provided is the heightfromthatMSLtotheoperatinglevel.Usually,theMSLandthe1013.25hPasurfacedonot match,asillustratedinFigure4.1.

Altimeter z

1013.25hPa

z1 Ground MeanSeaLevel z0

Figure 4.1: Pressure measurement principle. Figure 4.2: Altitude-to-pressure relationship.

Page81 SensorBasedAugmentations

ThepressuresensorusedthroughoutthethesisisanIntersemaMS5534[31].Itisastable andtemperaturecompensatedsensorcapableof1mbar(0.1hPa)resolution(asillustratedinFigure 4.3), which approximately corresponds to 1 metre (as illustrated in Figure 4.4) with a precision within±0.5mbaroncecalibrated(i.e.±0.5m).

Figure 4.3: Required pressure resolution to enable a Figure 4.4: Impact of the pressure variation on the 1m vertical resolution. computed altitude. Theoutputmodelofapressuresensorcanbewrittenasgiveninequation(4.3).Thescale factorhasanegligibleeffectonthealtituderestitution.Opposite,thebiasandtheperturbationsdue tothechangesofweatherdramaticallyaffecttheaccuracyandthereliabilityofthemeasurements. out = ( + )⋅ true + + weather + p 1 SFp p bp P n p (4.3) where: – pout istheoutputofthepressuresensor.

– SFp isthescalefactoraffectingthemeasurements. – ptrue isthetruepressurethatshouldbeoutputtedbythesensor.

– bp isthebiasaffectingthepressuremeasurements. – P weather istheperturbationduetheweatherchanges.

– np isthenoiseaffectingthepressuremeasurements. 4.1.2 Performance assessment Toanalysethequalityandthestabilityofthemeasurements,thepressuresensorisplacedin a closed room for about 13 hours, with an initial altitude artificially set to 0 metre. The data recordedduringthisstatictrialareplottedinFigure4.5.Bothtemperatureandpressureconverted intoaltitudeaccordingtoequation(4.1)arepresented.Thesensorinternaltemperatureneedsabout 2hoursbeforeitconvergestoastablevalue.Thecomputedaltitudevariesaroundtheinitialvalue withastandarddeviationof1.8metres.Thereisapparentlynorelationshipbetweenthevariations ofthealtitudeandthetemperature,whichtendstoprovethatthetemperaturecalibrationisefficient. Theobservablevariationsarethusmainlyduetothebiasaffectingthepressuremeasurements.

Page82 SensorBasedAugmentations

Figure 4.5: Altitude and temperature variations Figure 4.6: Vertical velocity computed with the recorded over 13 hours in a closed room. pressure sensor measurements. Asanillustrationofthepressuresensorperformance,Figure4.6showsthealtituderecorded duringatrialinsideabuildingwherethepedestrianwaswalkingfromthegroundflooruptothe firstfloorusingstaircases.AccordingtotheupperpartofFigure4.6,thetwofloorsareseparated from approximately 3.5 metres, which is consistent with the actual height (4 metres). The measurements are very noisy as illustrated by the vertical velocity computed from the raw measurements,asshowninthelowerpartofFigure4.6inblue. Thefilteredmeasurements(averagingover5seconds)plottedindashedredinbothgraphs arerathermoreaccurate,especiallytheverticalvelocitycomputedfromthealtitudemeasurements. Theperiodwherethepedestrianisclimbingstairsisclearlyobservable,withaverticalvelocityof about0.4m/s,whichisconsistentwiththetrueverticalvelocity,since4metreswereclimbedin10 seconds.Thepressuresensormeasurementsshallthenbefiltered(averagingoveratimewindow forinstance)inordertoprovideusefulinformation,especiallyiftheverticalvelocityisusedasa referencemeasurement. 4.1.3 Improvement of the Position Solution Thereareseveralwaysofusingthepressuresensorinordertolimittheerroronthevertical channel. A first approach would be to use the pressure measurements converted into altitude measurementsatalowlevelinthepositioncomputationprocess.Inotherwords,thealtitudecould beusedasthegeometricdistancefromtheusertoafictitioussatellitecentredattheEarth’scentre. Thisadditivepseudorange(notaffectedbythereceiverclockbias)couldthenbeintegratedwiththe true satellite pseudoranges and processed to compute the user’s position. However, this pseudorangeisverylikelytobeaffectedbyerrorsduetothemeasurementaccuracy.Moreover,the height computed from the pressure sensor measurements is the height with respect to the 1013.25hPareferencesurface,whosealtitudemayvarydependingontheweatherconditions.Such a discrepancy is of the order of about ±20hPa, which translates into ±200m. Consequently, the absolutemeasurementsofthealtimetercannotbeuseddirectlytoprovideanaccuratepseudorange measurement.AfirstcalibrationusingforexampleaGPS3Dpositionsolutionisthusrequired. The above requirement stands alsoforthe use of a pressuresensor providing the vertical user’s position component. Thenumber of unknowntofind is then reducedtothree (east, north

Page83 SensorBasedAugmentations components and receiver clock bias) in the case of a 3D position computation. However, introducing a ±200m vertical error in the vertical component will impact as much the predicted measurementsandthusthetwoothersuser’scomponents(northandeast).Afirstcalibrationofthe barometeristhusrequired. Inbothcases,itisconsistenttoassumethatoncethebarometeriscalibrated,theerrormade on the altitude estimatedoes notvary very muchovera medium timeslot. Ifno strong weather changeoccurs,anyverticaldisplacementlargerthanthesensorresolutionandaccuracywillthusbe detected. To analyse the benefits of the pressure measurements on the accuracy of the position solution,threedifferentLeastSQuare(LSQ)positioncomputationsaredone(seeappendixC).The firstmethod(case1)usesonlyfoursatellitestocomputetheuser’sposition,whosemeasurements aregeneratedwithastandarddeviationof3metresaccordingtoaknownuserreferencepositionon Earth.Thesecondmethod(case2)usesthepressuremeasurementasafictitiouspseudorangeand thethirdmethod(case3)usesthealtitudedataastheverticalcomponentoftheuser,reducingto threethenumberofunknownsintheLSQalgorithm.Errorsfrom0to50metresareintroducedin the altitude provided by the pressure sensor. For each pressure measurement error, 1000 LSQ computationsaredone.Thethreemean3DRMSerrorsareplottedinFigure4.7.

Figure 4.7: 3D RMS position error using pressure Figure 4.8: DOPs improvement due to the measurements with three different computations processing of the pressure measurements. methods. Thebluehorizontallineisthepositionerrorcomputedwithmethodn°1.Figure4.8showsin bluethedifferentDOPscharacterisingthesatelliteconfiguration,whichinthatcaseisquitebad.As soon as the vertical information is added in the LSQ algorithm, the DOPs logically decrease (especiallytheverticalDOP),asshowninFigure4.8.Thepositionsolution3DRMSerroriswell reduced when using the pressure measurement, especially if the added information from the pressure sensor is not very affected by errors (less than 15 metres error for a GPS pseudorange standarddeviationof3metres).Methodn°2outperformsmethodn°3especiallyforlargealtitude informationerrors,whichtendstodemonstratethatusingthealtitudemeasurementasafictitious pseudorangeismoreefficientthanusingitasaverticalcoordinateestimate.However,methodn°2 impliestoprocesspseudorangesinordertocomputethepositionoftheuser,whichcannotalways bepossible,especiallyifGPSmodulesprovidinginformationthroughNMEAframesareusedfor navigation.Inthatcase,methodn°3stillisaneffectivemeanofimprovingthepositionaccuracy. When altitude measurements are very affected by errors (a typical threshold would be between15and20metresaccordingtoFigure4.7fortypicalGPSpseudorangesstandarddeviation

Page84 SensorBasedAugmentations of 3 metres) and as soon as four satellites are available, it should be preferred not to take into accountthepressuresensorinthepositioncomputationastheoverallaccuracydecreases.However, itisverydifficulttodetectwhetherthepressuremeasurementsarereliableornot,especiallyifno pureGPS3DfixcanbecomputedorifonlypureGPS3Dfixwithhighuncertaintyisavailable(as forexampletypicalfixescomputedwithindoorssignals). 4.2 Magnetic Field Sensor 4.2.1 Earth Magnetic Field One of the particular characteristic of the Earth is that anywhere around its centre, it is possibletomeasureamagneticfield.Thisfieldhaspropertiesthatslowlyvaryintime(atthescale ofyears)sothattheycanbeconsideredlocallyconstant.Figure4.9andFigure4.10illustratesome of the Earth’s magnetic field characteristics and Table 4.1 gives typical values for the Earth’s magneticfieldatToulouse,Franceforyear2005.

Figure 4.9: Earth’s magnetic field intensity [22]. Figure 4.10: Earth’s magnetic field declination [22]. Figure 4.11 presents the Earth’s magnetic field vector H e in a horizontal reference frame (x,y,z).Itischaracterisedbyitsinclinationordipangleδ,whichistheanglebetweenthehorizontal projectionH hofH eandthemagneticfieldvectorH e.Theinclinationdependsonthelocationonthe Earthbutislocallyconstant.Foragivenarea,itcanbefoundforexamplein[22]. Ifmagneticmeasurementsarerotatedintoahorizontalframe,themagneticheadingαcanbe computed.ItistheanglebetweentheheadingaxisxandthehorizontalprojectionH hofH e.This anglediffersfromthetruegeographicnorthbyalocallyconstantangleknownasthedeclinationλ. ThedeclinationisalsoalocallyconstantcharacteristicoftheEarth’smagneticfield.Typicalvalues foragivenareacanbefoundin[22]forexample. Dipangle 58,73° Declination 1,299° Magnitude 42921,18nT 1(normalised) Horizontalmagnitude 22279,17nT 0,5191(normalised) Table 4.1: Toulouse Earth’s magnetic field characteristics (year 2005) [22].

Page85 SensorBasedAugmentations

4.2.2 Sensor Output Model Magnetometers are used to sense the Earth’s magnetic field. The lowcost Xsens measurementunitMTicomprisesatriadofsuchsensors.Thegeneralmagnetometeroutputmodel isgiveninequation(4.4).AltoughtheScalefactorSF mandthebiasb maretemperaturedependent, theirrespectivevariationsarenottakenintoaccountinthefollowingofthisreport.Thetemperature calibrationdonebyXsensisassumeenoughaccurate. out = ( + )⋅ true + + + m 1 SFm m bm I m nm (4.4) where: − mout istheoutputofthemagnetometer. − SF misthescalefactoraffectingthetruequantitytomeasure. − mtrue isthetruequantitytomeasure. − bmisthebiasaffectingthemeasurement. − Imisthemagneticinterferencethatmayoccurduringthemeasure. − nmisthenoiseaffectingthemeasurement. 4.2.3 Magnetic Heading The magnetic heading (also called magnetic azimuth) α is computed using the two horizontalcomponentsoftheEarthmagneticfieldH easpresentedinFigure4.11andexpressedin equation(4.5).Measurementshavethustoberotatedintoahorizontalplanepriortoanyheading estimation. Its accuracy depends on the quality of the data (biases, scale factors) as well as the accuracyoftheinclinationanglesusedtorotatethemeasurementsintothelocalhorizontalplane. α = ( ) arctan H y H x (4.5) where: – HxistheEarth’smagneticfieldcomponentalongthehorizontalxaxisstandingfortheheading axis(i.e.theaxiswithrespecttowhomtheangleiscomputed)ofthehorizontalframe(x,y,z). – HyistheEarth’smagneticfieldcomponentalongtheyaxisofthehorizontalframe(x,y,z). Theimpactofthemeasurementbiasesandscalefactorsonthemagneticheadingisdetailed in[25].Thiscontributioncanbepartiallyhandledwithacalibrationprocedure(detailedinthenext subsection)sothatitisassumednegligiblecomparedtotheerrorintroducedbythetiltingofthe magnetometertriad.Accordingto[25],themagneticheadingerrorasafunctionoftheinclination errorisgivenbythefollowingequation:

εψ = arctan(tan(δ )⋅sin(τ )) mag (4.6) where:

– εψ isthemagneticheadingerror. mag – δisthedipangle,asillustratedinFigure4.11. – τistheinclinationerror.

Page86 SensorBasedAugmentations

The magnetic heading error depends on the location of the measurement unit on Earth through the dip angle δ. In France, the dip angle is comprised between 50° and 60°. The correspondingheadingerroristhenplottedinFigure4.12.Thisfigureshowsthatthetiltestimation playsacrucialroleintheheadingaccuracysincesmalltilterrorsintroducelargeheadingerrors. Understaticconditions,thetiltaccuracy(i.e.theaccuracyofbothpitchandroll)dependson thequalityoftheaccelerometersmeasurements.Accelerometerssensethegravityvector,sothat pitchandrollanglescanbecomputedusingthecorrespondingprojectionsontothemobileframe (m) ,asexplainedinchapter3.Assumingaresidualturnonbiasintheaccelerometermeasurements oflessthan0.05m/s²aftercalibration,theinclinationoftheIMUcanthusbeestimatedwithinan accuracy of ±1° (detailed in chapter 3). If magnetometers are used to initialise the heading, this inclination error budget will introduce a bias of about ±1°, as illustrated in Figure 4.12, which remainswithinacceptablelimitsaccordingtothequalityofthesensorsoftheIMU.

zoom

Figure 4.12: Magnetic heading error with respect to Figure 4.11: Earth magnetic field [25]. inclination error. Inadynamicmode,thetiltaccuracyisverydependentontherealtimeestimationofthetrue acceleration of the pedestrian or the vehicle. No tilt compensation can be done since typical inclinometersaredisturbedbythemotionoftheIMU.Suchadynamictiltcompensationalgorithm hasbeendeveloped.Detailsaregiveninthenextsection. 4.2.4 Calibration Procedures and Magnetic Interferences Thescalefactorandthebiasasdefinedinequation(4.4)introduceerrorsinthemagnetic heading.Theseerrorsneedtobeestimatedinordertoincreasetheheadingaccuracy.However,the magneticheadingiscomputedoncethemeasurementsarerotatedinahorizontalplane.Thus,the correctionneededtolimittheimpactofbotherrorscanbeappliedintothemobileframe (m) orin thehorizontallevelledframe(asshowninFigure4.11).Inthefollowing,thecomponentsofthe magneticfieldinthelocalhorizontalplanearecorrectedforbiasesandscalefactors. Ifthemeasurementswereperfectinthelocalhorizontalplaneafterdescribingawhole360° rotationabouttheverticalaxisofthenavigationframe,theH xversusH yplotshouldbeaperfect circle centred in (0, 0) with aradius equal to the localhorizontal Earth’s magnetic field H h (i.e. 0.5191inToulouse).Thescalefactorisresponsibleforthedistortionofthecircleintoanellipse

Page87 SensorBasedAugmentations and the bias decentres the ellipse. Thus, in an environment with no magnetic interference, the calibrationprocedureofthemagnetometersconsistsinfindingthecalibratedhorizontalmagnetic components,asgiveninequation(4.7). calibrated = ⋅ + H x X SF H x H x0 (4.7) calibrated = ⋅ + H y YSF H y H y0 where: calibrated calibrated – H x , H y arethecalibratedhorizontalEarth’smagneticfieldcomponents.

– X SF , YSF arethescalefactorsaffectingthemeasurementsinthehorizontalplane.

– H x0 , H y0 arethebiasesaffectingthemeasurementsinthehorizontalplane. Thecalibrationprocedureallowsalsothemitigationofpermanentmagneticinterferences. Such typical perturbations occur when the magnetic sensors of the measurement unit are placed nearbyironobjects.TheseobjectsproduceaconstantmagneticfieldthatdisturbsthoseoftheEarth. Inthecalibrationdiagram,hardinterferencedecentresthecircleandactasbiasesonthehorizontal componentsofthesensedmagneticfield.

Figure 4.13: Calibration test diagram in a non perturbed magnetic environment. Asanexample,Figure4.14andFigure4.15illustratesuchhardironinterferenceeffecton thesensedmagneticfield.Theparticularcaseofthelandvehicleismorespecificallyshownsinceit involvesthestrongestmagneticinterferences. In Figure 4.14 are plotted the magnetic field magnitude (the upper blue plot) and the acceleration magnitude (the lower red curve). Five parts are clearly observable on the magnetic fieldmagnitude.The1 st and5 th partareepochswherethemeasurementunitisinthevehiclewith engine off. As it can be seen, the magnitude is not equal to one but constant and equal to approximately0.82.Thistypicallyillustratestheintrinsichardinterferencepropertyofthevehicle. The2 nd partoftheplotstandsfortheprestartofthedieselengine.The3 rd partisthestartofthe

Page88 SensorBasedAugmentations engine.Thevehicleshakesalittle,asitcanbeseenintheaccelerationpattern.Finally,the4 th part isforenginestarted.Thevibrationsofthevehicleareclearlyobservableintheaccelerationplotbut notinthemagneticfieldmagnitudeone,whichremainsconstant.

Figure 4.14: Magnetic field magnitude variation Figure 4.15: Magnetic interferences due to the during the different vehicle engine start. dashboard equipments of a vehicle. Figure4.15illustratestypicalinterferencesthatmayoccurwhiledrivingandthatcannotbe mitigatedthroughacalibrationprocedureduetotheirrandomproperty.Insuchcases,themagnetic headingisbiasedandcannotbeusedasacorrectionsourceforthedriftinggyrobasedheading. 4.3 Drift-Free Attitude Filter

Asdiscussedinchapter3,theinertialnavigationisashorttermreliablenavigationmethod, whose error budget can be split into a heading error contribution and a travelled distance error contribution.Thepositiondriftduetoaccelerometerbiasescanbepartiallymanagedwiththeuseof modifiedmechanisationsasforexamplethoseforpedestrianspresentedinchapter3.Theposition accuracycanalsobeimprovedwiththeuseofexternalsensorssuchasapressuresensortolimitthe verticaldriftorwheelspeedsensorsinthelandvehiclecase,asdemonstratedin[32]. Inbothinertialnavigationcases(i.e.theclassicalINSorthePNS),theattitudedriftisstill remaining and thus degrades significantly the position solution when no GPS measurement is availableforupdate.Asthemeasurementunitstudiedwithinthescopeofthethesisiscomposedof atriadofaccelerometers,gyroscopesandmagnetometers,itispossibletolimittheimpactofthe gyroscopesbiasontheheadingaccuracybyfusingtheinformationprovidedbyalltheselowcost sensorsofMEMStype. TherecentprogressesinthemanufacturingofMEMStypesensorsmakecomponentssuch as integrated 3axis accelerometers and 3axis magnetometers very attractive for navigation purposes.Asanexampleofthepricesforeseeninthenextfewyears,AnalogDevicesexpectsto providea3axisaccelerometerfor$1[56],AKMproducesa3axismagnetometerforabout$5[57] and the new InvenSense 2axis gyroscope foreshadows new improvements in the integration of MEMSgyroscopesinasingledie[55],whichuntilthesedaysremainsthemostexpensivesensor. Besidesthefactthatthepriceoftheaforementionedsensorsisexpectedtodecrease,theirrespective performanceisforeseentostayatthesamelevelofqualityasitcurrentlyis.Especiallylowcost

Page89 SensorBasedAugmentations gyroscopes are likely to still provide measurements affected by errors that would degrade the computationoftheIMUattitude.Therefore,itcouldberelevanttousethemagnetometersandthe accelerometerstocompensatefortherotationrateerrors.Theircombinationwithgyroscopescould indeedgiveagreatdealofperformanceforaminimaladditivecostontheoverallsensorsassembly. TheattitudeoftheIMUisusuallyrepresentedbytheintuitiveEuler’sangles(φroll,θpitch, ψyaworheading),asdescribedinchapter3.Withintheframeofthisthesis,thequaternionbased methodisusedtocomputetheorientationoftheIMUusingthegyroscopesmeasurements.Ithas the advantage of being defined whatever the angles the sensors assembly experiences and its computation does not require trigonometric functions, which in turn decreases the overall computationcomplexity. The accelerometers used as inclinometers are likely to provide information about the inclinationofthe IMU. Asaconsequence,they canbeusedtoestimate thepitchandrolldrifts. Oncerotatedintoahorizontalplane,themagnetometersmeasurementscanbeusedtoestimatethe headingdriftoftheIMU.Inclinationandheadingestimationsarethustwoseparateprocesseswhere correctionsaredonewithtwoindependentsensors. Thefollowingpresentsasensorfusionalgorithmaimingatimprovingthereliabilityandthe accuracy of the attitude of a lowcost IMU. The inclination and the heading estimations are performedintwoconsecutiveKalmanfilters([44],[45],AppendixC).Thishasgottheadvantage of reducing the size of the matrices involved in the filter, which is profitable for real time implementation perspectives. It also allows a more flexible heading estimation, enhanced for magneticinterferencemitigation. 4.3.1 Inclination Filter

4.3.1.1 State Transition Models Theinclinationfilterreliesonthefusionofaccelerometersandgyroscopesdata.Theattitude iscomputedwiththequaternionmethod.Accordingtothenotationofequation(3.7)andequation (3.10),thediscretemodelusedintheKalmanfilterforthequaternionpropagationisgivenbelowin equation(4.8).Thisequationisobviouslynotlinearsinceitinvolvestheproductoftruerotation rateswithquaternioncomponents,butitisfareasiertogetitlinearthanequation(3.6). = ( + ω true (, m) ) qk +1 1 k 2 o qk (4.8) where:

– qk istherotationquaternionatepochk. ωtrue (, m) – k isthetruerotationratevectorofthemobilewithrespecttothe (I) atepochk. – o isthequaternionproduct. Quaternionq katepochkrepresentstherotationofthemeasurementunitfromthemobile ωtrue (, m) frametothenavigationframe.Therotationrates k involvedinequation(4.8)shouldbethe true rotation rates of the measurement unit with respect to the navigation frame. As justified in chapter 3, these quantities are approximated by the output of the gyroscopes. Given the sensors resolutionandsensitivity,theresidualerrorisindeedneglected.However,thetruerotationratesare notdirectlyaccessiblesincegyroscopesareaffectedbybiases.Asaconsequence,bothgyroscopes

Page90 SensorBasedAugmentations bias and true rotation rates will be modelled in the inclination part of the attitude filter. In the following, the inrun biases of the gyroscope sensors are assumed to follow a 1 st order Gauss Markovprocess,whosediscreteexpressionisgivenbelowinequation(4.9). ω −β ω 1 −β ω = ωTs ⋅ + ⋅( − ωTs )⋅ b bk+1 e bk 1 e wk (4.9) βω where:

– Ts isthesamplingperiod. ω – bk isthebiasvectoraffectingthegyroscopesmeasurementsatepochk. st – βω istheinverseofthetimeconstantofthe1 orderdiscreteGaussMarkovprocess. bω σ 2 – wk istheGaussMarkovdrivingnoisewithvariance bω . ThetruerotationratemodeldependsonthemotionexperiencedbytheIMU.Figure4.16 illustratestwotypicalusecases,namelythepedestriannavigation(upperpart)andthelandvehicle navigation (lower part). For both cases, the dynamic experienced by the IMU is completely different.Arigorousapproachwouldbetoadaptthetruerotationratemodelasafunctionofthe detected motion, but this would require extra processing. In the following, the model is rather designedtomatchthehighestdynamictheIMUcanexperience(pedestriannavigation). InFigure4.17isplottedinbluethePSDoftherotationratemeasurementsofthethreeaxes ofthe IMUrecordedduring apedestriantrial.ForthesethreePSD,the basicshapeissimilarto thosethatcouldbeobtainedwithasignalcomposedofmultiplesinusoids,whosefrequenciesare relatedtothefrequencyofthesteps.However,suchacharacteristiccannotbegeneralisedasfor exampleinthelandvehiclecase.Asaconsequence,generalmodelsareratherusedwithsimpler PSDshapes,asitisthecasewiththefirstorderGaussMarkovprocessandthesecondorderband passfilter.BothPSDexpressionsaregivenrespectivelyinequation(4.10)andinequation(4.11). A⋅2 jπf PSD ( f ) = (4.10) BPF ()()π 2 + π ⋅ + π 2 2 f0 2 j f BW 2 j f where: – A isthebandpassfiltergain.

– f0 isthecentrefrequencyofthebandpassfilter. – BW isthefilterbandwidth. 2 σ ω PSD ()f = (4.11) GM + ()ω 2 − ⋅ ω ⋅ ()π~ 1 ck 2 ck cos 2 f where: ω ω true – ck isthetimeconstantsettingthebandwidthofthe process. 2 – σ ω isthevarianceofthedrivingnoisesettingthemagnitudelimitofthemodelledmotion. ~ ~ = ⋅ – f isthefrequencynormalisedbythesamplingrate. f Ts f Figure4.17clearlyshowsthatthedynamicofthemeasurementsdependsalsoontheaxisof

Page91 SensorBasedAugmentations measurement.ThereisindeedlesspowerinthesignalalongtheZaxisthaninthesignalalongthe Xaxis.Hereagain,thetruerotationratemodelshouldtakeintoaccounteachcomponentproperty ofthesensortriad.However,inafirstapproximation,asamemodelwillbeusedforalloftheaxes ofmeasurement.Consequently,thedifferentparametersofthePSDpresentedinequation(4.10) and (4.11) must be tuned according to the maximum dynamic of the motion experienced by the sensorsassembly.

Figure 4.16: Typical rotation rate patterns for Figure 4.17: PSD of the three rotation rate pedestrian navigation (upper part) and land vehicle components in the mobile frame (m) , 1 st order GM navigation (lower part). and 2 nd order band-pass filter. ThePSDoftheGaussMarkov(GM)andthe2 nd orderbandpassfilter(BPF)adaptedtothe Xaxisdata(worstdynamic)areplottedinFigure4.17forthethreeaxesofmeasurements.ThePSD ofthebandpassfilteristhebestmatchforthePSDofthetruerotationrates.However,thecentre frequencyf 0mustbeadjusteddependingonthecharacteristicfrequencyofthesignalinorderfor themodeltotakeadvantageofthebandpassproperties.Thecomputationloadisthusincreased. TheGaussMarkovPSDapproximatesneverthelessquitewellthetruePSD.Suchamodelalsohas the advantage of being simple to integrate into a state space model (one equation to handle a component of the true rotation rate, rather than two if the 2 nd order bandpass filter is used), reducing in the same time the matrices dimensions, which is interesting for a real time implementationperspective. As a consequence of the model benefits and disadvantages, the true rotation rates are modelled as a 1 st order GaussMarkov process tuned according to the Power Spectral Density function,whoseparametersnamelybandwidthandmagnitudearechosenaccordingtothehighest dynamicofthemotionexperiencedbythesensorsassembly(foundbyprocessingthesignalsfrom typicalpedestrianwalks,fordifferentIMUlocationontothebodyoftheuser).Thetruerotation ratemodelusedintheinclinationfilterisgivenbelowinequation(4.12). ω true (, m) = ω ⋅ω true (, m) + ω k+1 ck k wk (4.12) where: ω true (, m) – k isthetruerotationratevectoratepochk,expressedinthemobileframe (m) . ω σ 2 – wk isthedrivingnoisewithvariance ω settingthemagnitudelimitofthemodelledmotion.

Page92 SensorBasedAugmentations

The first measurements combined with the gyroscopes outputs are those provided by the accelerometers.Theaimofthissensorfusionistolimitthedriftinbothpitchandrollangles.Inthe navigation frame and when no motion affects the sensors assembly, accelerometers sense the gravityvectorallowingbothrollandpitchestimation.However,whenthesensorsunitismoving, thisbasicinclinationestimationisnomorepossiblesincethecontributionoftheIMUacceleration isaddedtothoseofthegravityvector.Thereisconsequentlyaneedtomodelthetrueacceleration experienced by the sensors assembly as well as the biases affecting the accelerometers measurementsinordertotracktheinclinationoftheunitunderdynamicconditions.Thebiasof eachaccelerometerismodelledasa1 st orderGaussMarkovprocess,accordingtoequation(4.13). −β 1 −β ba = e aTs ⋅ba + ⋅(1− e aTs )⋅ wba k+1 k β k (4.13) a where: a – bk isthebiasvectoraffectingtheaccelerationmeasurementsatepochk. β st – a istheinverseofthetimeconstantofthe1 orderdiscreteGaussMarkovprocess. ba σ 2 – wk istheGaussMarkovdrivingnoisewithvariance ba . The statements made for the true rotation rates are still valid for the acceleration measurements. Figure 4.18 shows the different acceleration magnitudes recorded during a pedestrianandalandvehicletrial.Asitcanbeseen,thedynamicismuchmoreimportantinthe pedestriancasethaninthevehiclecase.Thepedestriannavigationisthustakenasareferenceto choosethetrueaccelerationmodel.

Figure 4.18: Typical acceleration magnitude Figure 4.19: PSD of the three acceleration patterns for pedestrian navigation (upper part) and components in the mobile frame (m) , 1 st order GM land vehicle navigation (lower part). and 2 nd order band-pass filter. Figure4.19showsthedifferentPSDadjustedtothemeasurementthatexperiencestheworst dynamic(pedestriancase).Again,the2 nd orderbandpassfilterseemstobemoreadaptedtomodel thetrueacceleration.However,tosimplifytheimplementationoftheinclinationfilter,the1 st order GaussMarkovmodelisratherchoseninthefollowing,sothatthemodelofthetrueaccelerationis assumedtobeasgiveninequation(4.14).

Page93 SensorBasedAugmentations

true (, m) = a ⋅ true (, m) + a ak+1 ck ak wk (4.14) where: true (, m) – ak isthetrueaccelerationvectoratepochk,expressedinthemobileframe (m) . a true – ck isthetimeconstantsettingthebandwidthofthe a process. a σ 2 – wk isthedrivingnoisewithavariance a settingthemagnitudelimitofthemodelledmotion.

4.3.1.2 Measurement Models Theinclinationfilteraimsatprovidingstablepitchandrollanglesthatwillbeusedtorotate themagnetometersmeasurementsintoahorizontalplanesoastoestimatetheheadingdrift.Three different kinds of measurements are used in order to achieve this inclination stabilisation. These measurementsareusedasdirectinputsoftheKalmanfilterinordertosimplifythedesignofthe filter. The first measurements are those provided by the gyroscopes. The output model given in equation(3.4)issimplifiedaswrittenbelow. (m) (m) (m) ω meas.  ω user  bω   x   x   x  ω meas. = ω user + ω + ω  y   y  by  nk (4.15) ω meas.  ω user  bω   z  k  z  k  z  k where: ω meas. – k isthegyroscopetriadoutputdatavectoratepochk. ω user – k isthetruerotationratevectorexperiencedbytheuseratepochk. – bω isthebiasvectoraffectingthemeasurementsatepochk. ω – nk isthemeasurementnoiseatepochk. The measurement model involving both the acceleration data and the rotation quaternion componentsisgivenbelowinequation(4.16).Therotationmatrixasafunctionofthequaternion componentsisgiveninchapter3,equation(3.12).Equation(4.16)doesnotclearlyshowthatthe acceleration measurements improve more specifically the inclination angles accuracy. It has howevertheadvantageofbeingverysimpletoimplementintheKalmanfilter. (m) (m) (m) a meas.  0 auser  ba   x   x   x  meas. = ⋅   + user + a + a a y  Rn2m 0 a y  by  nk (4.16) a meas.  g auser  ba   z  k    z  k  z  k where: – g isthegravityvector. user – ak isthetrueaccelerationofthesensorsassemblyunbiasedbythegravityvectoratepochk.

– Rn2m istherotationmatrixfromthenavigationframe (n) tothemobileframeatepochk. – ba isthebiasaffectingthemeasurementsatepochk. a – nk isthemeasurementnoiseatepochk.

Page94 SensorBasedAugmentations

Thelastmeasurementequationisaddedtomakesurethequaternionmagnitudeisequalto 1.Equation(4.17)givesthenonlinearnormalisationequation,whosenotationsareequivalentto thoseofchapter3. 2 + 2 + 2 + 2 = q ,0 k q ,1 k q ,2 k q ,3 k 1 (4.17)

4.3.1.3 Inclination Filter Summary The inclination filter principle is summarised below in Figure 4.20. It uses the state equations(4.8),(4.9),(4.12),(4.13)and(4.14).Theaccelerometerandgyroscopemeasurementsare fed into the Kalman filter to enable the estimation of the roll and pitch angles drift. The measurements equations are given in (4.15), (4.16) and (4.17). In order to properly initialise the attitudeanglescomputation,magneticmeasurementsareusedtofindtheinitialheadingangle(as describedinsection4.2.3).Theinclinationfilterthenprocessesonlyaccelerometersandgyrosdata.

Figure 4.20: Inclination filter principle. In the proposed filter, scale factors are deliberately assumed not to have significant variations that would introduce large errors and thus are not included in the state vector of the inclination filter. Equation (4.18) gives the state vector of the inclination filter. It involves 16 unknownsasdefinedintheabovesubsection. = [ ω true ω true a ]T X inclination q b a b (4.18) Theoutputsoftheinclinationfilterarethequaternioncomponentsestimatesfromwhichthe Euler’s angles can be computed. Only roll and pitch angles are corrected for drift. The true acceleration vector, the true rotation rate vector as well as the respective biases that affect the measurementsarealsoestimatedinthefilter. 4.3.2 Heading Filter

4.3.2.1 State Transition Models TheheadingofthesensorsassemblyiscomputedinasecondKalmanfilter,whichmainly

Page95 SensorBasedAugmentations reliesonmagnetometersmeasurementsifnomagneticinterferenceisdetected.Itreliesotherwise ontheheadingprovidedbytheinclinationfilter.Severaltechniquesexisttoestimatethemagnetic heading. In [33], a vector method using the gravity vector and the Earth’s magnetic field both expressed in the mobile frame is described. More intuitively, the magnetic measurements once rotatedinahorizontalplanecanbeusedtosensethedirectionofthemagneticnorth,asforexample itisexplainedin[34].AnothertechniquebasedontheknowledgeofthecomponentsoftheEarth’s magneticfieldinthenavigationframecanbeused[35]. In this study, to reduce the filter complexity and allow a flexible heading estimation, the magnetometersmeasurementsarefirstrotatedintoahorizontalplaneusingtheattitudeprovidedby theinclinationfilter,asdescribedearlier.Equation(4.5)givesthecorrespondingmagneticheading usedasanexternalmeasurement. ThismagneticheadingisconsideredasthereferenceintheKalmanfilter.However,itmay beaffectedbyperturbationsduetonearbyironobjectsthatwoulddistorttheEarth’smagneticfield. Thus,inordertomitigatethoseinterferences,thestillbiasedheadingprovidedbytheinclination filterisusedasabackup.Itsbiasandscalefactorwillbeestimatedusingmagnetometerdata.Once magneticinterferencesaredetected,thecorrectionisstoppedandthedebiasedheadingisusedas the main heading source. The reliability and the accuracy of the heading computed from the inclinationfilterwillobviouslydecreaseovertimeuntilthenextupdate.Theprocedureisreferred inthefollowingasMagneticInterferenceMitigation(MIM). Given these statements, the state vector is naturally composed of four unknowns, whose propagationmodelsaregivenfromequation(4.19)toequation(4.22).Thetrueheadingisassumed tofollowasimplerandomwalkprocess.Itwasfoundtobeagoodcomprisebetweentherandom propertyoftheheadingvariation(i.e.theIMUattitudeisunpredictable)andthemodelcomplexity. ψ true =ψ true + ψ k +1 k wk (4.19) where: ψ true – k isthetrueheadingofthesensorsassemblyatepochk. ψ – wk is the driving noise of the true heading at epoch k. It is assumed to be equal to 1° as discussedinsubsection4.2.3,whichroughlycorrespondstotheaccuracythatcanbeachieved usingnonfilteredmagneticmeasurementstocomputetheheadingtakingintoaccountatypical inclinationerrorofabout1°. The scale factor affecting the inclination heading (i.e. the heading provided by the InclinationKalmanFilter(IKF))isalsoassumedtofollowarandomwalkprocess.Thescalefactor is here taken into account since the heading may have been affected by the inclination filter processing.Itsvariationsareneverthelessconsideredverysmallovertime(varianceofthedriving noisesetempiricallyaccordingtophysicalconsiderationsto0.001°). IKF = IKF + SF SFk +1 SFk wk (4.20) where: IKF – SFk isthescalefactoraffectingtheinclinationfilterheadingsolutionatepochk. SF – wk isthedrivingnoiseoftherandomwalkprocess.

Page96 SensorBasedAugmentations

It is intuitive to think about integrated processes to model the heading bias, since the heading is computed based on the integrationof the gyroscopesmeasurements. However, itwas foundinthedifferentfilterimplementationsthattheincreaseofmodelcomplexitydoesnotprovide agreatdealofperformanceascomparedtotheuseofsimplermodels.Nevertheless,theheading biasismodelledasa1 st orderIntegratedGaussMarkovprocess,asdescribedinequation(4.21). ψ = ψ + ⋅ &ψ bk+1 bk Ts bk

ψ −β T ψ 1 −β T ψ (4.21) & = ψ s ⋅ & + ⋅( − ψ s )⋅ b bk+1 e bk 1 e wk βψ where: ψ – bk isthebias(integratedGaussMarkov)oftheinclinationfilterheadingsolutionatepochk. &ψ st – bk isthetimederivateofthebiasatepochk,whichfollowsa1 orderGaussMarkovprocess.

– βψ isthetimeconstantoftheGaussMarkovmodel. bψ – wk isthedrivingnoiseoftheGaussMarkovprocess. Themagneticinterferencemodelisgivenbelowinequation(4.22) ψ = P ⋅ ψ + P I k+1 ck I k wk (4.22) where: ψ – I k isthemagneticperturbationthataffecttheheadingatepochk. P – ck isthetimeconstantsettingthebandwidthofthemagneticinterferenceatepochk. P – wk isthedrivingnoisesettingthemagnitudeofthemagneticperturbationatepochk,whichis permanentlyadjustedasafunctionofthedifferencebetweenthemeasuredandthetheoretical magnitudeofthemagneticfield. P P The magnetic perturbation model is tuned with the parameters ck and wk in order to mitigate the magnetic interferences. The magnitude of the horizontal component sensed by the magnetometers as well as the magnetic inclination angle are checked and compared to the theoreticalonesthatcanbefoundindatabasesuchasthoseprovidedbytheNationalGeophysical DataCentre[22].Ifthediscrepancyistoohigh,amagneticinterferenceisdetectedandthedriving noisesettingitsmagnitudeisincreased.Inthatcase,lessconfidenceisalsogiveninmagnetometer measurements, so that the true heading estimation relies mainly on the inclination filter heading solution.

4.3.2.2 Measurements Models As discussed above, the measurements are twofold. The heading measurements can be provided whether by the inclination filter or by the magnetometers. The magnetic heading computedaccordingtoequation(4.5)isgivenbelowinequation(4.23). ψ mag =ψ true + ψ + mag k k I k nk (4.23)

Page97 SensorBasedAugmentations where: ψ mag – k isthemagneticheadingmeasurementcomingfromtheprocessingofmagnetometersdata. mag – nk is the magnetic heading measurement noise at epoch k. The variance of the noise is ψ adjustedaccordingtheintensityofthemagneticinterference I k thatmayoccur. The model of the heading computed with the quaternion components estimated in the inclinationfilterisgiveninequation(4.24). ψ IKF = IKF ⋅ψ true + ψ + IKF k SFk k bk nk (4.24) where: ψ IKF – k istheinclinationfilterheadingoutputatepochkandusedasmeasurementoftheheading Kalmanfilter. IKF – nk istheinclinationfiltermeasurementnoiseatepochk.

4.3.2.3 Heading Filer Summary TheheadingfilterprincipleissummarisedbelowinFigure4.21.Itusesthestateequations (4.19),(4.20),(4.21)and(4.22).Theheadingdriftestimationisdonethroughthecombinationof the measurements coming from the inclination filter (rotation quaternion converted into Euler’s angles)andthe processingofthemagnetometersdata.Themeasurementsequationsare givenin equation(4.23)and(4.24).

Figure 4.21: Heading filter principle. Equation(4.25)givesthestatevectoroftheheadingfilter,whichinvolves5unknownsas definedintheabovesubsection. = [ψ true IKF ψ &ψ ψ ]T X heading k SFk bk bk I k (4.25) Theoutputsoftheheadingfilterarethetrueheadingestimateandtheerrorsaffectingthe magneticheading(i.e.scalefactor,biasandinterference).

Page98 SensorBasedAugmentations

4.3.3 Optimised Drift-Free Attitude Filter Amongallthethreetypesofsensorsusedinthemeasurementunit,gyroscopesarethemore expensive ones. Therefore, in order to reducethe overallsensors assembly cost,onecouldthink aboutremovingsomeofthem.Inthisperspective,asinglegyromountedverticallyontothebodyof apedestrianormountedinavehicleshouldprovidetheorientationofthesensorsassembly.Butdue tothedynamicofpedestriansandevenlandvehicles,thisgyroisnotlikelytoperfectlysensethe verticalrotationrateofthemeasurementunit,introducingsomeerrorsintheheadingestimation.To avoidsuchalignmenterror,magnetometersmeasurementsarecombinedwiththesinglegyroscope. Equation (4.26) gives the basic relationship between the true rotation rate, the Earth’s magnetic fieldanditsderivative,assumingnomagneticinterference. (m) = ω true (, m) × true (, m) dmk mk (4.26) where: true (, m) – mk isthetruemagneticfieldvector,asdefinedaboveinequation(4.4). (m) true (, m) – dmk isthetimederivativevectorof mk ,expressedinthemobileframeatepochk. Bydevelopingandrearrangingequation(4.26),itispossibletogiveanexpressionofthe rotation rates along the two axes where the sensors assembly is not equipped with gyroscopes. Assumingtheonlygyroscopeofthemeasurementunitispointingupwardalongtheverticalaxis, equation(4.26)canbedevelopedsuchthat: dm(m) −ω true (, m) ⋅mtrue (, m) ω true (, m) = − y,k z,k x,k x,k true (, m) (4.27) mz,k dm(m) +ω true (, m) ⋅mtrue (, m) ω true (, m) = x,k z,k y,k y,k true (, m) (4.28) mz,k where: (m) (m) – dm−,k isthe‘‘coordinateof dmk . ω true (, m) ω true (, m) – −,k isthe‘‘coordinateof . true (, m) true (, m) – m−,k isthe‘‘coordinateof mk . According to equations (4.27) and (4.28), magnetic measurements can be used to compensatethetilterrorduethelackofgyroscopes.Thecomputedrotationratesaroundxandy axes as defined in the two above equations are then used as measurements that are fed into the inclinationKalmanfilter.However,whenmagneticinterferencesdisturbtheEarth’smagneticfield sothatmagnetometermeasurementsarenomorereliable,thetwoaboveequationsmayintroduce largeerrorsintheheadingestimation.Tomitigatetheeffectoftheseperturbations,magnetometer measurementsareonlyusedwhentheyarefoundtobereliableenough.Inthatcase,theattitudeis computedwithouterrorsandthecalibrationoftheheadingcomputedbasedonthesinglegyroscope canbeperformed.Wheninterferencesoccur,theheadingprovidedbythefilteristheonecomputed usingthecalibratedgyroscope.

Page99 SensorBasedAugmentations

4.3.4 Drift-Free Attitude Filter 4.3.4.1 Design n°1: Attitude Filter using all the S ensors Theglobalattitudefilteristhecombinationofthetwoabovefilters.However,awellknown issuewithEuler’sanglesriseswhenthesensorsassemblyexperiencesrollanglesof±π/2.Thisuse casemayoccurespeciallyifthesensorsassemblyisputwitharandomattitudeonthebodyofa user or on the dashboard of a vehicle. In that case, both pitch and heading angles are no more defined. This typical singularity disturbs the visual restitution of the attitude of the sensors assembly.Thus,anEuler’sAnglesSingularityResolution(EASR)algorithm(detailedinchapter3) isimplementedattheoutputoftheinclinationfiltertodetectandcorrectthisissue.Italsoprovides areliableheadingestimatewhatevertheattitudeofthesensorsunit[36]. Theprincipleofthealgorithmusingallthesensorsofthemeasurementunitissummarised in Figure 4.22. The first Kalman filter is dedicated to inclination estimation. Its state vector is composedof16unknowns.Thenanglesarecheckedtoavoidsingularitiesandheadingestimation isdonethroughasecondKalmanfilterof5states.

Figure 4.22: Attitude filter algorithm using all the sensors.

4.3.4.2 Design n°2: Attitude Filter using only 1 Gy roscope Figure4.23summarisesthealgorithminthecaseoftheuseofonlyonegyroscopemounted vertically.Insuchausecase,theEASRalgorithmmaynotbeusefulsincethemeasurementunitis assumedtobecloselyattachedtothevehicle/pedestriantolocalise.

Page100 SensorBasedAugmentations

Figure 4.23: Attitude filter algorithm with only 1 gyroscope in the sensors unit. 4.3.5 Test Results Thissectionpresentstheresultsofthetrialsexercisedinactualconditionsusingthesensors of the MTi. The attitude filter is tested for both pedestrian and land vehicle navigation under dynamicconditions.Thepurposeofthesetestsistoanalysetheaccuracyoftheattitudeprovidedby the filter and more specifically the accuracy of the heading. As a reference, GPS measurements collected during trials are processed differentially to have as accurate as possible heading and trajectoryreferences.Asaconsequence,theteststookplaceonanopenskycarparkinglotof a supermarket with lots of idling and moving cars to make sure that GPS measurements can be differentiallyprocessed.Furthermore,suchatestingenvironmentallowsmagneticinterferencesto disturbtheEarth’smagneticfield. Thepedestriannavigationisfirsttested.Inthatcase,thesensorswillbeassumedtoremain fixedwithrespecttothebody.Thedynamicexperiencedduringthewalkmaychangedepending where the sensors are placed. The filter should thus be able to adapt the different propagation modelsaccordingtothepedestrianmotion.Intheparticularcasewherethesensorsareattachedto the body with a predeterminedattitude (forexample, beltmounted with oneaxis ofthesensors assemblypointingtowardthelocalvertical),thepossibilityofusingonlyonegyro,allowinginthe sametimeareductionoftheglobalsensorsassemblycost,ismorespecificallystudied. The land vehicle navigation is tested in second. The IMU is likely to be placed with a randomattitudeonthedashboardofthecarorelsewhere.Inthatcase,thesensorsassemblywill thus be considered to remain fixed with respect to the car, as for the pedestrian navigation. The possibility of reducing the number of sensors used to provide the attitude of the unit is also addressed.ThefourdifferentusecasestestedinthefollowingaresummarisedinTable4.2

Page101 SensorBasedAugmentations

Navigation Pedestrian LandVehicle mode TestCase Case1 Case2 Case3 Case4 3Gyroscopes 1Gyroscope 3Gyroscopes 1Gyroscope Sensors 3Accelerometers 3Accelerometers 3Accelerometers 3Accelerometers configuration 3Magnetometers 3Magnetometers 3Magnetometers 3Magnetometers Table 4.2: Measurement unit configuration given typical test cases. AspresentedinFigure4.18throughtheaccelerationmagnitudepatterns,thedynamicdueto themotionofpedestriansandlandvehiclesareverydifferent.Asaconsequenceandaccordingto this dynamic, equations (4.12) and (4.14) have to be tuned adequately. In the attitude filters describedabove,theadaptationofthemodelstothemotionexperiencedbythesensorsassemblyis performed online using the variance and the time derivative of accelerations and rotation rates. Furthermore,themagnetometersofthesensorsassemblyarecalibratedagainsthardinterferences caused by nearby iron objects prior to perform the different trials, according to the procedure detailedinsubsection4.2.4.

4.3.5.1 The Pedestrian Navigation Case 4.3.5.1.1 Case 1 Test Results In this trial, the sensors assembly is put inside the user’s trouser pocket with a random attitude.Thepedestrianwalkedashortpathinthemiddleofparkedcars.Thefilterusingallthe sensors is first tested. Figure 4.24 presents the heading provided by the attitude filter with and withouttheEuler’sAngleSingularityResolutionalgorithmdetailedinchapter3.Asitcanbeseen, thesensorsassemblyexperiencesmanypositionswherethepitchanglereachescriticalvalues(i.e. ±π/2), disturbing the restitution of the estimated heading. The non corrected heading solution plottedinblueisbiasedandverynoisy.Itsvariancebetweentime160and190reachesabout30 degrees,whichisclearlynotrealisticofapedestrianwalk.

Figure 4.24: Attitude filter heading solution. Figure 4.25: Normalised magnetic field magnitude. Figure4.25showsthemagneticfieldmagnitudeasrecordedduringthetrial.Perturbations have been automatically detected according to the procedure described at the beginning of the

Page102 SensorBasedAugmentations chapter. They are identified by the black lines in Figure 4.25. It can also be noticed that the magnitudeoftheseinterferencesisnotveryhighandtheirdurationneverexceeds15seconds.Asa consequence,theyareexpectednottointroducelargeerrorsintheheadingestimation. Toanalysetheaccuracyoftheheadingprovidedbytheattitudefilter,DGPSmeasurements are used as reference. Since the pedestrian has got a low velocity while walking, the DGPS referenceisquitenoisywithastandarddeviationofabout3degrees. Figure4.26presentstheheadingerrorwithrespecttotheDGPSmeasurementsofboththe attitude filter in blue and the classicalstrapdowngyrobasedalgorithm in green. The gyrobased headingsolutionisclearlydriftingatarateofabout5°/min.Onthecontrary,theheadingprovided bytheattitudefilterseemsstable.

Figure 4.26: Attitude filter and gyro-based heading Figure 4.27: Attitude filter heading error. All errors. All sensors are used. sensors used. Figure4.27givesafocusontheerrormadeintheestimationoftheheadingasdonebythe attitude filter. The error is nearly centred with ameanvalueof0.13 degreeover the whole trial duration. The standard deviation is about 5.4 degrees, which is quite high. However, it can be assumedthatthereferenceheadingismainlyresponsibleforthat. Toassesstheimpactoftheattitudefilterheadingaccuracyonthepositionsolutionprovided byaninertiabasednavigationsystem,thetrajectoryofthepedestrianisreconstructedfollowinga deadreckoningmethodology,whosebasicequationisgiveninequation(4.29).Thetrajectoryuses the heading estimated with the different algorithms whereas the curvilinear travelled distance is computedwiththeDGPSmeasurements.Theobservederrorinthereconstructedtrajectoriescan thusbeentirelyattributedtotheaccuracyoftheestimatedheading. = + ⋅ (ψ ) N k+1 N k d[]k,k+1 cos k = + ⋅ ()ψ (4.29) Ek+1 Ek d[]k,k+1 sin k where:

– Nk isthenorthpositionoftheuseratepochk.

– Ek istheeastpositionoftheuseratepochk.

Page103 SensorBasedAugmentations

– d[k,k+ ]1 isthetravelleddistancebetweenepochkandk+1providedbyDGPSmeasurements. ψ – k istheheadingatepochk. Figure 4.28 illustrates the different trajectories reconstructed using different heading sources.

Figure 4.28: Trajectories using different heading sources. Pedestrian case with the triad of gyroscopes. TheblackdottedplotistheDGPSreferencepath.Theredplotisthetrajectoryreconstructed withtheheadingaffectedbyEuler’sanglessingularities.Thepathisobviouslynotrelevantofthe trueone,whichjustifiestheimplementationatsomecomputationalexpenseofanangleambiguity resolutionalgorithm(asforexampletheEASR,asdetailedinchapter3).Thegreenplotrepresents thetrajectoryusingtheheadingcomputedwiththeclassicalstrapdownalgorithm,whichisbasedon gyroscopemeasurements.Thegreenpathisobviouslydrifting.Thebluepathisthetrajectoryusing the attitude filter heading solution enhanced with the Magnetic Interference Mitigation (MIM) proceduredescribedearlier.Thecorrespondingtrajectorymatchesthebestthetruepathfollowed duringthetrial. 4.3.5.1.2 Case 2 Test Results Intheabovepedestriantrial,thexaxisofthesensorsunitwasfoundtopointapproximately towardsthelocalverticalduringthewholetest.Theattituderestitutionusingonlythegyroscope alongthexaxisofthemeasurementunitisthentestedinthefollowing. Figure4.29illustratestheheadingerrorswithrespecttotheDGPSreferencewhenonlyone

Page104 SensorBasedAugmentations gyroscope is used in the attitude filter, the other rotation rates being computed using the magnetometer data. The blue plot stands for the attitude filter error with only one gyroscope, whereastheredplotillustratestheverticalgyroscopebasedheadingerror(withoutcompensation due to tilt error and rotation rate bias). As shown in the figure, the gyroscopebased heading is clearlydriftingatarateofabout8°/min.Thisdriftrateishigherthanthedriftrateofthestrapdown solutionsincetheverticalgyroscopeisnotperfectlyalignedwiththetrueverticalaxis.Itfollows indeedthemovementoftheleg,whichintroducesnonnegligibletilterrorsinthecomputedheading solutionandcontributestotheoveralldecreaseofheadingaccuracy. Toanalysetheeffectofthemagneticinterferencesontotherotationratesgeneratedwiththe magnetometersdata,anexampleofgyrobiasestimationintheinclinationfilterisshowninFigure 4.30.TheinternalKalmanstandarddeviationisalsoplottedinblack.Wheninterferencesoccur,the Kalman covariance increases suddenly so that the gyro bias estimate error increases, and as a consequencethetiltangleestimationerroraswell.

Figure 4.29: Attitude filter and gyro-based heading Figure 4.30: Y axis gyro bias estimate of the errors. Only one gyroscope is used. Inclination Kalman Filter (IKF). WhatisalsointerestingtonoticeisthattheKalmanfilterneedstimetoconvergetoamore accuratebiasestimate(10saftertheendofthemagneticinterferencetogobacktoabiasstandard deviationofless0.05rad/s).Thismeansthattheheadingprovidedbythefilterreliesonthedebiased vertical gyro measurements during the perturbation but also a certain amount of time after this perturbationisdetectedinorderforthefiltertoconvergetowardsaccurateestimates. As a consequence of the above statements, it can be expected that the sensors assembly usingonlyonegyrowillrelyexclusivelyongyroscopedatamoreoftenthatinthepreviouscase becauseofthetimeneededforthefiltertoconvergetostablebiasestimates(asillustratedabovein Figure4.30). Figure 4.31 illustrates the trajectories reconstructed using different heading sources. The gyrobasedpositionsolutionisplottedingreen,theattitudefilterheadinginblueandtheattitude filter using only one gyroscope in red. The red path experiences small drift when the heading solutionreliesexclusivelyongyroscopemeasurements.ThisdriftisnotobservableinFigure4.29 duetothetoohighvarianceoftheDGPSheadingreference.

Page105 SensorBasedAugmentations

Figure 4.31: Trajectories using Different Heading Sources. Pedestrian Case with only one Gyroscope.

4.3.5.2 The Land Vehicle Navigation 4.3.5.2.1 Case 3 Test Results The attitude filter algorithm is then tested for typical land vehicle dynamics. As in the pedestrian navigation case, the test took place with a car driven on the car parking lot of a supermarketwithlotsofmovingandidlingcars.Inafirsttime,theattitudefilteristestedusingall the sensors of the measurement unit. Then the performance of the configuration using only one gyroscopeisanalysed. Intheconductedtrial,thestandarddeviationofthereferenceDGPSheadingwasfoundto beapproximately0.8degree,whichisbetterthaninthepedestriancase.Thisismainlyduetothe medium velocity of the car, much higherthan those of a pedestrian, which in turndecreases the sensitivityofthevelocitymeasurementswithrespecttothenoiseoftheGPSsignals. ThedifferentheadingerrorswithrespecttotheDGPSreferenceareplottedinFigure4.32. Higherrorsareobservablenearsample700,butthisisduetoastopofthecar,makingthevelocity measurementsverynoisyandasaconsequence,theGPSbasedheadingquasiunobservable. Thegreenplotstandsfortheheadingcomputedwithgyroscopemeasurementsfollowinga gyrobasedstrapdownalgorithm.Theinherentdriftisagainclearlyobservablewitharateofabout 3°/min,whichislessthaninthepedestriancase.Thiscanbejustifiedbythedynamicofthevehicle which is quite low, so as a consequence, the in run bias which varies as a function of the temperatureandthemotionaffectingthesensorhaslessimpactontheoverallheadingerror.The redplotstandsfortheheadingcomputedusingthemagnetometersdataoncetheyarerotatedina horizontalplaneusingtheinclinationfilteroutputs(EASRenabled).Asitcanbeseeninthefigure, the magnetic interferences strongly affect the heading estimation. The blue plot is the heading

Page106 SensorBasedAugmentations computedwiththeattitudefilter.Themeanoftheerrorisequalto0.9°,andthestandarddeviation isequalto3.3°.Nodriftisremarkableinthesolutionprovidedbythefilter.

Figure 4.32: Heading errors with respect to the DGPS reference. All the sensors are used. ThereconstructedpathsusingtheaboveestimatedheadingsareplottedinFigure4.33.

Figure 4.33: Trajectories using different heading sources. Land vehicle case with three gyroscopes. ThereferenceDGPSpathisplottedasthedashedblackline.Theredpathisthetrajectory

Page107 SensorBasedAugmentations computedwiththemagneticheadingoncetiltcompensationhasbeenappliedonthemagnetometers measurements. It is obvious that the magnetic interferences that occur during the trial affect the trajectory,whichstillremainsrecognisablebutexhibitsaverypooraccuracy. Opposite, the attitude filtersolution plotted in blueismore relevant ofthe true trajectory followed during the trial. The Magnetic Interference Mitigation (MIM) performs well. As a comparison, the trajectory using the gyrobased heading is also plotted in green. A low drift is observable in this path. This drift is lower than in the pedestrian case, due to the smoother accelerationexperiencedbythesensorsassemblythatdoesnotmodifytheinrunbiassignificantly. Thisalsoexplainswhytheattitudefilterprovidesanaccurateheadingsolutionduringthenumerous periodswherethemagnetometersdataareflaggedasunreliable,asshowninFigure4.32. 4.3.5.2.2 Case 4 Test Results Thefilteristhentestedusingonlythegyroscopeofthemeasurementunitthatispointing toward the local vertical during the wholetrial. The resultingtrajectory computedwith this new heading source is plotted in Figure 4.34. In order to compare the performance of the different positionsolutions,thepathcomputedwithallthesensorsisalsoplottedinblueandthegyroscope based strapdown solution in green. As discussed above in subsection 4.3.3, once a magnetic interferenceisdetected,therotationratesgeneratedbytheprocessingofthemagnetometersdata areconsideredcorruptedsothattheheadingprovidedbytheinclinationfilterisnomorereliable. Sometimeisneededforthefiltertoconvergetowardastablesolution,evenaftertheendofthe magneticinterference.Meanwhile,theverticalgyroscopeistheonlysensorcapableofproviding usefulinformationtocomputetheheadingofthevehicle.

Figure 4.34: Trajectories using different heading sources. Land vehicle case with only one gyroscope. AsaconsequenceandaccordingtoFigure4.32,theupdateofthegyroscopebasedheading

Page108 SensorBasedAugmentations canonlybeperformedatthebeginningofthetrialandaroundsample800.Theredplotstandingfor thepositionsolutionusingtheheadingcomputedwithoneverticalgyroscopefollowsindeedquite well the true path from the beginning to the point marked as “End of Update”, because magnetometers are used to estimate the vertical gyroscope drift. The trajectory experiences then small drift due to gyroscope measurements affected by bias and tilt error, and that can not be corrected. The next update is performed around samples 800 at the “New Update” point, where magnetometerdataaredeclaredreliabletoenabletheestimationoftheheadingerrors(biasandtilt). 4.4 Other Augmentation Techniques

Thebeginningofthechapterpresentedsomesensorbasedaugmentationsthatcouldyieldan increaseofavailabilityandaccuracyofGPSbasedpositioningsystemswhenintegratedwiththe GPSsensor.Thefollowingdescribedanotherimprovementthatcanbebroughtbysuchlowcost sensors as their information can be fused into one filter in order to limit the impact of the gyroscopesbias,eveniftheIMUisinmotion,andthusincreasethecomputedattitude.Thissection presents finally some improvements that are rather in relationship with the type of motion experiencedbytheIMU,andthatdonotrequiretheuseofextrasensors. 4.4.1 Zero velocity UPdaTe (ZUPT) Asdetailedinchapter3andrecalledinthischapter,themainissueinvolvedintheINSis theimpactofthesensorsbias(accelerometersandgyroscopes)onthedifferentINScomputation stages.Basically,theseerrorscanbeestimatedeitherifanexternalaccuratesourceisavailableto performcorrections,orifthemotionofmeasurementunitcanbeindependentlycharacterised.The lattercaserequiresamotiondetectionalgorithm,butitcangiveagreatdealofperformancefora minimalcomputationalcost. Itisstraightforwardtoinfersomepropertiesofwhatshouldbemeasuredbythesensorsif theIMUisatrest.Indeed,andwhatevertheaccuracyoftheerrormodelofthedifferentsensors,it is obvious that once the IMU is idling, the gyroscopes output should be equal to zero, and the accelerationsensedbythetriadofaccelerometersshouldbeexclusivelythegravityvector.Insuch ausecase,theestimationofthegyroscopebiasiseasytodobyaveragingtheoutputofthesensor. It is more difficult to estimatethe biasesaffecting theaccelerometer triad. However, itis straightforward to estimate the error made on the velocity computed from the acceleration measurements[38].WhentheIMUisdetectedtobeidling,thevelocitycomponentscanindeedbe settozerosincenomotionaffectsthemeasurementunit(ZerovelocityUPdaTeZUPT). Figure4.35showsthebasicprincipleofthezerovelocityupdateforupdatesevery30s,60s and90s.OncetheIMUisfoundidling,thevelocitycomponentscomputedthroughtheintegration oftheaccelerationsaresettozero.Thefigureisplottedaccordingtoatypicalaccelerometerbiasof 0.04m/s²,whichistheaveragebiasaffectingtheaccelerometersmeasurementsascharacterisedin chapter3.TheeffectonthepositionaccuracyisillustratedinFigure4.36. Suchanalgorithmwillnotbeusedwithinthescopeofthisthesis.

Page109 SensorBasedAugmentations

Figure 4.35: ZUPT. Theoretical velocity error Figure 4.36: ZUPT. Theoretical position error profiles. profiles. 4.4.2 Velocity and Height Constraints In most navigation cases, the measurement unit is attached to the pedestrian or vehicle to localise.Insuchausecase,itispossibletofindthedisplacementdirectionandtheorientationof theIMUwithrespecttoit.Intheparticularcaseofthevehiclenavigation,itcanbeassumedthat the measurement axes perpendicular to the displacement direction do not provide any useful information(assumingalsothatthevehicledoesnotslipandstaysontheground).Inotherwords, thevelocitycomponentsontotheseaxescanbesettozero[37].Itismoredifficulttoholdthesame assumptionforpedestriannavigation,sincethepedestrianmaywalkastepbackwardorforward, butalsolaterally,whichmakesthevelocityconstraintsobsolete.Suchakindofalgorithmbased augmentationwillbeusedonlyforvehiclenavigation. The height constraint follows the same principle as the velocity constraint. For a typical travel,theheightsolutiondoesnotvaryverymuch,atmostbymorethanfewtensofmetres.Ifthe heightisprovidedbyapressuresensorforexample,thepositionsolutionaccuracymayincreasein both2Dand3Ddimensions,especiallyinurbancanyonenvironments,whereGPSsignalsareweak andaffectedbylargemultipath.Suchanimprovementwillbeassessedinchapter6. 4.5 Conclusion

Thischapterpresentedsomesensorbasedaugmentationsinordertoimprovetheposition accuracyofbothINSandGPS.Thepressuresensorhasfirstbeenintroduced.Itsperformancehave beenassessedandmorespecificallythealtitudeandverticalvelocityaccuracy.Ithasbeenfound thatthealtitudeprovidedwasquitestablewithastandarddeviationofabout2metres.Despitethe knownsensitivityofthepressuremeasurementstotheweatherconditions,thenumerousteststhat havebeenconducteddidnotdemonstratesucharelationship.Thismaybefirstexplainedbythe weatherconditionsduringthetrial(nomajorchangesbetweenoutsideandinside),andsecondby the calibration procedure implemented in the evaluation board that applies corrections to the measurements as a function of the temperature sensed at the pressure sensor level. The vertical velocityaccuracywasalsoanalysed.Itwasfoundverynoisyifcomputedbasedontherawaltitude

Page110 SensorBasedAugmentations measurements.However,assoonasthealtitudeisfilteredthroughasimpleraveragingwindowfor example, the velocity becomes more accurate and suitable for further integration. Different integrationtechniqueshavebeenstudiedmorespecificallyatthealtitudelevel.Theintegrationof the altitude measurements as an additive pseudorange measurement was found to give the best improvementsintermsof3Dpositionaccuracy.IntheperspectiveofanintegrationofGPSwith inertialsensors,heightconstraintseemshowevermoreadaptedtogiveagreatdealofperformance foraminimalincreaseofalgorithmcomplexity. Thebenefitsofthemagnetometersmeasurementshavebeendetailed.TheXsens’MTihas theadvantageofincludinginthesmallsensorspackagesuchcomponents,sothattheimprovement oftheheadingaccuracyiseasiertodo.Sincetheincreaseofaccuracyoftheheadingprovidedby themeasurementunitleadstoanincreaseoftheINSperformanceasdemonstratedinchapter3for bothclassicalandpedestrianmechanisations,analgorithmhasbeendeveloped.Thesensorsfusion detailedinthischapterwasdynamicallytestedtoassessitsperformancefortypicalmotionssuchas pedestrian and land vehicle. The models implemented in the attitude filter are dependent on the dynamic experienced by the sensors. The models tuned according to the worst case (pedestrian navigation) shows good heading accuracy capabilities. A dynamic accuracy of less than 1° was found achievable according the results of the trial conducted for pedestrian navigation. The mitigation of the magnetic interferences shows also good results, with an efficient and reliable detectionprocedure.However,accordingtothemethodologyfollowedinthedesignofthefilter, the heading output relies exclusively on gyroscope measurements during magnetic interferences, which introduces drift as long as no update can be performed. The example of land vehicle navigationisatypicalusecasewherethemagnetometersarenotoftenreliableenoughtoenablethe gyroscopes bias estimation. Itwas neverthelessshown thataccordingto the conductedtrials, the availabilityofthemagneticmeasurementswasgoodenough.Asthevehicledidnotexperiencehigh dynamic,theinrungyroscopebiasvariedmuchslowlythaninthepedestriancase,allowinglong andreliablenavigationperiodswithouttheneedofaregularheadingupdate. Thepossibilityofreducingthenumberofsensorshasalsobeenaddressed.Theperformance oftheattitudefilterhasbeenshowntobequiteworsethanthefullsensorsone,accordingtothe trialexercised,evenifresultsarewithinacceptablelimitsaccordingtothegyroscopebasedattitude solution. Otherstechniquesbasedonthedynamicofmechanicaldisplacementpropertiesoftheuser/ vehicletolocalisehavebeendiscussed.Theirperformancesarelikelytobedemonstratedinchapter 6,whichaddressestheINS/GPSintegration,aswellasthebenefitsbroughtbytheattitudefilter. Thenextchapterwillalsoshowtheadvantageofsuchasensorcombination.

Page111 SensorsAidingforGPSAcquisition

Chapter 5: Sensors Aiding for GPS Acquisition ThischapterdiscussesthepossibilityofusinglowcostsensorsofMEMStypeinorderto decreasetheacquisitioncomplexityofGPSsignalsbyreducingtheuser’sDoppleruncertainty.The extensiontogeneralGNSSsignalsisstraightforward.Amongalltheprocessingstagesinvolvedin the position computation process, it seems that the acquisition stage is the more appropriate to benefitfromthesensorsassemblyinformation.Asdetailedinchapter3andchapter4,theMEMS sensors can provide orientation and velocity information, whose respective accuracies mainly depend on the mechanisation used for standalone inertial navigation (i.e. classical INS or PNS mechanisation)aswellasthefiltersusedtolimittheimpactofsensorserrors(asforexamplethe attitudefilterdetailedinchapter4). In a first time, the principle of the tight coupling of the GPS receiver with the lowcost MEMS sensors is described. The algorithm aiming at estimating the user’s Doppler in order to improvetheacquisitionofGPSsignalsisdiscussedandjustified.AdetailedDopplercontributionis providedwithrespecttotheuser,thereceiverclockandthesatellitetoacquire.Thesensorfusion algorithmisthentestedinactualconditionsandresultsarepresented.

Page112 SensorsAidingforGPSAcquisition

5.1 Introduction

The recent improvements in the manufacturing of MicroElectroMechanicalSystems (MEMS)havemadetheuseofsuchsensorsverycommoninmanyareas.Indeed,despitetheirlow accuracy, their low consumption, small size and low cost make them very attractive for many applicationsandservices.Amongthem,LocationBasedServices(LBS)mayexperiencesignificant improvementsinbothreliabilityandavailabilitysinceGNSSbasedlocationproductsdedicatedto pedestrian or land vehicle navigation are likely to be augmented with a set of complementary MEMS. However, such an augmentation mainly relies on the quality of the sensors used in the hybridisedsystem.Becausetheyusuallyarelowcost,enhancedalgorithmshavetobeimplemented tocopewiththeirintrinsiclowperformance. The traditional sensors fusion approach focuses on the correction of the position using a referencenavigationsystem,forinstanceaHSGPSorAGPSreceiver.Figure5.1illustratessucha system combination without getting into the details of the integration algorithm. The usual integrationpartisthedatafusionalgorithmhighlightedingreen,whosedifferentarchitecturesare describedindetailsinthenextchapter.Theaimofthischapterisrathertostudytheperformance thatcanbeachievedinthereductionoftheGPSprocessingcomplexityusingexternalinformation providedbythelowcostMEMSsensors,whichisillustratedbythethickredline.

Figure 5.1: Navigation systems integration principle. Asdiscussedinchapter1,thebasicprocessingstagesofaGPSreceiveraretheacquisition andtrackingstages.Theimprovementofthetrackingloopswithexternalinformationiswellknown andoftentermedasultratightintegration.TheDopplerderivedfromtheinertialmeasurementsis usedtodrivethephaseandcodeloopsinordertoimprovethedynamicresponseoftheintegrated system. More details can be found in the large available related literature ([60] and [61] for instance).Suchanintegrationlevelrequireshighqualityinertialsensors,andthereforewillnotbe discussed in this study. The following rather focuses on the acquisition enhancement and more specificallyusingatriadoflowcostaccelerometers,magnetometersandgyroscopes.

Page113 SensorsAidingforGPSAcquisition

The approach followed in this chapter concentrates on how acquisition can be improved throughthereductionoftheuserdynamicuncertaintybyusinginformationfromMEMSsensors [52].Suchanissueisofdramaticimportanceespeciallyintheusecaseofweaksignalacquisition that involves tiny Doppler bins, whichinturn increases thetotal number of search bins, andthe overallcomputationload.Thenavigationsystemconsideredthroughoutthechapteriscomposedof twoparts.ThefirstoneistheGPSreceiver,whichisassumedtoworkinthepreviouslydescribed assistedmode.ThesecondpartofthenavigationsystemiscomposedofalowcostMEMSbased measurementunit,whichismountedontothepedestrianorthelandvehicle. Thedifferentcomponentsofthenavigationsystemhavealreadybeendescribedindetailsin chapters 2 and 3. Because the mobile– whether the pedestrianorthelandvehicle – is likely to moveinharshenvironmentssuchasdeepurbancanyonsoreventunnels,manysignaldisruptions may affect the GPSbased position solution availability. Moreover, a lot of GPS signal re acquisitionsmaybeperformedinthoseenvironments,increasingthepowerconsumptionandthe computationloadtoo.Theproposedintegrationalgorithmtakesintoaccountalltheaforementioned issuesby usingMEMS sensorsinformationtoenhanceGPSsignalacquisition.Theresultofthe processingofMEMSdataisdirectlyusedintheGPSsignalprocessingcoretominimiseerrorsand maximiseprocessingefficiency.Adetaileddescriptionofthemethodologyfollowedtointegratethe inaccuratesensorsinformationintotheGPSacquisitionstageisgiven.Testsinactualconditionsare thenconductedforbothpedestrianandlandvehiclenavigationandtheirrespectiveresultsanalysed. Twousecaseswouldbeofinterest,eithertheacquisitionisdoneinthesocalled“coldstart” mode,orinthe“hot/warmstart”mode.Hotandwarmstartsshowthesameissues.Inbothcasesa fix has just been computed so that the receiver’s clock synchronisation is done, the Doppler contributionoftheLocalOscillatorisestimatedaswellastheuserone.Consequently,depending ontheaccuracyofthereceiver’sclockmodel,therewouldbenoneedofextrainformationtospeed upthenextacquisitionprocess.AtypicalexamplewouldbethereacquisitionofaGPSsignalafter ashortoutage. Thischapterratherconcentratesonthecoldstartacquisitionaidingundertypicaldynamics encountered in personal navigation (i.e. typical pedestrian and land vehicle motions). The acquisitionphaseisatwodimensionssearchprocesssothattheacquisitionaidingmainlyconsistin the reduction oftime and frequencysearch spans for every GPSsignal. Insynchronised cellular network, it is possible to make the reference time consistent with GPS time, so that the time uncertainty can be reduced to only several chips. In nonsynchronous cellular networks, the accuracy of the reference time provided in the assistance message is only accurate to several seconds (typically ±2 seconds), which does not allow any time uncertainty reduction. As a consequence,itwillnotbestudiedinthefollowingofthischapter. The focus is put on the frequency uncertainty reduction. Assistance provided by external meanscanhelpreducingthefrequencysearchspan.Thefrequencyuncertaintyiscomposedofthree independent contributions coming from the motion of the GPS satellites, the receiver’s Local Oscillatordriftandthemotionoftheuser.Thefirstcontributioncanbeestimatedusingexternal data(c.f.AGPSpositioning).Thereceiver’sLOdriftcanbemodelledusingamathematicalmodel, but its accuracy is not good enough to allow the estimation of the Doppler contribution over medium even short time duration. The user Doppler contribution can not be estimated without externalinformation,thusisconsideredtobeunknownaswell.Consequentlyinthefollowing,the acquisition aiding will be achieved through the estimation of both LO and user Doppler contributions.

Page114 SensorsAidingforGPSAcquisition

5.2 Receiver Doppler Uncertainty

Basically,thecarrieroftheGPSsignalisaffectedbytherelativemotionofthetransmitting satellitewithrespecttothereceiver’santenna,andthedriftoftheclocksusedatbothsidesofthe transmission channel. As a consequence, for a single channel of a GPS receiver, the Doppler affectingthecarrierofthesignaltoacquirecanbewrittenasgiveninequation(5.1). f carrier = f + f r receiver L1 d (5.1) where: carrier – freceiver istheapparentcarrierfrequencyofthesignaltoacquire. – f isthetruecarrierfrequencyofthesignaltoacquire. L1 − r fd istheoverallreceiverDopplereffectaffectingthecarrierofthesignaltoacquire. Asdetailedinequation2.35ofchapter2,theDopplerofthereceivedsignaliscomposedof several contributions. All these contributions are more specifically analysed in the following subsections. r = user + satellite + LO + f d f d f d fd n f where: user – fd istheuser’sDopplercontribution(Hz). satellite – fd isthesatellite’sDopplercontribution(Hz). LO – fd isLocalOscillator’sDopplercontribution(Hz).

– n f istheoverallnoiseaffectingthemeasurement(Hz). 5.2.1 Satellite Contribution The satellite Doppler contribution can be predicted when the ephemeris of the satellite to acquire is known, as well as the position of the receiver’s antenna and the GPS time. In the particularcaseofanAGPSpositioningsystem,theephemerisaretransmittedthoughtheassistance data.TheroughGPStimeinformationisalsogivenwitharoughuser’spositionwhoseaccuracyis consistent with the cell size the mobile phone relies on. The satellite Doppler contribution is computedaccordingtoequation(5.2).Itinvolvesthesatellitevelocityexpressedinthenavigation frame (n) orintheECEFframe (e) . L r r L r r f satellite = − 1 u (e) ⋅v (e) = − 1 u (n) ⋅v (n) (5.2) d c sat c sat where: r − u istheLOSunitvectorbetweentheuserandthesatellite. − r vsat isthesatellitevelocityvector.

Page115 SensorsAidingforGPSAcquisition

− L1 isthetruecarrierfrequency. − c isthevelocityoflight. AccordingtoFigure5.2,theLOSunitvectorcanbeexpressedasgiveninequation(5.3). Thecoordinatesarerelatedtothepositionoftheuserthroughthewellknownparametersthatare thesatelliteelevationandazimuth.Theunitvectorisexpressedinthenavigationframe (n) . r r r r u (n) = cos(E)cos(Az)⋅n + cos(E)sin(Az)⋅e + sin(E)⋅ d (5.3) where: − E istheelevationofthesatellite. − Az istheazimuthofthesatellite. r r r − n,e,d aretheunitvectorsofthenavigationreferenceframe (n) .

Figure 5.2: Satellite position definition with respect to the user’s position. Usingequations(5.2)and(5.3),thesatelliteDopplercontributionisthenfullydescribedby equation(5.4),asdetailedbelow: L f satellite = − 1 [cos(E)cos(Az)⋅v north + cos(E)sin(Az)⋅veast + sin(E)⋅v down ] (5.4) d c sat sat sat TheephemerisdataareusedtocomputethevelocityofthesatelliteintheECEFreference frame at the GPS time transmitted in the assistance message. Thus, since the time information accuracyiswithin±2seconds(typicalassistancetimeuncertaintyinanonsynchronousnetwork), errorsareintroducedinbothsatellitevelocityandpositionprediction. TheimpactofthetimeaccuracyonthesatelliteDopplerpredictionisillustratedinFigure 5.3.Inthissimulation,theuserisassumedstatic,locatedataperfectlyknownpositionthatisused asareference(ENAClaboratory).TheYUMAalmanacforweek254isusedinordertosimulate thesatellitepositionsandvelocities.PRN1hasbeenarbitrarilychosenforthesimulation.Asitcan

Page116 SensorsAidingforGPSAcquisition beseen,theuncertaintyduetotheinaccuracyoftheGPStimeavailableintheassistancedatais quitesmallandneverexceeds1.5Hz.

Figure 5.3: Satellite Doppler uncertainty. GPS time Figure 5.4: Satellite Doppler uncertainty. User’s known at ±2s. position uncertainty of ±15km. Theimpactoftheuser’spositionuncertaintyisrathermoreimportant,asshowninFigure 5.4.Forthehighesthorizontaluncertaintyof±15km(themaximumsizeofaGSMcell),theerror madeonthepredictionofthesatelliteDopplercanreachupto13Hz.InFigure5.5isshownthe combined effect of the inaccurate positionandreferencetimeinthe satellite Doppler prediction. TheerrorisveryclosetotheoneplottedinFigure5.4,duetotheverylimitedimpactofthetime uncertainty.ThetypicalremaininguncertaintyisreducedtoseveraltensofHertz. Figure5.6givesanexampleofthesatelliteDopplerestimationaccuracyobtainedthrough the processing of ephemeris data recorded in actual conditions. The GPS receiver used for that purpose is a Novatel ProPak GLplus receiver operating under clear sky conditions. In this simulation, the exact user’s position is known.For Doppler prediction accuracy analysis, several positionuncertaintyvaluesareappliedtothatreferenceposition.ResultsareplottedinFigure5.6. They areconsistentwiththepreviousconclusionsdrawnwhenconsideringalmanacs(see Figure 5.3andFigure5.4).

Figure 5.5: Satellite Doppler uncertainty. GPS time Figure 5.6: Satellite Doppler uncertainty. GPS time known at ±2s. User’s position uncertainty of ±15km. known at ±2s. Results with real GPS ephemeris.

Page117 SensorsAidingforGPSAcquisition

As a conclusion on the satellite Doppler contribution, it can be assumed that once the predicted satellite Doppler is obtained using the information provided by the assistance message inherenttotheAGPStechnology,theremainingsatelliteDopplerestimationerrorstayswithin±15 Hzatmost. 5.2.2 Local Oscillator Contribution The contribution of the Local Oscillator (LO) depends on its quality. A typical 1ppm 6 accurate LO introduces an uncertainty of about ±10 ×L 1 Hertz at L 1 (approximately ±1.5kHz), which is likely to be the case of the components embedded in mobile phones. In the standard conditions of a cold start and as soon as four satellites are acquired or tracked, the LO Doppler uncertaintycanberemoved.Duringtheacquisitionofthefirstfoursatellites,nousefulinformation canbeusedinordertoremovesuchanuncertainty,whichasaconsequenceremainsintheoverall Doppleraffectingthecarrierfrequency. TheanalysisoftheLOoftheNovatelProPakGL2plusGPSreceiverhasbeenconductedin ordertoassesstheperformanceofatypicalGPSclock(suchacomponentisobviouslynottypical of a cell phone LO unit). Under static conditions, the clock drift has been recorded for about 2 hours.Figure5.7illustratessuchadriftovertime.Noparticularsteeringoftheclockisdoneduring the data collection, so that whatis plottedcan beconsideredasthe real onboard receiver clock drift.Thereceiverissaidtohaveaclockstabilitybetterthan±0.5ppm,whichmeansfortheL1 6 carrier a frequency accuracy within about ±0.510 ×L 1 (approximately ±800 Hz), which is consistentwiththemeasurementsshowninFigure5.7(19m/srepresentsabout100Hz).

Figure 5.7: Local Oscillator drift (ProPak GL2plus, static test case). Despitesomejumpsthatareclearlynoticeable(mainlyduetothenumberofsatelliteusedin thepositioncomputationstageaswellasthequalityofthemeasurements),theLOdriftremains boundedarounditsinitialvaluewhichtendstodemonstrateitsstability.Thisisofparticularinterest

Page118 SensorsAidingforGPSAcquisition sinceassoonastheLODopplercontributionhasbeenestimated(i.e.assoonasfoursatellitesare acquiredandtracked),thereisnoneedtoincludeitagainintotheoverallDoppleruncertaintyin order to optimise the acquisition stage (its accurate estimation is nevertheless required in the positioncomputationstagesincethepositionsolutionwillotherwisedriftovertime.Sucharesult shouldalsobebalancedwithrespecttotheLOsusedformassmarketreceivers,orLOsembedded inportabledevices). 5.2.3 User Contribution The final contribution to the overall Doppler affecting the carrier frequency is the user’s Doppler.Suchacontributionistotallyunpredictablesincethemovementoftheuserisunknown. The typical use cases within the scope of the thesis are pedestrian and land vehicle dynamics. Assumingamaximumuser’svelocityof180km/h(intheobviouslandvehicleusecase),theupper boundofuser’sDopplercontributionisabout250Hz. Foragiventotalintegrationduration,thehigherthecoherentintegrationtime,thebetterthe sensitivity.Thefrequencyslotsareneverthelessallthemorethinnerasthecoherentintegrationis long.Inordertoboundtheenergylossto1dB,theirwidthshallnotexceedhalftheinverseofthe coherent integration time [2]. Figure 5.8 illustrates the different frequency bins that are used in relationshipwiththedifferentcoherentintegrationtimescoveringthewhole20msdatabitduration (vertical bars). In the figure is also plotted the number of frequency bins to explore assuming a user’s Doppler uncertainty of ±250 Hz. As it can be seen in the figure, the larger the coherent integrationtime,themorethefrequencybinstoexplore.Astheacquisitionandthetrackingofweak signals require long coherent integration times in order to decrease the noise power level, the computationloadrequiredtoprocessweakGPSsignalsisgreaterthanthecomputationloadneeded forsignalswithnominalpower.Theimpactonthetimetofixisobvious:theoverallprocessing time is all the more increased as the number of frequency bins to explore is high. Thus, any reductionofthefrequencysearchrangewillimprovetheprocessingtimeperformance.

Size of frequency bin (Hz) Nb of frequency bins to explore

600 25

500 20 400 15 300 10

200 to explore 5 100 Size binof frequency (Hz) Number binsof frequency 0 0 1 3 5 7 9 11 13 15 17 19 Coherent Integration Time (ms) Figure 5.8: Frequency bins and number of frequency bins to explore with respect to a user Doppler uncertainty of +/- 250 Hz.

Page119 SensorsAidingforGPSAcquisition

Thepurposeofthischapteristoanalysethepossibilityofprovidinganyusefulinformation usingtheMEMSbasedsensorsassemblyinordertodecreasetheacquisitionprocessingtime.The aim of the sensors assembly is toenable the reductionatits minimumof the residualfrequency uncertainty due to the user’s motion. The following describes the sensors combination and integrationschemethatisusedtoreducethenumberoffrequencybinstoexplore. 5.3 Sensors Aiding for Doppler Uncertainty Reduction

Thissectionpresentsthemethodologyfollowedtoestimatetheuser’sDopplercontribution ontotheoverallDoppler.First,abasicmotionrecognitionmethodusingtheinformationprovided by the sensors assembly is discussed. This step allows a first reduction of the user’s Doppler uncertainty. A more accurate methodology is then detailed together with its inherent issues that degradetheoverallDopplerpredictionperformance. 5.3.1 Motion Recognition Giventheabovestatements,theacquisitionimprovementcanonlybeachievedthroughthe reductionofthefrequencyrange.Twotypicalusecasesaremainlystudiedinthefollowing,namely pedestriannavigationandlandvehiclenavigation.Bothnavigationmethodsexperiencecompletely differentdynamicsanddisplacementvelocities(upto10km/hforpedestrians,muchmoreforland vehicles),asshowninFigure4.18ofchapter4. Since a vehicle goes faster than walking people, the possibility of detecting if the GPS receiver is carried by a person or mounted onto a vehicle is of tremendous importance in the reductionofthenumberoffrequencybinsneededtoestimatetheuser’sDopplercontribution.As discussedinchapters3and4,amotioncanbecharacterisedbythevarianceoftheacceleration(see Figure4.16andFigure4.18). Figure 5.9 illustrates the processing of the acceleration magnitude in different trials that havebeenexercised.Thelefthandsideofthefigureshowstheslidingwindowvariancescomputed ondifferentaccelerationmagnitude.Thecomputationstepisequaltothesamplingperiod,andthe lengthofthewindowusedforvarianceestimationis2seconds.Theuppergreenandredplotsshow theslidingwindowvarianceoftheaccelerationmagnituderecordedduringapedestrianwalkwhere the sensors assembly was located respectively in the pocket and on the belt of the pedestrian (5 stopsoccurredinthetrialplottedingreen).Theblueplotillustratestheslidingwindowvarianceof theaccelerationmagnituderecordedduringalandvehicletrial.Inthistest,themeasurementunit wasfixedontothedashboardofthevehicleandnotmovedduringthewholetrial.Therighthand partofFigure5.9presentsacloseuponthelowvaluesoftheslidingwindowvariances.Itclearly showsthatthevarianceoftheaccelerationofanidlingpedestrian(greenplot)islowerthanthoseof avehicle,whateveritsdynamic. Theanalysisofthetwofiguresprovidesmeanstodistinguishthetwotypicalmotions.These two figures show indeed that thresholds can be adjusted in order to detect two main motions, namelyanidlingandawalkingpedestrian(asthebiasesthataffecttheaccelerationmeasurements arevaryingslowly,itcanbereasonablyassumedthattheywillnotimpactthecomputationofthese twothresholds).Anidlingpedestrianischaracterisedbyaquitelowslidingwindowvariance,as shownintherighthandfigurewiththegreenplot(5stops),whereasawalkingpedestrianisrather

Page120 SensorsAidingforGPSAcquisition characterisedbyahighslidingwindowvariance,asshownwiththeredandgreenplotsintheleft hand figure. Threshold 1 and Threshold 2 can thus be adjusted in order to distinguish from the differentmotionareas.Betweenthetwothresholds,themotioncanbeeitherthoseofavehicleora pedestrianstartingtomove.Asaconsequence,theconsideredvelocityrangewillbetheworst,i.e. that of a vehicle (the dynamic that implies the highest velocity and consequently the highest Dopplercontribution).

Speed bumps

Threshold 2 Threshold 1 Pedestrian stop Figure 5.9: Sliding window variances computed from three different acceleration magnitude sources. The ability of detecting the motion experienced by the sensors assembly allows a first reductionoftheuser’sDoppleruncertainty.Giventhefactthatapedestrianislikelytogoupto approximately10km/h,itrepresentsaDopplercontributionatmostequalto±14Hz.Avehicleis supposedtogoobviouslyfaster.Theupperboundof±250Hzisthusinthatcaseratherconsidered. 5.3.2 Sensor Fusion & Integration Scheme As discussed in the previous sections, the information provided by the MEMS sensors assemblyisusedinthisstudytoestimatetheuser’sDopplercontribution.Takingintoaccountthat ephemerisdataareknownsincetheyaretransmittedintheassistancemessage,thecomputationof thesatellitespositionandDopplercontributionisstraightforward.Theremainingunknownsarethe Local Oscillator and the user’s contributions. The user’s Doppler contribution can be estimated giventheelevationandazimuthofonesatellite,thedirectionofthelandvehicleorthepedestrian and the along track velocity. According to the notations of Figure 5.2, the user’s Doppler contributioncanbeexpressedasfollows: user = − ⋅ r ⋅ r = − ⋅[ north ⋅ north + east ⋅ east + down ⋅ down ] f d L1 c u vuser L1 u vuser u vuser u vuser c (5.5) Equation(5.5)canbeexpandedtoequation(5.6),whichinvolvesthealongtrackvelocity magnitudeoftheuser,thepitchθandheadingψoftheuser(orvehicle)themeasurementunitis attachedon. L f user = − 1 ⋅v ⋅[cos()()()()()()()()()()Az cos E cos θ cos ψ + sin Az cos E cos θ sin ψ + sin θ sin E ] d c user

Page121 SensorsAidingforGPSAcquisition

L f user = − 1 ⋅v ⋅[]cos()()()()()θ cos E cos ψ − Az + sin θ sin E (5.6) d c user where:

– vuser isthetruealongtrackvelocityinthenavigationframe. Anexampleoftheimpactoftheuser’spositionandGPStimeuncertaintiesontheelevation and azimuth angles is given below. The worst case is here taken into account, meaning that the positionuncertaintyis±15kmandtheGPStimeuncertaintyis±2s.Forthesimulation,almanacsare downloadedfromsatellitesinvisibilityattheENAClaboratory.Theyarepreferredtoephemeris datasincethelatterareonlyvalidfor4hoursandtheirprocessingoutsidetheirvalidityrangeare expectedtogivebadresultsintermsofsatellitepositionandvelocityaccuracy. Figure 5.10 illustrates the error made on the estimation of the elevation angle and the azimuth for a whole day. It can be seen that the elevation error stays below 0.05 degree (worst case),whichmaynothaveasignificantimpactontheaccuracyoftheuser’sDopplercontribution as giveninequation(5.6).Opposite,theazimutherrorissometimesquitelarge(afewdegrees), evenifinthepresentedcase,thelargesterroroccurswhenthesatelliteisnotvisible.Assoonasthe subsatellitepointnearsthelocationoftheuser(i.e.whentheelevationanglereaches90degrees) theazimuthcanbeinaccuratetoseveraldegreesandthereforemayintroducenonnegligibleerrors inthecomputationoftheuser’sDopplercontribution.

Figure 5.10: Illustration of elevation (left) and azimuth (right) errors for a user’s position uncertainty of ±15km and a GPS time of ±2s. Becausethesensorsofthemeasurementunitareaffectedbyrandomerrorssuchabiasand scalefactor,thecomputationofthepitchandheadinganglesislikelytointroducelargeerrorsina short time. To compensate for those drifts, the attitude angles involved in equation (5.6) are computed using the driftfree attitude filter presented in the previous chapter. It can then be expected to enable the long term prediction of the user’s Doppler onto other LoS. As a consequence,thereareonlytwounknownsremaininginequation(2.35)ofchapter2,namelythe LODopplercontributionandthetruealongtrackvelocity.Atthispoint,assoonastwosatellites are acquired, it is possible to enable the prediction of the user’s Doppler contribution onto the carrieroftheotherGPSsignalstoacquire. In the pedestrian navigation case, the along track velocity can be estimated using the dynamic properties of the acceleration magnitude, as detailed in chapter 3. Moreover, there is a

Page122 SensorsAidingforGPSAcquisition closerelationshipbetweenthefrequencyofwalkofapedestriananditsvelocity.Consequently,itis also possible to calibrate the velocity model relative to the frequency of walk by loading pre recorded regression coefficients computed offline for typical velocities of walk. Even if this method is not as accurate as the online calibration using GPS measurements (about ±0.3m/s accuracyinthetrialsexercised),itallowsthevelocityestimationassoonasthemeasurementunitis switched on, even in deep indoor environments. This has for main consequence to enable the estimationtheuser’sDopplercontributionassoonasthemeasurementunitispoweredonandthe attitudefilterhasconvergedtostableattitudeestimates. Thecaseofthelandvehiclenavigationismorecomplextohandlesincenoreliablealong track velocity estimate is available through the processing of the measurements of the sensors assemblyduetothegyroscopesandaccelerometersbiases.Thesebiases donotallowevenshort term(about20seconds)accurateestimate,asitispossibleintheparticularcaseofthepedestrian navigation. 5.3.3 Satellite Geometry Issue Toeasetheunderstanding,equation(2.35)canberewrittenasgivenbelowinequation(5.7). r = satellite + LO + ( α )+ f d f d fd g vuser , AT / LoS n f (5.7) where: – g isthefunctionusedtocomputetheuser’sDopplercontributionasgiveninequation(5.6).

– vuser isthetruealongtrackvelocitygiveninthenavigationframe (n) . α – AT / LoS isthealongtracktoLoSprojectioncoefficientasgiveninequation(5.6). Theprojectioncoefficientisafunctionofthepitchandheadinganglescomputedeitherwith thegyroscopemeasurementsortheattitudefilter(bothelevationandazimuthanglesareassumed deterministic and do not significantly affect the accuracy of the projection coefficient, as shown previously).Itisthenconsideredasaknownvariablewhichmayneverthelessbeaffectedbysome errorsduetolongtermmagneticinterferencesforinstance. Equation(5.7)clearlyshowsthattwounknownsneedtobecomputedinordertoenablethe Doppler prediction onto the other GPS signals to acquire (the LO Doppler contribution and the alongtrackvelocityoftheuser).Asdiscussedintheprevioussubsection,thealongtrackvelocityis availableinthepedestriannavigationcasebutnotinthelandvehiclenavigationduetothebiases that affect the velocity measurements. As a consequence, there is a need to acquire at least two satellites in order to estimate the user’s velocity and thus the user’s Doppler contribution, and thankstothestableattitudeprovidedbythesensorsassembly,thecorrespondingpredictiononto newsignalsaswell.However,oncetwosatellitesareacquired,thecombinationoftheirrespective Doppler measurements according to equation (5.7) may lead to an unobservable estimated user velocityifthetwoprojectioncoefficientsareequal.Suchatypicalcaseofbadsatellitegeometry configuration is illustrated in Figure5.11. Assumingsatellite 1and satellite 2 equally positioned from both sides of the user’s heading. The geometric distance between the two satellites with respecttotheusermaybedifferent,butinsuchaconfiguration,theirrespectiveratesofchangeare likelytobethesamesothattheDoppleraffectingthetwosignalsmaybethesameaswell.With suchaconfiguration,thetwoequationsystembasedonequation(5.7)canobviouslynotbesolved toestimatetheuser’svelocityandtheLODoppler.

Page123 SensorsAidingforGPSAcquisition

Figure 5.11: Bad satellite geometry configuration with respect to the user’s heading. Figure5.12showsthealongtrackvelocityestimationinthecaseoflandvehicleusingtwo satellites (PRN 3 and PRN 11) during a real urban test. The ephemeris data of the satellites are collected with the embedded GPS receiver,and the attitudeis provided by the processing of the sensorsassemblymeasurements.Theupperpartshowstheazimuthofthesatellitesaswellasthe heading of the vehicle. The black dashed lines represent the theoretical heading leading to an ambiguousestimationofthevelocity.Itcanbeseenonthelowerplotthatwhentheupperuser’s headingcurvecrossestheblackdashedlinesthevelocityprofileexperiencessuddenvariations.

Error

Figure 5.12: Typical issue of the user’s velocity estimation. Land vehicle case. A protection criterion shall then be implemented to avoid this bad velocity estimation. However, this will decrease the user’s Doppler prediction availability, especially if such a configurationlastsquitelong.Inertialmeasurementscanthenbeusedtoestimatethetruevelocity of the vehicle, but it will not provide reliable estimate due to the rapid drift introduced by the integrationofthedifferentbiases.

Page124 SensorsAidingforGPSAcquisition

5.3.4 On-Demand Doppler Estimation A typical cold start implies the need for an estimation of the user’s Doppler on demand. According to what has just been detailed, the estimation of such a contribution is completely dependentontheabilityofthedriftfreeattitudefiltertoprovideastableattitude.Inorderforthe attitudefiltertoprovidereliableinformation,aninitialisationstepwherethesensorsassemblyisnot movingisrequired.Anissuemayariseinthecaseofasensoraidedacquisitiondemandwhilethe sensorsassemblyismoving.Thepurposeofthissubsectionisthentoassessthefeasibilityofan acquisitionaidingunderdynamicconditions(i.e.dynamicinitialisationoftheattitudefilter). Whentheattitudeestimationisrequiredwhilethesensorsassemblyismoving,theattitude filter is initialised according to the principle described in Figure 5.13. The data provided by the sensorsareaveragedinordertosmooththedynamicduetothemotionandlimititsimpactonthe initialestimationofbothinclinationandheading.Theinitialisationofthecovariancematrixisdone empiricallyaccordingtothevarianceofthesignals.Ifthevarianceishigh,itisassumedthesensors assembly experiences a quite high dynamic sothat the variance onthe initialvalues of the state vectorishighaswell,andconversely.Theonlyquantitiesthatarenotestimatedwheninmotion initialisationisrequestedarethegyrobiases,whichconsequentlyremaincompletelyunkown.

Figure 5.13: Drift-free attitude filter with in motion alignment aiding. The proposed aiding method for the inmotion initialisation of the developed driftfree attitude filter is tested hereafter for the worst dynamic case, i.e. the pedestrian navigation. The accelerationexperiencedbythesensorsassemblyisindeedveryhighinsuchanavigationmode, makingtheinruninitialisationveryinaccurate. Toassesstheperformanceoftheproposedinitialisationmethod,atrialhasbeenexercisedin threesteps.First,thepedestrianisnotmovingallowingthe“standard”initialisationoftheattitude filter,thenthepedestrianwalksforacertaintime,andfinallyhestops.Theattitudecomputedwith thesemeasurementsisusedasareference;evenifitisaffectedbysomeerrors(noothermeansof characterising the attitude was available). Based on the data recorded during the trial, another attitude computation is done, but initialising the filter during a dynamic period (i.e. when the pedestrianisalreadywalking).Thetwoattitudesarethensynchronisedinordertobecompared. Figure5.14showtheresultoftheattitudeanglesestimationdifference.

Page125 SensorsAidingforGPSAcquisition

Figure 5.14: Attitude angles error with respect to Figure 5.15: Close-up on the first epochs. The the estimated angles with a static initialisation of the convergence of the filter is shown here and lasts filter. about 10 seconds. ThecloseupinFigure5.15showsthatthefilterneedslessthan10secondstogiveastable attitude estimate, which may be too long for real time applications but still demonstrates the feasibilityoftheprinciple.Theattitudeanglesconvergethenverycloselytowhatisobtainedwith the filter initialised at rest, as illustrated in Figure 5.14. Small constant deviations are however noticeableduetotheerrorintheinclinationinitialisationthatimpacttheheadingtoo. 5.3.5 Doppler Reduction Procedure Figure5.16summarisestheuser’sDoppleruncertaintyreductionusingthecombinationof MEMS sensors data. A first Doppler uncertainty reduction is done through the motion detection procedure. Then, depending on the detected motion, the user’s Doppler contribution can be estimatedwithoutGPSmeasurements(pedestriannavigationcase),orusingatleasttwosatellites (landvehiclenavigationcase). 1st Doppler 2nd Doppler Uncertainty Uncertainty Reduction Reduction Pedestrian Pedestrian Navigation

Attitude Estimation

Velocity Estimation

Sensors Motion Detection Land Vehicle Land Navigation

Attitude Estimation

Figure 5.16: User’s Doppler uncertainty reduction procedure.

Page126 SensorsAidingforGPSAcquisition

5.4 Test Results

The integration scheme proposed in this paper is not directly tested in real time with a HSGPS or an AGPS receiver since none capable of outputting raw measurements (including Doppler)wereavailableatthetimethetrialswereconducted.Theephemerisdataofeachsatellite in visibility is rather collected with a base station operating under clear sky conditions and post processed together with the sensors assemblydata, allowing arealistic MEMS/AGPSintegration simulation.Thebasestationisusedtomakesurethatalltheephemerisdataareavailable.Thetwo GPSreceiversusedfordatacollectionaretheNovatelProPakGL2plus(rover)andNovatelOEM4 (basestation). Thealgorithmpresentedaboveistestedinactualconditions.Testresultsarepresentedin this section for both pedestrian and land vehicle navigation. These two navigation modes are studiedseparatelytoclearlyidentifythebenefitsoftheuser’sDopplerestimationalgorithm.For eachcase,thesensorsassemblywasfirstcalibratedagainsthardironmagneticinterferenceandthe initialheadingoffsetwassolvedusingfirstGPSmeasurements. 5.4.1 The Pedestrian Navigation Case Inafirsttrial,apedestrianwalksinthecarparkinglotofasupermarketwiththesensors assemblyputinsidehistrouser’spocketwitharandomattitude.Thankstothemotiondetectionand recognition,thesensorsassemblydetectstheunitiscarriedbyawalkingpedestrianandthevelocity ofwalkisconsequentlymodelledasdescribedinthesectionabove.Toavoidthecalibrationusing GPS measurements, the velocity is modelled using regressioncoefficients storedin memory and recordedduringofflinetrialsoperatedatdifferentvelocitiesofwalktocoverthewholepedestrian velocityspectrum(5significantrunswithdifferentpaces).Thevelocityofthepedestrianwasthen foundtobeaccuratewithin±0.3m/sfromthetruevelocity(computedthroughpostprocessingof DGPSmeasurements). TheleftplotinFigure5.17showstheuser’sDopplerpredictionaccuracyontotheLoSof thevisiblesatellites(PRNs1,3,11,14,19and20)andusingthefilteredattitudethatisprovidedby thefusionofallMEMSdata.Asitcanbeseenandevenifthepedestrianvelocityisaccuratewithin ±0.3m/s,theuser’sDopplerpredictionerrorontotheLoSofthesatellitesinvisibilitystayswithin ±6Hz,with100%availability.Ittremendouslyreducestheinitialuncertaintywhichwas±250Hz. Thisimprovementisallthemoreimportantthecoherentintegrationtimeishigh.Indeed,assuming a20mscoherentintegration,Dopplerbinsof25Hzlargeshallbeexploredforatotalamountof20 given the initial uncertainty of ±250Hz. Opposite, only one Doppler bin can be searched if informationprovidedbythesensorsassemblyisused,whichconsequentlyrepresentsacomplexity reductionof95%.Figure5.17(b)showstheuser’sDopplerestimationonthesameLoS,usingthe samepedestrianvelocitymodelbutwiththeattitudecomputedbasedongyroscopemeasurements whoseinitialbiaseshavebeenremoved(theattitudefilterisnotusedinthatcase).Asthepathis travelled, biases introduce drift in the attitude angles that are used to compute the projection coefficients.Thisclearlyimpactstheuser’sDopplerpredictionaccuracyovertime. Figure5.18showstheuser’sDopplerpredictionaccuracyusingthepredictionmethodbased on equation (5.7) for the same trial as the one presented above. In this use case at least, two satellitesareneededtobeabletocomputetheuser’sDopplercontributionontoeveryLoSofthe satellites in visibility. Given the fact that 6 satellites are visible all the time during the trial, the

Page127 SensorsAidingforGPSAcquisition combinationofthesatellitesmeasurementsthatleadstothelessaccurateuser’svelocityestimate wastakenintoaccount.Thismostinaccuratevelocityestimationoncecombinedwiththedifferent projectioncoefficients allowsthepredictionoftheuser’sDopplerontothedifferent LoS. Inthis test,thecombinationofPRN1and3wasfoundtogivethepoorestvelocityestimate.

Figure 5.17: User’s Doppler prediction accuracy using filtered (a) and gyro-based (b) attitude as well as the modelled pedestrian velocity. The reference user’s Doppler is taken from GPS measurements. Figure5.18(a)illustratestheuser’sDopplerpredictionaccuracyusingthefilteredattitude providedbytheattitudefilterwithbadsatellitegeometrydetectioncriterionenabled.Ontheone hand, the overall Doppler prediction is less accurate than in the previous case of Figure 5.17. Indeed,theerrorstayswithin±11Hz.Ontheotherhand,theavailabilityoftheDopplerprediction isreduced,asitisindicatedbythedotslocatedonthetopofthefigureandcircledinblack.Inthis trial,thelargestunavailabilityslotneverexceeded1second(thereareindeednumerousholesinthe apparentstraightunavailabilitylinescircledinblack).

UnavailableDopplerprediction

Figure 5.18: User’s Doppler prediction accuracy using filtered and gyro-based attitude and the Doppler model of equation (5.7). The reference user’s Doppler is taken from GPS measurements.

Page128 SensorsAidingforGPSAcquisition

Figure5.18(b)showsthesameuser’sDopplerpredictionaccuracy,butusingthegyrobased attitude.Again,theaccuracydecreasescomparedtothepreviousresultsduetobothuser’svelocity estimation and projection coefficients computation. The drifting properties of the Doppler predictionerrormakesuchestimationnotreliableformediumtolongtermuse. Table 5.1 summarises the results obtained for pedestrian navigation. Using the modelled velocityofwalkandthestableattitudeprovidedbytheattitudefilter,thenumberoffrequencybins requiredtosearchtheuser’sDoppleriswellreduced.Thegreaterthecoherentintegrationtime,the moreinterestingthecombinationofMEMSsensorswiththeGPSacquisitionstage.Furthermore, theavailabilityofthepredictionisinthatcase100%.Figure5.19illustratestheresultsofTable5.1.

Table 5.1: Number of frequency bins to explore given an initial user’s Doppler uncertainty of ±250Hz. Pedestrian navigation case. With MEMS Without MEMS Doppler bins reduction

25 100 20 80 15 60 10 40

5 20 Reduction (%) Nb of freq. bin 0 0 1 3 5 7 9 11 13 15 17 19 Coherent Integration Time (ms) Figure 5.19: Reduction of the number of user’s Doppler bins with respect to different coherent integration times for an initial uncertainty of ±250 Hz using data provided by MEMS senors. 5.4.2 The Land Vehicle Navigation Case The Doppler prediction methodology is then tested for the land vehicle navigation case. Opposite to the pedestrian navigation, it is not possible to use a reliable estimate of the vehicle velocity mainly because of the biases that affect the accelerometer measurements, making the estimatedvelocitybiasedaswell.Therefore,theimprovementontheacquisitionofGPSsatellites throughthepredictionoftheuser’sDopplerisanalysedassumingtwosatellitesalreadyacquired. Figure5.20illustratestheuser’svelocityestimationerrorusingallpossiblecombinationsof two Doppler measurements, according to the satellites in visibility. The upper part shows the estimatedvelocity error withoutavoidingsatelliteconfigurationsthatleadtounobservableuser’s Doppler.Inthatcase,theerrorcanreachupto1500m/s.Thelowerpartisacloseupoftheupper part,showingthatbadsatelliteconfigurationcannotbeneglectedastheyoccurquiteoftenandare verylarge.Inthistrial,PRN3,11,19,20and28werevisibleallthetime.Inthefollowing,the

Page129 SensorsAidingforGPSAcquisition satellite combination that leads to the less accurate user’s velocity estimate assuming a good geometryisusedforDopplerprediction(inthepresenttest,itisthecombinationofPRNs3and 11).

Figure 5.20: User’s velocity estimation using all possible combinations of measurements from two GPS satellites. Figure5.21showstheuser’sDopplerpredictionaccuracyusingthefilteredheadingandthe estimatedvelocitybasedonthemeasurementsfromPRN3and11.Thelowerpartshowstheuser’s Dopplerpredictionerrorusingallthepossiblecombinationsofsatellitewithouttakingintoaccount thepositionofthesatelliteswithrespecttothevehicleheadinginordertoavoidunobservablecases (as explained in subsection 5.3.3). Large errors are made in the estimation (up to 100 Hz). The upper part shows the user’s Doppler prediction accuracy when the detection criterion is applied. Thepredictionaccuracystayswithin±20Hzduringtheentiretest,buttheavailabilityofprediction decreasesbelow100%.Inthetrial,thelargestpredictionunavailabilityslotneverexceeded1s. unavailability

Figure 5.21: User’s Doppler prediction accuracy using the filtered attitude.

Page130 SensorsAidingforGPSAcquisition

Table 5.2 summarises the results obtained for land vehicle navigation. Using the stable attitude provided by the attitude filter and as soon as two satellites are acquired, the number of frequencybinsrequiredtofindtheuser’sDoppleriswellreduced.Asforthepedestriannavigation case,theinformationprovidedbyMEMSimprovesallthemoretheacquisitionperformanceasthe coherent integration time is long. One weak point in the methodology used to predict the user’s Doppleristhatthe availabilityoftheprediction closely dependsonthe configurationofthetwo satellitesusedwithrespecttotheuser’sheading.

Table 5.2: Number of frequency bins to explore given an initial user’s Doppler uncertainty of ±250Hz. Land vehicle navigation case. Figure5.22illustratestheresultspresentedaboveinTable5.2. With MEMS without MEMS Doppler bins reduction

25 100

20 80

15 60

10 40 Reduction (%)

Nb of freq. bin 5 20

0 0 1 3 5 7 9 11 13 15 17 19 Coherent Integration Time (ms) Figure 5.22: Improvement of the combination of MEMS. 5.5 Conclusions

This chapter focused on the improvement of the acquisition process through the use of MEMStypesensors.Itseemsobviousthattheacquisitionstagecanbeidentifiedasapotentialhigh processing load stage, whose performance could be improved using external data provided for instancebyinertialsensors.Anacquisitionaidingstrategyhasbeendescribedandtestedinactual conditions for both pedestrian and land vehicle navigation. This strategy mainly relies on the estimationofthevelocityandtheheadingoftheuser. The analysis of the conducted trials have shown that in the pedestrian case where the velocity can be modelled within 0.3m/s accuracy, the information provided by MEMS sensors decreases tremendously the user’s Doppler uncertainty to ±6Hz. The frequency search time is

Page131 SensorsAidingforGPSAcquisition consequently reduced by at most 95% comparedto the frequency searchtime assuming a user’s Doppleruncertaintyof±250Hz.TheavailabilityoftheDopplerpredictionisfurthermore100%. In the land vehicle case, the prediction performs as well by reducing the user’s Doppler uncertaintydownto±25Hz.However,theDopplerpredictioncanonlybedoneoncetwosatellites areacquiredsincethevelocityprovidedbythesensorsassemblyisnotenoughreliable.Moreover, theuser’sDopplerpredictionavailabilityisdegradedanddependsonthegeometryofthesatellites withrespecttotheuser’sheading.

Page132 SensorsAidingforGPSAcquisition

Page133 GPS/IMUHybridisationforPersonalNavigation

Chapter 6: GPS/IMU Hybridisation for Personal Navigation This chapter is dedicated to the study of the position solution availability and accuracy improvementinurbanandindoorenvironments.Morespecifically,itfocusesontheanalysisofthe hybridisationperformanceof either aHSGPSoranAGPSwithalowcost InertialMeasurement Unitintwodifferentusecases:thelandvehiclenavigationandthepedestriannavigation.Abrief summaryofthehybridisationschemesisfirstgiven.Thenthetwonavigationmethodsarediscussed separately. The land vehicle is addressed within the scope of a tight integration scheme in the perspective of using very few measurements as it is likely the case in urban environments. The pedestriannavigationisdetailedthroughasimplerloosecouplingarchitectureandthedeveloped realtimepedestriannavigationsystemsoftwareisdetailed.

Page134 GPS/IMUHybridisationforPersonalNavigation

6.1 Integration Strategies & Architectures

ThereareseveralwaysofintegratingaGPSreceivertogetherwithanINS.Theyalldepend onwhatmeasurementsareavailableattheGPSlevel.IftheGPSpositionandvelocityinformation areavailable,bothsystemscanbeintegratedaccordingtothesocalledloosecouplingarchitecture. IftherawGPSmeasurementsareavailable(i.e.Dopplerandpseudorangemeasurements),atight integrationschemecanbeused.Finally,ifonehasaccesstotheprocessingcoreoftheGPSreceiver andespeciallythetrackingloops,theintegrationcanbedoneatsuchaveryhighlevel.Wetalkthen aboutultratightcoupling.Theintegrationstrategiesdependonthetypeofapplicationaimedbythe integrated navigation system, the environment the system is likely to operate in as well as the acceptablesystemcomplexity.Inalltheaforementionedintegrationstrategies,thecombinationof thedifferentinformationisdonethroughKalmanfiltering(seeforinstanceappendixCor[45]). Two implementations are possible regarding each integration strategy. The integrated navigation system can indeed operate in an openloop or in a closedloop mode. The first one involves the correction of the INS output errors (i.e. position, velocity and attitude) using GPS measurements, whatever their type. In such an implementation, the INS mechanisation operates independently without being aware of the existence of an error estimator. The Kalman filter estimatestheerrorsthatareusedtocorrecttheoutputoftheINS.TheINSerrormodelimplemented in the Kalman filter is obtained through linearisation of the inertial differential equations, as detailedinchapter3,inwhichthesecondorder(andhigher)termsareneglected.Withoutfeedback, themechanisation error growsrapidly,whichcanmaketheneglectedtermssignificant,andthus can introduce large errors into the integrated system. In a closed loop integration scheme, a feedbackloopisusedtocorrecttherawsensoroutputandothermechanisationparametersusingthe errorestimatesobtained fromtheKalmanfilter. Inthisway,themechanisationpropagatessmall errorsthusmaintainingthesmallerrorassumptionsusedtogettheinertialerrormodellinear.The errorstatesinthatcasemustberesettozeroaftereveryfilterupdate. 6.1.1 Loose Coupling ThelooseintegrationschemefusesGPSwithINSatthelowestlevel.ItusesGPSposition and velocity to correct the INS errors. This integration method is suboptimal because the GPS position and velocity are computed in a separate filter using the estimated pseudoranges of the satellitesthataretracked.Ifoneofthesemeasurementsisaffectedbyanonnegligibleerror,itwill consequentlyimpacttheaccuracyoftheGPSpositionandthehybridisationperformancewillbe degraded accordingly. The tracking of four satellites at least is required to enable such an integrationprinciple,whichlimitsitsoperationalenvironments,especiallyiftheGPSreceiverused is not capable of tracking weak signals. However, with the increase of the position solution availabilitybroughtbyAGPSandHSGPSinurbanenvironments,suchanintegrationschemecan be very attractive. It furthermore can give a great deal of performance for a minimal software integrationcomplexity. Figure6.1illustratestheopenlooploosecouplingarchitecture.TheGPSreceiverprocesses independentlythepseudorangesofthesatellitesthataretracked,andprovidesthepositionandthe velocityofthereceiver’santenna.ThemotionexperiencedbytheIMUismeasuredbythesensors andallthemeasurementsareprocessedtogettheposition,velocityandattitudeoftheIMU.Data frombothnavigationsystemsarethencombinedandfedintotheKalmanfilterasmeasurements.

Page135 GPS/IMUHybridisationforPersonalNavigation

ThefilterestimatestheINSerrorsaccordingtothemodelsimplemented,andthecorrectionsare added to the output of the inertial navigation algorithm. In such an integration scheme, the measurementnoisematrixfortheKalmanfilterisoftenconstructedbasedontheposition/velocity covariancematrixfromtheGPSfilter.

Figure 6.1: Loose coupling integration scheme. Open-loop architecture. Figure 6.2 illustrates the typical closedloop architecture of a loosecoupling integration scheme.OppositetothepreviousarchitectureofFigure6.1,theerrorestimatesasprovidedbythe Kalmanfilterarenotusedtocorrecttheoutputsofthenavigationcomputerbutrathertheinertial sensorserrors(mainlybiases)andtheposition,velocityandattitudeusedasinputsinthenavigation mechanisation.Thishastheadvantageofkeepingtheerrorestimatessmall,whichismorecoherent totheapproximationsmadewhenderivatingtheINSerrormodel.

Figure 6.2: Loose coupling integration scheme. Closed-loop architecture 6.1.2 Tight Coupling ThetightintegrationcombinestheINSoutputswiththerawGPSmeasurementsmadeof pseudorangesandpseudorangerates(Doppler),evencarrierphases(notinthescopeofthisstudy). This coupling method is more optimal than the previous one since each GPS measurement is combinedindependentlywiththeINSoutputs.Outliersaremorelikelytobedetectedandremoved using appropriate fault detection and exclusion algorithms based on the combination of the two differentnavigationsystems.Thereisfurthermorenoneedtotrackatleastfoursatellitestoenable the correction of the INS errors, which makes such a hybridisation strategy very attractive, especially in urban canyon or indoor environments. However, there are much more nonlinear equationsintheKalmanfilterdesigntofuseallthemeasurements,sothatthisintegrationschemeis

Page136 GPS/IMUHybridisationforPersonalNavigation morecomplextoimplementascomparedtothepreviousone. Figure 6.3 illustrates the tight coupling integration scheme according to the openloop architecture. The GPS receiver provides pseudorange and pseudorange rate or Doppler measurements,aswellastheephemerisofeachsatellitethatistracked.Theseephemerisdataare used to form estimates of the pseudorange and pseudorange rate measurements from the INS measurements,whichrequiresagoodsynchronisationbetweenthetwonavigationsystemsinorder to correctly form the error measurements. A small time offset may indeed introduce a non negligible bias in the INS pseudorange and Doppler estimates due to the high velocity of the satellites.TheKalmanfilterestimatestheINSerrorsandthecorrectionsaredonedirectlyonthe outputsoftheINSnavigationcomputer.

Figure 6.3: Tight coupling integration scheme. Open-loop architecture. TheclosedlooparchitectureisshowninFigure6.4.Asdiscussedabove,thecorrectionsare rather done at the sensors and navigation computer level, which maintains the small error assumptionespeciallyiflowcostsensorsareused.

Figure 6.4: Tight coupling integration scheme. Closed-loop architecture. 6.1.3 Sensors Augmentation OthersensorsthanGPScanbeusedtoprovideextrainformationinordertoestimatethe inertialerrors,andconsequentlyimprovetheintegratednavigationsystemperformanceespecially

Page137 GPS/IMUHybridisationforPersonalNavigation duringGPSoutages.Chapter4discussedthepossibleaidsusingthesensorspresentedintheframe ofthethesis.Inallcases,theadditionofexternalinformationimpactsthemeasurementequations and consequently the measurement matrix complexity. Figure 6.5 shows how such external measurementsarefedintheKalmanfilter.Theloosecouplingishereshownasanexample,butthe integrationprincipleisthesamewhateverthearchitecture.

Figure 6.5: Hybridisation architecture using external measurements for correction purposes. 6.1.4 Practical Use Cases ThefollowingofthischapterfocusesonthehybridisationofeitheraHSGPSoranAGPS withalowcostInertialMeasurementUnitintwodifferentcases:thelandvehiclenavigationand thepedestriannavigation.Asdiscussedpreviouslyinchapter3,bothnavigationmethodsinvolve differentmechanisations.Asaconsequence,theneedforcorrectionsisdifferentinthetwocases.It has been shown for instance that the pedestrian mechanisation allows more accurate standalone navigation,sothatatightarchitecturethattakesbenefitofveryviewGPSmeasurementsmaybe not mandatory in order to increase the integrated system reliability and accuracy. Opposite, the traditional inertial mechanisation involved in the land vehicle navigation requires corrections as oftenaspossibleandthereforerathersuitssuchatightcouplingarchitecture.Forthesereasons,the two navigation methods are discussed separately in the following. The land vehicle is addressed withinthescopeofatightintegrationscheme,whereasthepedestriannavigationisdetailedthrough asimplerloosecouplingarchitecture. 6.2 Land Vehicle Navigation Case 6.2.1 Introduction Whenavehiclenavigatesinurbanenvironmentsandmorespecificallyincitycentres,its locationbecomesverychallengingbecauseofthebuildingsthatareverylikelytofadeandbloke

Page138 GPS/IMUHybridisationforPersonalNavigation the GPS signals and to introduce large multipath. Pure non LineofSight signals may also be integratedinthepositioncomputationstage.Asaconsequence,thepositioningsystemrelyingon theprocessingofGPSsignalsmayexperiencelongunavailabilityandlargeinaccuracy. AhybridisedsystemmadeofaGPSreceiverandanINScouldhandlesuchissuesbytaking advantageofthetwonavigationsystems.Numerousstudieshavealreadybeenconductedonthis topic, as for example [39], [40] or [41]. In this section, the feasibility of using very few GPS measurementstoestimateIMUerrorsandthusprovideasmoothedandaccuratepositionsolutionis morespecificallystudied.Asdiscussedandjustifiedin[41],theaugmentationoftheGPSreceiver needs to be small and cheap for LBS perspectives. The hybridisation with the lowcost IMU presentedinchapter3isthereforeaddressedhereafter. The typical environment the hybridised system will operate in is the urban area. Consequently,numerousoutagesandsignalreacquisitionsmayincreasethecomputationloadof theGPSreceivercore,whosepositionsolutionavailabilitymayfurthermorebedegraded.Insuch conditions, the tight coupling integration of both navigation systems is obvious. This choice is furthermoremotivatedbytheuseofalowcostIMU,whosemeasurementsareverylikelytobeof bad accuracy, requiring corrections from an external sensor as often as possible. However, as discussedabove,thisimpliesanincreaseofthefiltercomplexity. In the tight integration scheme, the equations involved at both state transition and measurementlevelareindeedhighlynonlinear.AsalltheINSerrorsmustbeestimatedinorderto improvetheperformanceoftheintegratednavigationsystem,theyareincludedinthestatevector of the Extended Kalman Filter (EKF) used to fuse the two navigation systems. Equation (6.1) recalls the error model as defined in [9]in the navigation frame. It is basically composed of 15 statesthatconsequentlyistheminimumdimensionofthestatetransitionandcovariancematrices. δ δ  p&  Fpp Fpv Fpρ 0 0   p   n p          δv& Fvp Fvv Fvρ F ε 0 δv n + nε    v a     v a  ρ ρ ρρ +  δρ&  = F p F v F 0 Fρε  ⋅  δρ  + nρ nε  (6.1)    g     g  εδ & 0 0 0 Fε ε 0 δε nε  a   a a   a   a       εδ &  0 0 0 0 Fε ε δε  nε  g   g g   g   g  where: – δpisthepositionerrorinthenavigationframe. – δvisthevelocityerrorinthenavigationframe. – δρistheattitudeerror. – δε aistheaccelerometerserrors(biasand/orscalefactor). – δε gisthegyroscopeserrors(biasand/orscalefactor). Atthemeasurementslevel,thecomplexityisratherduetotheuseofthepseudorangerates measurements (equivalent to Doppler by a multiplicative constant) of the GPS receiver. As a reminder,thetypicalpseudorangeandpseudorangeratemeasurementequationsasgiveninchapter 2arerecalledbelowinequations(6.2)and(6.3)wherealltheerrortermsaregroupedtogetherin thesinglenoisetermNformoresimplicity. ρ = ( (e) − (e) )2 + ( (e) − (e) )2 + ( (e) − (e) )2 + ⋅ ∆ + (6.2) xu xs yu ys zu zs c t N ρ

Page139 GPS/IMUHybridisationforPersonalNavigation where: − (e) (e) (e) xu , yu , zu aretheuser’spositioncoordinatesexpressedintheECEFframe. − (e) (e) (e) xs , ys , zs arethesatellite’spositioncoordinatesexpressedintheECEFframe. − ∆t istheGPSreceiverclockbias.

− N ρ accountsforallerrorsaffectingthepseudorangemeasurement. (x(e) − x(e) )(x& (e) − x& (e) )+ (y (e) − y (e) )(y& (e) − y& (e) )+ (z (e) − z (e) )(z& (e) − z& (e) ) (∆ ) ρ = u s u s u s u s u s u s + ⋅ d t + & c N ρ& (6.3) ()()()(e) − (e) 2 + (e) − (e) 2 + (e) − (e) 2 dt xu xs yu ys zu zs where: − (e) (e) (e) x&u , y&u , z&u aretheuser’svelocitycoordinatesexpressedintheECEFframe. − (e) (e) (e) x&s , y& s , z&s arethesatellite’svelocitycoordinatesexpressedintheECEFframe. − d∆t dt istheGPSreceiverclockdrift. − N ρ& accountsforallerrorsaffectingthepseudorangeratemeasurement. Equation(6.3)ishighlynonlinearandthereforeneedstobeexpandedwithTaylor’sseries in order to be implemented in the Kalman filter. As an example, the measurement sub matrices designedwiththeuser’sposition,velocityaswellasthereceiverclockbiasanddriftasunknowns, are given in equations (6.4) and (6.5) for respectively the pseudorange and pseudorange rate measurements.ThemeasurementsmatrixHdefinedinequation(6.6)isthecombinationofthese two sub matrices, whose dimensions depend on the number of available pseudoranges and pseudorangerates.  ∂ρ i ∂ρ i ∂ρ i  H ()ρ = 0 0 0 1 0 ∂ (e) ∂ (e) ∂ (e)  (6.4)  xu yu zu  × N1 8  ∂ρ& i ∂ρ& i ∂ρ& i ∂ρ& i ∂ρ& i ∂ρ& i  H ()ρ& = 0 1 ∂ (e) ∂ (e) ∂ (e) ∂ (e) ∂ (e) ∂ (e)  (6.5)  xu yu zu x&u y&u z&u  × N2 8 H(ρ) H =  ()ρ  (6.6) H &  ()+ × N1 N2 8 Theaimoftheintegrationfilterproposedinthefollowingistotakeadvantageofthetight coupling properties while using simpler equations. The modification of both the state transition matrix and the measurement equations is investigated. The ability of the filter to provide useful correctionassoonastwosatellitesaretrackedisfurthermorespecificallyaddressed. 6.2.2 Integrated Navigation System 6.2.2.1 INS Mechanisation To reduce the complexity of the integration filter and improve its correction capabilities especially when very few GPS measurements are available (i.e. as soon as two satellite

Page140 GPS/IMUHybridisationforPersonalNavigation measurementsareavailable)theclassicaltightcouplingarchitecturehastobemodified.Itseems obvious that the tight architecture as shown in Figure 6.4 is optimum in the sense it allows a rigorouscombinationoftheGPSandtheINS.Howeverasdiscussedabove,theerrorsoftheINS arecharacterisedbynonlinearequationsthatintroduceatleast15unknownsinthestatevector.As aconsequence,afirstimprovementwouldbetouseadifferentINSmechanisationinordertoget thestatetransitionmatrixsimplerwithlessstatestoestimate. To choose a different mechanisation, let’s first discuss the use of the positioning system fromanoperationalpointofview.Thelocationofoneuserinthelandvehiclenavigationrequires thattheIMUmadeoflowcostsensorsmustfollowthemotionofthevehicle,meaningthatithasto be closely attached to the vehicle duringthemotion. Given this statement, assuming the IMU is orientedsuchthatoneofitsaxisisalignedwiththeforwarddirectionofthevehicleasshownin Figure 6.6, a simpler mechanisation can be deduced, which is based on the integration of the accelerationsensedalongthevehicledisplacementdirection.Thelateralvelocityofthevehicleis assumednegligibleandnotrelevantofatypicalvehiclemotion,asdonein[37]or[42]forexample. The attitude of the vehicle is likely to be computed using the driftfree attitude filter detailed in chapter4.Neglectingtherollimpactontherestitutionofthevehicletrajectory,onlyheadingand pitchanglesareusedforacomplete3Dpositioning. In such a mechanisation, the heading axis of the IMU and the forward direction of the vehiclemaynotbeperfectlyaligned.Thismayintroduceanadditivebiasinthecomputationofthe velocity, and consequently degrade more rapidly the performance of the INS. The estimation of suchaheadingbiascanbedoneusingGPSmeasurementswhenthevehicleisdetectedtomove. Thisinitialbiasissueisthereforenomoreconsideredinthefollowing.Theissuearisesalsowith theinclinationangle(pitchangle)fromthe IMUwithrespecttothevehicle.Assumingthe IMU laysonthefloorofthevehicle,suchanangleerrorisverysmallandthuscanbeneglectedaswell.

Figure 6.6: IMU placement with respect to the vehicle. ThebasicequationscharacterisingtheINSmechanisationaregivenbelow.Equation(6.7) showshowthealongtrackvelocity(i.e.thevelocityintheforwarddirection)iscomputed.Using the pitch angle as estimated by the processing of the IMU data, the contribution of the gravity vectorontotheforwardaccelerationisremoved.Theresultingaccelerationisthenintegratedtoget thealongtrackvelocity. u=t v INS ()()()()t = v INS t + (a INS u − g sin()θ u )du AlongTrack AlongTrack 0 ∫ = AlongTrack (6.7) u t0

Page141 GPS/IMUHybridisationforPersonalNavigation where: INS – vAlongTrack isthealongtrackvelocityofthevehicle. INS – aAlongTrack istheaccelerationsensedalongtheforwardaxisofthevehicle. – g isthelocalgravityvector.Inafirstapproximation,itisassumedperfectlyvertical. – θ isthepitchangleasestimatedbytheprocessingofIMUdata.Itcharacterisestheinclineof theroad. The position of the vehicle is obtained by integrating the along track velocity projections ontonorth,eastanddownaxesaccordingtoequations(6.8),(6.9)and(6.10).Thisintegrationstage requiresbothpitchandheadingangles. u=t p INS ()()()t = p INS t + (v INS u ⋅cos(θ (u))cos(ψ (u)))du n n 0 ∫ = AlongTrack (6.8) u t0 u=t p INS ()()()t = p INS t + (v INS u ⋅cos(θ (u))sin(ψ (u)))du e e 0 ∫ = AlongTrack (6.9) u t0 u=t p INS ()()()t = p INS t + (v INS u ⋅sin(θ (u)))du d d 0 ∫ = AlongTrack (6.10) u t0 where: INS INS INS – pn , pe ,and pd arerespectivelythenorth,eastanddownvehiclepositioncoordinates. – ψ istheheadingofthevehicle. Figure6.7summarisesthemechanisationoftheInertialNavigationSystemaccordingtothe simplifications described above. The computation of the attitude of the IMU (and consequently those of the vehicle since the IMU is not moved with respect to it) can be done whether by processing the rotation rate measurements using the standard strapdown algorithm based on the rotationquaternion,asdescribedinchapter3,orusingtheattitudefilterasdetailedinchapter4.In thelattercaseandaccordingtotheresultsofchapter4,theattitudeisassumedenoughreliabletobe considered as external measurements that do not need corrections. This assumption may be somehowwrongsincetheestimationofthegyroscopesbiasintheattitudefilterisobviouslynot perfectlyaccurate,butitisneverthelessinterestingtotestitasafirstapproximation.

Figure 6.7: Simplified INS mechanisation for land vehicle navigation.

Page142 GPS/IMUHybridisationforPersonalNavigation

6.2.2.2 Measurement Equations At the measurement level, afirstimprovementthat wouldslightly decrease the equations complexitywouldbetouseanINSmechanisationexpressedintheECEFframeratherthaninthe navigation frame, as for instance it is done in[39].To have amore drastic simplification of the measurement equations implemented in the Kalman filter, it is better to use the GPS raw measurementsfromadifferentpointofview. Thepseudorangeisverywellsuitedtointroducethepositionoftheintegratednavigation systeminthefilterequations.Itslinearisationisquiteobviousandconsequentlyitsintegrationinto the measurements will not be modified in the following. The pseudorange rates are opposite far more complex to incorporate,as illustrated in equation(6.3). However, they can be equivalently interpretedasDopplermeasurementsaccordingtotherelationshipgiveninchapter2andrecalled hereafterinequation(6.11). L f r = − 1 ρ& (6.11) d c where: r = user + satellite + LO + – f d f d f d fd n f is the Doppler affecting the received signal, as defined in chapter2. Following the theoretical derivationdetailed in chapter5, the user’s Doppler contribution expressionisrecalledhereafterinequation(5.4).Suchanexpressionisafunctionofthesatellite positionwithrespecttotheuserthroughelevationandazimuthangles,butitalsodependsonthe attitudeofthevehicleandmorespecificallyonthepitchandheadingangles. user = true ⋅[ θ ψ − + θ ] f d vAT cos( )cos(E)cos( Az) sin( )sin(E) (6.12) where: true – vAT isthetruealongtrackvelocityofthevehicle. If the attitude of the IMU is computed by processing the rotation rates, both pitch and headinganglescannotbeusedasexternalattitudemeasurementsinordertoincreasethecorrection capabilities of the integration filter.The mainreason forthat is the nonnegligible impact of the biasesthatdramaticallydecreasestheaccuracyofthegyrobasedattitudeovertime. Opposite,assumingtheattitudeisprovidedbytheattitudefilterdevelopedanddetailedin chapter 4, the number of unknowns to estimate in equation (5.4) can be significantly reduced. Indeed,theresultspresentedinchapter4haveshownthatagoodheadingrestitutionofoneuseris possiblebyfusingtheinformationofaccelerometers,gyroscopesandmagnetometers,forbothland vehicle and pedestrian navigation. No accurate reference measurements was available to characterisetheaccuracyofallangles,butasthemagnetometersrequiregoodtiltcompensationto provide accurate heading estimation,itcan be inferred that inclination estimation performsquite welltoo.Asaconsequence,bothpitchandheadingangleestimatescanbeusedasreliableknown attitudemeasurementsintheKalmanfilter.Theonlyunknownremaininginequation(5.4)isthen the along track velocity of the user, which dramatically decreases the impact on the filter complexityduetotheuseofDopplermeasurements.

Page143 GPS/IMUHybridisationforPersonalNavigation

Thisapproachisobviouslylessrigorousthantheapproachofthestandardtightintegration. Itindeeddirectlyreliesontheaccuracyoftheestimatedpitchandheadinganglesandalsoassumes thatnobiasaffectstheseattitudemeasurements(whichcanbewrongincaseoflongtermmagnetic interference for instance). It has nevertheless the advantage of simplifying the design of the integratednavigationfilter. 6.2.2.3 Coupling Methodology 6.2.2.3.1 Kinematic Model and State Vector Accordingtothetwoprevioussubsections,itisthenpossibletodesignaKalmanfilterthat fusesbothnavigationsystemsusingtherawGPSoutputstocorrectthepositionandthealongtrack velocity as computed by the INS. In the following integration filter, the first variables that are included in the state vector are the truenorth,east anddowncomponents oftheuser’s position, whosekinematicequationsaregivenrespectivelyinequations(6.13),(6.14)and(6.15).Sincethe positionisrigorouslytheintegrationofthevelocity,nostatenoiseisintroducedintheseequations. • true ()()()()= true ⋅ θ ψ (6.13) pn t vAT t cos (t) cos (t) • true ()()()()= true ⋅ θ ψ (6.14) pe t vAT t cos (t) sin (t) • true ()()()= true ⋅ θ (6.15) pd t vAT t sin (t) The true along track velocity is modelled as a 1 st order GaussMarkov process tuned according to a Power Spectral Density function, whose parameters namely bandwidth and magnitudearechosenaccordingtothehighestdynamicofthemotionexperiencedbythesensors assembly(foundbyprocessingtheGPSvelocityrecordedduringatypicalvehicletrial).Thetrue along track velocity model is given below in equation (4.12). Such an implementation in the KalmanfilteralsohastheadvantageofsmoothingthevelocitysolutionascorrectedbytheGPS measurements.Inotherwords,themodelallowsthepreventionoftoorapidchangesinthevelocity magnitudeduetoGPSoutliersusedforcorrectionpurposes.Thisisofparticularinterestsincethe systemwillbetestedinurbanenvironments. • vtrue (t) = c ⋅vtrue + w (6.16) AT vAT AT vAT where: – c isthetimeconstantsettingthebandwidthofthetruealongtrackvelocity. vAT – w isthedrivingnoise,whosevariancesetstheorderofmagnitudeofthemodelledmotion. vAT The velocity as computed by the INS is impacted by the errors of the accelerometer measurements.Sincetheaccelerometerisalowcostsensor,bothbiasandscalefactorhaveanon negligible impact on the accuracy of the computed velocity. As the INS mainly relies on the integration of the forward acceleration, the estimation of all the errors affecting the along track velocity may improve the integrated navigation system performance, especially during GPS outages.Bothscalefactorandbiasareconsequentlyincludedinthestatevector.

Page144 GPS/IMUHybridisationforPersonalNavigation

Althoughtheturnoncomponentofthescalefactorhasbeenestimatedasgiveninchapter3, the precise characterisation of its drift has not been done. The scale factor model is empirically chosenasa1 st orderGaussMarkovprocesswithalongcorrelationtime(2hours),whosedriving noiseissetaccordingtothespecificationsprovidedbythemanufacturer.Forsimplicity,thesame model is used for the scale factor of the along track velocity computed by the INS, and whose kinematicmodelisgivenbelowinequation(6.14). • = −β ⋅ + β ⋅ (6.17) SFv (t) v SFv (t) 2 v w(t) where: β – v istheinverseofthecorrelationtimeoftheGaussMarkovprocess. – w isthedrivingnoise. Thebiasaffectingtheaccelerationmeasurementsisdefinitelythecontributionoftheoverall error that has the biggest impact on the performance of the Inertial Navigation System. It is modelled as a 1 st GaussMarkov process, whose characteristics have been found according to autocorrelationidentificationprocedureasdescribedin[47]withlongstaticmeasurements,evenif thismethoddoesnotprovideaccurateresults,asexplainedin[47]or[48].Asaconsequence,the biasaffectingthealongtrackvelocityismodelledasanintegratedGaussMarkovprocess • = bv (t) bv 2, (t) • (6.18) = −β ⋅ + β ⋅ bv 2, (t) x bv 2, (t) 2 x wx (t) where:

– bv istheintegratedGaussMarkovprocessusedtomodelthevelocitybias. β – x istheinverseofthecorrelationtimecharacterisingtheintegratedGaussMarkovprocess.

– wx isthedrivingnoise. Finally,thelastunknownsincludedinthestatevectoraretheGPSlocaloscillatorbiasand drift, whose kinematic model is chosen as detailed for instance in [44] and recalled hereafter in equation(6.19).Thecorrespondingdiscretecovariancematrixisdefinedaccordingtothequalityof thelocaloscillatorwhichischaracterisedbyAllanconstants[44].Itsexpressionisgivenbelowin equation(6.20). •• ∆ = (6.19) t wLO (t) q q  Q = 11 12 GPSLO   (6.20) q21 q22  where:

– wLO isthenoiseaffectingtheclockdrifttimederivative.

h0 2 2 2 3 – q = T + 2h− T + π h− T 11 2 s 1 s 3 2 s

– Ts isthesamplingperiod.

Page145 GPS/IMUHybridisationforPersonalNavigation

h = 0 + + 8π 3 – q22 4h−1 h−2Ts 2Ts 3 = = +π 2 2 – q12 q21 h−1Ts h−2Ts Table6.1givestypicalcharacteristicsoflocaloscillatorascommonlyusedinGPSreceivers OscillatorGrade h0 h1 h2 Temperature 2.10 9 7.10 9 2.10 9 CompensatedCrystal OvenizedCrystal 8.10 9 2.10 9 4.10 9 Rubidium 2.10 9 7.10 9 4.10 9 Table 6.1: Typical Allan constants for different types of oscillators (units of seconds) [44]. The state vector of the integrated system is thus defined as given in equation (6.21). It involves9stateswhicharethe3Dpositionofthevehicleinthenavigationframe,thealongtrack velocity scale factor and bias, thetrue along trackvelocity and the GPS receiver clock bias and drift.  • • T X = p p p SF vtrue b b ∆t ∆t (6.21)  n e d v AT v v  The kinematic model given below in equation (6.22) is then fully described by the combinationofthestatetransitionequationsgivenabove. • X (t) = F(t)⋅ X (t) + G(t)⋅ w(t) (6.22) where: − G(t) = diag([0 0 0 1 0 1 1 1]T ) − w isthestatenoisevector,whosecovariancematrixis Q(t) = cov(w(t)) ThecontinuousdefinitionofthekinematicpartoftheKalmanfilterhasnophysicalmeaning but is rather a rigorous implementation methodology. Digital data are provided by the different sensorssothatadiscreteKalmanfilterismoreadapted.Thediscreteformofthemodelgivenin equation(6.22)iscomputedaccordingtotheproceduredetailedin[44]andrecalledinappendixC. 6.2.2.3.2 Measurements Equations The first measurement equation is provided by the INS. It involves the true along track velocityobtainedthroughtheintegrationoftheforwardacceleration,andtheerrorsaffectingthat measurementasgiveninequation(6.23).Itisveryeasytogetthisequationlinear. INS = ⋅ true + + vAT SFv vAT bV nv (6.23) where:

– nv isthenoiseaffectingthevelocitymeasurement.

Page146 GPS/IMUHybridisationforPersonalNavigation

The other measurements are those provided by the GPS receiver modules, which are the pseudorange and Doppler measurements. The pseudorange measurement is given in equation (6.24).Theprocessingoftheephemerisofeachsatelliteallowstheestimationoftheionospheric, troposphericandsatelliteclockerrors.Theyareremovedfromthepseudorangesothatcorrected pseudorangesareactuallyusedasmeasurementsintheKalmanfilter.Thepositionofthesatelliteat timeoftransmissioniscomputedbyprocessingtheephemerisinthenavigationframetoeasethe implementation.Afirstpositionisthusrequiredtoallowsuchcoordinatetransformation,whichis not a limiting point since the INS also requires a first position to start the dead reckoning navigation. ρ GPS = ( − satellite )2 + ( − satellite )2 + ( − satellite )2 + ⋅ ∆ + corrected pn pn pe pe pd pd c t nρ (6.24) where:

– nρ isthenoiseaffectingthepseudorangemeasurement. Becausethevehicleisaimedatgoinginurban/deepurbancanyons,multipathsarevery likelytoaffectthepseudorangemeasurementsandasaconsequencethepositionsolutionaswell. The receiver Doppler corrected for the satellite contribution (estimated using ephemeris data) is thus used as the second raw GPS measurement in the Kalman filter because it offers more robustnessagainstsuchperturbations.Itsmodelisasfollows: L . f GPS = − 1 ∆t+ vtrue ⋅α + n (6.25) d ,corrected c AT AT / LOS fd where: α – AT / LOS istheprojectioncoefficientofthealongtrackvelocityontotheusertosatelliteLoS. – n isthenoiseaffectingtheDopplermeasurement. fd Anotherimprovementtestedwithintheproposedtightintegrationarchitectureistheuseofa lowcost pressure sensor. In that case, the pressure measurements once calibrated and converted intoaltitude(height)measurementsareusedtodirectlycorrecttheverticalpositionasestimatedin theExtendedKalmanFilter. 6.2.2.3.3 Mechanisation Figure6.8summarisestheprincipleoftheintegratednavigationsystem.TheGPSreceiver providesrawmeasurementsthatareusedasmeasurementinputsoftheKalmanfilter.Ephemeris dataareusedtocomputethesatellitespositionandDopplercontributions.Theyalsoarecombined withtheattitudeestimatesasprovidedbytheattitudefilterdetailedinchapter4tocomputethe projectioncoefficientfromtheusertosatelliteLineofSight,asdefinedinequation(6.25). This coupling methodology is somehow not optimum but it allows the reduction of the numberofunknownsinthestatevectoranditfurthermoreenhancesthecapabilityofthefilterto providecorrectionsassoonastwosatellitesareavailable.Aclosedlooparchitectureisproposed here,inwhichtheKalmanfilterestimatesthepositionandvelocityerrors(includingbiasandscale factor)thatarefedbackintotheINStokeeptheINSerrorsassmallaspossible.

Page147 GPS/IMUHybridisationforPersonalNavigation

GPS HeightMeasurements Receiver GPS GPS ρ fd Ephemerisdata

εINS Projection AttitudeFilter Coefficient Computation Projection Coefficient + Corrected IONO& Pseudorange TROPO models a(m),g(m),m(m) + Corrected Satellite Doppler Doppler KalmanFilter pINS Prediction

vINS (alongtrack) Inertial Navigation (m) Sensors a Computer ∆p,∆v

Position AlongTrackVelocity Figure 6.8: Integrated Navigation System mechanisation as designed for land vehicle navigation. Closed-loop architecture. 6.2.3 Test Results Thissectionpresentstheresultsofthetestsconductedwiththesystemdescribedabove.The capabilityoftheintegratednavigationsystemtoprovideapositionsolutioninchallengingurban canyon conditions is more specifically addressed.When thetestswere performed,no HSGPS or AGPSreceivercapableofprovidingrawGPSmeasurementswasavailable.Consequently,thetrial detailedinthefollowinghasbeendoneusingageodeticgradeOEM4GPSreceiverfromNovatel. Asaresult,theGPSpositionsolutionavailabilitycanbeexpectedtobequitelow.Thisisnotan issueregardingtheperformanceanalysisthesubsectionisaimedatsinceoneoftheobjectiveisto evaluatethecapabilityoftheintegratednavigationsystemtocorrectINSerrorsusingveryfewGPS measurements.Theuseofsuchageodeticgradereceiverneverthelessincreasesthequalityofthe raw measurements available for hybridisation due to particular processing techniques that are implementedtomitigateerrorssuchasmultipath,ascomparedtowhatHSGPSandAGPScando (indeed,theiraimisnotprimarilytodealwithsignalsofgoodqualitybutrathertohavethehighest possibleavailability). ThedataprovidedbytheMotionTrackerfromXsensarerecordedat25Hz,whereasGPS dataarerecordedat1Hz.TheIMUwaslyingonthegroundofthevehicleandnotmovedduringall thetrial.ThecalibrationofthemagnetometersisalsodonebeforetheteststartsandafirstGPS positioniscomputedtoinitialiseallthealgorithms. TheurbanreferencetrajectoryisplottedinFigure6.9astheredpath.Thetravelleddistance intheexercisedvehicletrialisabout4.5kmfor15minutesofpureurbannavigation.Theposition solution given by the OEM4 GPS receiver is plotted in blue as an illustration of its urban performance.ThecorrespondingtrackingstatisticsaregivenbelowinTable6.2.

Page148 GPS/IMUHybridisationforPersonalNavigation

OEM4TrackingStatus Nbofsatellites 01 2 3 ≥4 %oftime 7.2% 12.3% 14% 66.5% Table 6.2: OEM4 tracking performance in urban environment. As illustrated in Figure 6.9, the position solution availability is medium (66,5 %), which doesnotallowafullurbannavigation.Thereceivertrackedatleast2satellitesabout93%ofthe time,whichmakesthetrialsuitablefortestingtheproposedtightintegration.Duringthetrial,GPS measurements experienced large errors probably due to multipath, as shown by the position solutionsinsidethegreencircles.

OEM4Trajectory Ref.Trajectory

multipath Figure 6.9: Reference trajectory (red) and OEM4 position solution (blue). Urban trial. Inthefollowing,themeasurementsofthetwolatestsatellitesthatareacquiredandtracked will be used as inputs in the integrated navigation system in order to process data from many satellite configurations (i.e. combination of two GPS measurements) and thus simulate real conditions where only two GPS measurements are available. In the exercised trial, the satellite configurationchangesapproximatelyevery8seconds. As an illustration of the performance of the attitude filter during the trial, Figure 6.10 presentstheheadingscomputedwithdifferentalgorithms.TheGPSbasedheadingisplottedaswell asthegyroscopebasedheading,themagnetometerbasedheadingandtheheadingestimatedbythe attitude filter. The upper part shows the drift of the gyrobased heading (dashed red plot) with respect to the magnetometerbased one (green plot). The GPS derived heading assesses the long termreliabilityandaccuracyofthemagneticheading.ThelowerpartofFigure6.10isacloseupof the upper part that illustrates the magnetic interference mitigation. As expected, interferences occurred during the test conducted in the city centre.Thiscloseupshows a 15second magnetic perturbation disturbing the heading restitution during which the attitude filter succeeded in mitigatingtheperturbation.

Page149 GPS/IMUHybridisationforPersonalNavigation

Figure 6.10: Different heading estimates as computed during the urban trial. AsacomparisonofbothGPSandINSintrinsicperformance,thetrajectoryascomputedby thestandaloneINSisplottedinFigure6.11.TheOEM4basedtrajectoryisalsoplottedinblue.The INSinitialpositionandvelocityisgivenbyGPSmeasurements,whereastheheadingisinitialised usingthemagnetometersandthedeclinationcorrectionatthetestlocation,asexplainedinchapter 4.TheheadinginitialisationisthencheckedbythefirstGPSvelocitymeasurements.Asrecalled above,themagnetometershavebeencalibratedbeforethetrial,sothatthemagneticheadingisnot affectedbyinterferenceduetothevehicleitself.

Figure 6.11: Standalone Inertial Navigation System position solutions using different heading sources.

Page150 GPS/IMUHybridisationforPersonalNavigation

Twotrajectorieshavebeencomputedusingdifferentheadingsources.Thefirstoneisbased ontheprocessingofthegyroscopesmeasurementsandisillustratedinFigure6.11asthegreenplot. Thesecondoneusestheattitudemeasurementsprovidedbytheattitudefilterdetailedinchapter4. Thecorrespondingtrajectoryisplottedinred.Asitcanbeseeninthefigure,bothtrajectoriesare rapidly drifting as compared to the GPS reference path plotted in blue. This illustrates the non negligibleimpactoftheaccelerometerbiasthatvariesduringthetrialandsignificantlydegradesthe accuracyofthecomputedvelocityandposition(itisindeedneverestimated).Thetrajectoryusing thefilteredheadingprovideshoweverthebestpositionsolution. Inordertotesttheabilityoftheintegratednavigationsystemtoprovideareliableposition solutionusingveryfewGPSmeasurementsandalsotheaccuracyoftheheadingprovidedbythe sensorsassembly,afirsthybridisationisperformedusingonlytwoDopplermeasurements.Results areillustratedbelowinFigure6.12.

Discontinuities Figure 6.12: INS/GPS position solution using filtered and non-filtered heading. Two Doppler measurements used for hybridisation when available. Asitwasexpected,thetrajectoryusingthesetwoDopplermeasurementsandthegyroscope based heading is drifting. The gyroscopes drift affects theheading but also the estimation ofthe alongtrackvelocity,asshownbythegreencircles.Opposite,thepositionsolutionusingthefiltered heading and the two Doppler measurements is far more accurate. Thetrajectory shape is clearly recognisableandfollowsthetruepathquitewell,withahorizontalerrorboundedby70metresafter 15minutesofnavigation.EveniftwoDopplermeasurementsareusedinthattestcase,theerrorof the trajectory computed by the integrated navigation system was clearly predictable since no external position measurement is used to correct the position errors and no estimation of the headingerrorisdoneusingGPSmeasurements.However,insuchconditions,theperformanceof

Page151 GPS/IMUHybridisationforPersonalNavigation the system seems very good. The attitudeas provided by the attitudefilter is quite accurate. No precise quantification of the attitudefiltercontribution ontotheoverall horizontal error has been done,butregardingthetrajectoryofFigure6.12,itcanreasonablyaccountforalmostalltheerror (i.e.70metresafter15minutesofnavigationwithonlytwoDopplermeasurements),whichisan interesting result using such lowcost sensors. Because the INSprovides a position solution in a DeadReckoningmodebyintegratingthedebiasedvelocity,erroraccumulatessothatthepositionis gettingunreliableandconsequentlypreventfromanylongtermpositioning.Itcanalsobenoticed that the trajectory as computed by the integrated navigation system and the two Doppler measurements is robust to multipath opposite to the GPSbased position solution.Thisismainly duetothefactthatDopplermeasurementsarelesssensitivetomultipaththanpseudoranges. ThisfirsthybridisationschemeshowsthattheuseofonlyDopplermeasurementsdoesnot allow the computation of a reliable position with an error bounded in time. As a consequence, pseudorangemeasurementsseemnecessaryintheintegrationprocess.Theycanbeusedtocorrect thepositiondriftassoonastheyareavailable,oraccordingtotheperformanceofthenavigation system as presented above, only when they are detected no to be affected by large multipath. Another hybridisation including to the former Doppler measurements the two corresponding pseudorange measurements is therefore processed. The resulting trajectory provided by the integrated navigation system using the attitude filter outputs as well as two Doppler and two pseudorangesmeasurmentsisplottedinFigure6.13inred.Asacomparison,theGPStrajectoryis alsoplottedinblue.

OEM4Trajectory INS Trajectory corrected with 2Doppler&2Pseudoranges

Residu al« gaps »

Figure 6.13: Integrated Navigation System trajectory. 2 Doppler and 2 pseudorange measurements used when available. Theoverallaccuracyistremendouslyincreasedwiththeuseofpseudorangemeasurements. Thehorizontalerrorstaysindeedwithin40metresfromthereferencetrajectoryduringallthetrial. Evenifpseudorangesareused,thetrajectorycomputedwiththehybridisedsystemisagainresistant to multipath affecting the GPS measurements because of the high confidence in the Doppler measurementmodelandthepositioncomputationstrategyimplementedintheKalmanfilter.

Page152 GPS/IMUHybridisationforPersonalNavigation

The along track velocity profile of the vehicle computed using two Doppler and two pseudorange measurements is plotted in Figure 6.14 in blue. The velocity of the integrated navigationsystemiswelldebiasedcomparedtotheoneprovidedbytheintegrationoftheforward directioncorrectedfortheinclineoftheroad.However,thealongtrackvelocityprofileexperiences suddenvariationsthataffectthepositionsolution.Someholesappearinthecomputedpath,which sometimesmaybeverylarge,asshownwiththeblackcirclesinFigure6.13.Twovelocityprofile closeups are plotted in Figure 6.15 that both clearly show the discontinuities that sometimes appear.Inthesetwoexamples,discontinuitiesclearlyoccuraroundsamples6750and39600.They canbeduetotwoevents.

Suddenchanges

Figure 6.14: Biased (red) and unbiased (blue) along Figure 6.15: Two particular velocity profile track velocity profile. discontinuities. The first one occurs when the hybridised solution relies exclusively on IMU data, thus accumulateserrors,and theniscorrectedbyGPSdata.Thesecondoneoccurswhenlowquality GPSdataareusedtocorrectthevelocityandthepositionprovidedbytheIMU.Sinceinourcase, discontinuities appear when GPS measurements are combined with IMU data, the hybridisation methodologycanbeconsideredresponsiblefortheseissues. Figure 6.16 presents three different plots that explain the reasons of this bad velocity estimationwhenGPSandIMUdataaretightlyintegrated.ThemiddleplotgivesthePRNsusedin theKalmanfilter,therighthandsideplotthevelocitycomputedusingthesedifferentPRNsandthe left hand side plot the satellite geometry and user heading at time of data combination. At the beginning,PRN14and6areusedforhybridisation.BasedonthesetwoPRNs,theuser’svelocity alongthetrackfollowedbythevehiclehasbeencomputedandplotted.Itcorrespondstothegreen dotsintherighthandsideplot.Thisvelocityhasgotalargevariance.ThepositionofPRN14when itisusedintheKalmanfilterisplottedontheleftasthebluedots,whereasthepositionofPRN6is plottedasthereddots.Theheadingoftheuserisalsoreferencedastheblackdots. Giventhissatellitesconfigurationwithrespecttotheuser’sheading,theestimationofthe user’sDopplercontributionfromthetwoDopplermeasurementsisobviouslyverydifficult,even notpossible.ThisexplainswhytheGPSbaseduser’svelocityisverynoisy.TheKalmanfilteruses thenPRNs14and5toestimatethealongtrackvelocity.Theconfigurationofthesatellite’sposition withrespecttotheuser’sheadingisfarbetter,asitcanbeseenintheleftplot.Thisalsoexplains whytheuser’svelocityiscomputedwithmuchaccuracy,asshownwiththeredcurveintheupper rightplot.Itcanthusbestatedthatthesatellitegeometryisoftremendousimportancetoestimate thevelocityofthevehicle,astheDOPisforGPSpositioningaccuracy.

Page153 GPS/IMUHybridisationforPersonalNavigation

Figure 6.16: Satellite geometry issue. The bad satellite geometery impacts the efficiency of the proposed tight coupling architecture.Toavoidthisdiscontinuityissue,aprotectioncriterionbasedonthegeometryofthe satellites used for hybridisation is implemented according to the previous statements. When bad geometryconfigurationsaredetected,GPSmeasurementsarenomoretakenintoaccountandthe integratednavigationsystemreliesexclusivelyontheprocessingofIMUdata.Insuchacase,the accuracyofthenavigationsystemreliesonthequalityoftheinertialsensorsthatareused.

GPSmeasurementsre used

Figure 6.17: Along track velocity profile corrected by the Inertial Navigation System when bad satellites configurations are detected. The results of the along track velocity estimation taking into account the aforementioned protectionprincipleisplottedaboveinFigure6.17usingonlytwoDopplermeasurementstoavoid thepseudorangestointerfereinthevelocityandthepositioncomputationstages.Theimprovement

Page154 GPS/IMUHybridisationforPersonalNavigation isnotobvious.TheupperpartofFigure6.17showsonecasewherethecorrectionimprovesthe accuracy.Opposite,thelowerpartshowsanexamplewherethevelocityestimatedbytheInertial NavigationSystemislessaccuratethanthevelocitycomputedusingtheintegrationKalmanfilter. Suddenvariationsarestillobservable,butinthatcase,theyareduetothereuseofnewgoodGPS measurements.TheperformanceoftheINSwithoutGPSupdatesdirectlydependsonthequalityof theINSsensorsthatareused. The impact of the use of pure INS velocity estimates during the detected bad satellite configurationsisshowninFigure6.18asthegreenplot(forcomparison,theuncorrectedtrajectory is plotted in red). Even if the horizontal accuracy stays within 100 metres from the reference trajectory,thefinalerrorisworstthanwithoutIMUbasedcorrections.

Figure 6.18: Corrected and non-corrected Integrated Navigation System trajectories. 2 Doppler measurements used for hybridisation when available. In the previous test, position estimations with and without heightaiding were performed. However,thehorizontalpositionsolutiondoesnotvaryverymuchfromeachintegrationscheme that is why only the non heightaided solution is plotted in Figure 6.13. Figure 6.19 shows the vertical performance of the hybridised system using only two Doppler and two pseudorange measurements.Theupperpartofthefiguregivestheverticalaccuracy,withrespecttothepressure sensormeasurements. Asitcanbeseeninthefigure,theverticalerrorreachesabout30metreswithoutheight aiding,whereasitstaysbelow5metreswhenthealtitudefromthepressuresensorisusedinthe Kalmanfilter.Thepathfollowedduringthetestwashoweverquiteflatasshowninthelowerpart of the figure. Thus, the capability of the filter to bound the vertical error when heightaiding is performedhastobeconsideredwithcare.Theverticalaccuracyshouldbeassessedwithahillier path.

Page155 GPS/IMUHybridisationforPersonalNavigation

Figure 6.19: Vertical performance of the Integrated Navigation System (upper plot). Vertical profile of the exercised trial (lower plot). 6.2.4 Conclusion According to the trials detailed above, the proposed hybridisation architecture allows the estimation of the errors affecting the along track velocity provided by a lowcost MEMSbased IMUusingonlytwoDopplerandtwopseudorangemeasurements.Theuseofonly two Doppler measurementsshowsthattheaccuracyoftheheadingprovidedbytheIMUwasreliableenoughto provide a good short term position solution (<5 min). Long term (>15min) positioning is rather difficultsincethetrajectoryisslowlyaccumulatingerrorsduetotheresidualattitudeerrorsofthe filterdetailedinchapter4.Theseerrorspermanentlyaffectthecomputedtrajectorybecauseofthe deadreckoningalgorithmmemoryeffect,sothattheintegratedsystemmaybeunreliableifused withoutanypseudorangemeasurementsduringalongnavigationperiod.However,andaccording totheconductedtests,ithasbeenshownthatahorizontalerrorwithin70metresisachievablefor 15minofnavigationwithonlytwoDopplermeasurements. The adjunction of two pseudorange measurements tremendously improves the position accuracy. A horizontal error within 40 metersofthereference trajectory can indeed be achieved using only two Doppler and two pseudorange measurements. No more shift is noticeable in the integratednavigationsystempositionsolution.However,itincreasesthemultipathsensitivityofthe system so that their use shall be done with care. The tight coupling architecture allows accurate short term navigation, so that it is possible to choose good epochs where pseudoranges shall be integratedinthefilterforpositioncorrection. Height aiding improves the vertical accuracy. In the test conducted, the vertical error is reduced from 30 metres to 5 metres with the adjunction of pressure sensor measurements in the Kalmanfilter.Thetrialexercisedhereishoweverquiteflat,sohillytestsshouldbeperformedto assessthisverticalimprovement.

Page156 GPS/IMUHybridisationforPersonalNavigation

However,theperformanceoftheproposedtightcouplingarchitectureiscloselydependent on the geometry of the satellites used for hybridisation, especially if only two measurements are used. Bad satellites configurations with respect to the user’s heading yield erroneous velocity updates. A protection criterion has thus been implemented to prevent these configurations from biasingboththevelocityandthepositionofthevehicle.Duringtheseperiods,theperformanceof theintegratednavigationsystemreliesexclusivelyonthequalityofthesensorsusedintheIMU, whichcanleadtorapiddriftofthepositionsolutioninourcase. Asthehybridisationwastestedwithageodeticgradereceiver,themeasurementsusedmay be of good quality. A future work would be to assess the performance of such hybridisation architectureinthecasewhereonlytwoHSGPSorAGPSmeasurementsareavailable. Theproposedtightcouplingarchitecturegivesgoodresultsaccordingtothetrialexercised. Althoughtheproposedintegrationofallthesensorsseemslessoptimisedthanthestandardtight integration (because of the residual biases that affect the attitude measurements), it nevertheless shows what performance can be achieved with lowcost sensors. Such a performance should be comparedtowhatwouldhavebeenobtainedwithastandardtightintegrationschemeaidedwith driftfree attitude measurements and velocity constraints, and involving the standard INS mechanisation.Thisalsoremainstobedoneinafuturework. 6.3 Pedestrian Navigation Case 6.3.1 Introduction Anotherapplicationthatisexpectedtotremendouslygrowisthelocationofapedestrian.As demonstratedinchaptertwo,eventhepowerfulHSGPSandAGPSreceiverscannotfulfilsucha requirementespeciallyindoorsandindeepurbancanyonwherenotenoughsatellitecanbetracked inordertocomputeapositionsolution.Insomecases,theyarelikelytocomputethepositionofthe user using only pure multipath replicas which as a consequence decreases the accuracy of the positioningsystem. Asdiscussedinchapter3,thePedestrianNavigationSystemmechanisationisverylikelyto tremendouslyimprovetheaccuracyofthesensorbasednavigationsystemeveniflowcostsensors areused.Whenproperinitialisationandcalibrationisdone,theaccelerometerbiasimpactontothe performanceofthenavigationsystemcanbewellreduced.Theuseofanattitudefiltercapableof estimating the gyroscopes bias may also tremendously improve the system accuracy and also availability. In order to assess the performance of the PNS in actual conditions, the first following subsectiondiscussestheuseofthedifferentinertialnavigationalgorithmsasdetailedinchapter3. Thefocusismorespecificallyputontheperformanceofthesystemsinactualconditionsoncethey properlyhavebeeninitialisedandcalibrated.Thesecondpartratherdealswiththehybridisationof GPS modules with the chosen pedestrian navigation system. The selection of the sensor fusion algorithmisdiscussedanddetailed.Itsperformanceisassessedtroughrealtestinactualurbanand indoor conditions using a real time demonstrator developed for that purpose. The issue of GPS measurementsqualityisalsoaddressed.

Page157 GPS/IMUHybridisationforPersonalNavigation

6.3.2 PNS Mechanisation Performance AsafirstassessmentofthePedestrianNavigationSystem(PNS)performance,thissection analyses the position accuracy that can be achieved with such a particular mechanisation. The classicalInertialNavigationSystemalgorithmisalsotestedtoshowtheimprovementbroughtby the PNS. Whatever the navigation algorithm, the attitude filter that fuses accelerometers, gyroscopesandmagnetometersinformation(detailedinchapter4)isusedtoprovidetheattitude estimates. As discussed in chapter 3, there are mainly two use cases in which the azimuth of displacementhastobeestimated.Itdependsonthemotionofthesensorsassemblyrelativetothe user,whetheritfollowsthemovementofthepedestrianornot.Inthefirstcasecalledconstrained navigation,thesensorsunitisfixedanywhereontotheuser,orsimplyputinapocketoftheuser. The computed heading is thus the displacement azimuth that is biased by an additive constant becauseofthenonalignmentofthesensorsunitheadingaxisandthetruedirectionofwalk.Inthe secondcasecalledunconstrainednavigation,thetrueazimuthofdisplacementisnottheheading providedbythesensorsassemblysinceithasitsownmovementrelativetothepedestrian. The two navigation modes are tested in the following. As discussed in chapter 3, the unconstrained navigation issue lies in the computation of the true displacement direction. The methodusedtogetsuchanestimatedheadingisbasedontheprojectionofthepedestrianvelocity ofdisplacementalongthenorthandeastaxesofthenavigationframe.Theattitudefilterdetailedin chapter4isusedforthatpurpose. In the tests presented hereafter, the pedestrian velocity model is calibrated using GPS measurements.Astepcountingalgorithmisdevelopedtodetectthemotionofthepedestrianand the distance travelled between two consecutive steps is estimated by integrating the estimated velocity.Thetruedisplacementdirectioniscomputedbasedonattitudefilteroutputs.GPSheading measurementsareusedatthebeginningofthetrialstoestimatetheconstantbiasthataffectsthe headingasprovidedbytheattitudefilter. Experiments are conducted in three phases. First, the static behaviour of the algorithms detailedinchapter3andaugmentedwiththedevelopedattitudefilteristested.Theperformanceof the constrained navigation algorithm is analysed in second and the unconstrained navigation in third. In all the trials exercised, GPS data are processed differentially to get accurate position solutionsthatwillbeusedasreferencetrajectories. 6.3.2.1 Static Performance Inthistest,thesensorsassemblyislayingatrestinapocketoftheuserfor60secondswith arandomattitude.Threealgorithmsusedintheframeofpedestriannavigationarecompared:the Classic Inertial Navigation System (CINS) which uses attitude estimates provided by the processing of gyroscope measurements, the Enhanced Inertial Navigation System (EINS) which usesattitudeestimatesprovidedbytheattitudefilterandthePedestrianNavigationSystem(PNS) basedonstepcountingusingtheattitudefilter.ResultsareplottedinFigure6.20.Asitcouldbe expected,ThePNSclearlyoutperformsthetwootheralgorithms.Theerrorisindeed0metreatthe end of the trial since no motionhas been detected. Although it still remains some residual error mainly due to the integration of the accelerometer biases, the Enhanced INS gives good results

Page158 GPS/IMUHybridisationforPersonalNavigation comparedtotheClassicINS.After60secondsofnavigation,theerrorisindeedreducedby95%by theuseofnondriftingattitudeestimates(570metresfortheCINSalgorithmversus25metresfor the EINS algorithm). The improvement provided by the attitude filter is assessed and very effective.

Figure 6.20: Static errors of three different inertial navigation algorithms using low-cost sensors. 6.3.2.2 Constrained Navigation Tocomparethebehaviourofthethreeinertialnavigationalgorithmsindynamicconditions, ashorttrialisexercisedwhichlastsslightlymorethan1minute.Onlytheconstrainedpedestrian navigationisaddressedthroughthistest,meaningthatthesensorsassemblyisputonapocketof theuserwitharandomattitudeandisnomoremoveduntiltheendofthetest.Thevelocitymodel is calibrated using the GPS measurements (postprocessing calibration). In all cases, the initial headingoffsetisfoundandremovedbyprocessingGPSheadingmeasurements. Figure6.21showsthedifferenttrajectoriesascomputedbythethreenavigationalgorithms. ThePNSsolution,whichisplottedindashedred,isthemostaccurate.ThefinalhorizontalRMS errorisabout5metres.Nomajordrifteitherinattitudeorinpositionisnoticeableonthisshort duration.Opposite,thesolutionsbasedonthetraditionalinertialmechanisationperformworst.The greendottedplotillustratestheEINSpositionsolution.Inthatcase,thefinalhorizontalerroris about90metres.Atthebeginningofthetest,thepedestrianwasstandingfor3seconds.Nodriftis remarkableonthegreentrajectory.Thisishowevernotthecaseattheendoftherunidentifiedas the black asterisk, which clearly illustrates the position drift while the pedestrian is stopped for another3seconds.Theattitudeofthepedestrianmatchesquitewellthereferenceattitudeplottedin blueandobtainedwithDGPSdata.Itcanthusbestatedthattheattitudeprovidedbytheattitude filterisreliable.Theattitudefilterisefficientinremovinggyrodrifts,butitexperiencesdifficulties in removing the acceleration biases affecting the measurements, leading to a drifting position solution. Nevertheless, the EINS clearly outperforms the CINS, whose position solution is represented by the black dashdotted plot. The improvement is of about 90% since the correspondingCINSfinalhorizontalerroris950metres(Thewholetrajectoryisnotplottedhere

Page159 GPS/IMUHybridisationforPersonalNavigation forvisualconvenience).

Figure 6.21: Position solutions as provided by three different navigation systems. Short dynamic test. ToassessthecomplementarynatureoftheattitudefilterandthePNS,anotherdynamictest isconductedoveralongerperiod.Inthistrial,thepedestrianwalksabout1kmin13minuteswith thesensors assembly beingin apocketwith arandomattitude.Thesensorsassemblyisstillnot movedcomparedtotheuser’sbodyduringthetrial.Theresultingtrajectoryusing100%ofGPS dataforvelocitymodelcalibrationisplottedinFigure6.22.

EulerSingularityIssue

Finish

Start

Figure 6.22: PNS position solutions using 100% of GPS data for velocity model calibration. Long dynamic test.

Page160 GPS/IMUHybridisationforPersonalNavigation

Asacomparison,thetrajectorycomputedwiththePNSmechanisationusingthegyroscope basedheadingisplottedingreen.Thepositionsolutionisobviouslydrifting,whichdemonstrates the very interesting improvement brought by the magnetometers in terms of position solution accuracyovertime.ThePNSpositionsolutionusingthefilteredheadingisaccuratetowithin20 metersoverthewholetestperiod,withafinalhorizontalRMSerrorof16meters.Opposite,the solutionusingthegyroscopebasedheadingiscontinuouslydriftingasshownbelowinFigure6.23. Theerrorreachesupto110metersafter13minutesofnavigation.

Figure 6.23: PNS horizontal RMS error. Long dynamic test. Based on the same trial, the trajectory using only the first 10% of GPS data for velocity modelcalibrationiscomputedandillustratedinFigure6.24

Figure 6.24: PNS position solutions using the first 10% of GPS data for velocity model calibration. Long dynamic test.

Page161 GPS/IMUHybridisationforPersonalNavigation

These10%ofdataarecollectedbetweenthebeginningofthewalkandthegreenasterisk,as showninFigure6.24,whichrepresentsapproximately1minute.TheaccuracyofthePNSposition solution stays within 25 metres from the reference trajectory during the whole path. This correspondsto12minutesofnavigationwithoutanyGPSdata.ThefinalhorizontalRMSerroris 18metres. Evenwithalittlepartofdataforcalibration,thevelocitymodelprovidesgoodestimatesof thecurvilineartravelleddistance.AccuracystayswithinacceptablelimitsthataresuitableforLBS applicationsduringGPSoutages.Moreover,trajectoriesreconstructedusingtheheadingprovided bytheattitudefilterandillustratedinFigure6.21andinFigure6.22arenotaffectedbyEuler’s angles singularities, opposite to the gyroscopebased solution of Figure 6.22. According to the attitude computation algorithm, the position solution can then be provided regardless of the orientationofthesensorsassembly. 6.3.2.3 Unconstrained Navigation Thepositionsolutionaccuracyisverylikelytobeaffectedbythemovementofthesensors assemblywithrespecttotheuser’sbody,especiallyifthelatteriscontainedinahandhelddevice suchasacellphoneoraPDA.ToassessthecapabilityofthePNStoprovideareliableposition solutionwhilethesensorsunitismovedduringthewalk,anotherdynamictestisperformed. In this test, a pedestrian follows an athletic track of 250 metres for 4 minutes. At the beginningofthetest,thesensorsassemblyisinthepocketofthepedestrian,witharandomattitude. While walking, he pulls randomly the sensors unit out of his pocket and moves it as if he was lookingathiscellphone.Thenhereplacesitinsidehispocket.Themovementsoftheunitwith respect to the pedestrian are not stressed but rather reflect typical low motions cell phones may experience.TheresultingtrajectoriesaregiveninFigure6.25.

Figure 6.25: Unconstrained navigation solutions.

Page162 GPS/IMUHybridisationforPersonalNavigation

The sensors unit is moved 13 times during the trial as indicated by the black squares (excepting the first one indicating the start position). The PNS trajectory as computed above is representedbythegreenplot.Thetrajectoryisclearlynotrelevantofthetruepath.Opposite,the PNSpositionsolutionwhoseheadingisestimatedbyprocessingbothnorthandeastprojectionsof thepedestrianvelocityasdetailedinchapter3isfarmoreaccurate.Theperformanceisdegradedas comparedtotheconstrainednavigation,butthecorrectedtrajectoryneverthelessmatchesquitewell thetruetrajectory. Bothtravelleddistanceanddisplacementdirectionarecoherentwiththeactualones.There isnonoticeabledriftinthecurvilineartravelleddistance.Thevelocitymodeloncecalibratedisthus robusttosuchsensorsassemblymovementsduringthewalk.Forvisualconvenience,thetrajectory providedbythemodifiedEINS,(i.e.theEINSalgorithmmodifiedtoestimatebothNorthandEast velocities)isnotplottedhereforcomparison.Theaccelerationbiasesyieldadriftingpositionthat goesquicklyoutofthefigure. Figure6.26illustratestheheadingsestimated withthetwodifferentPNSalgorithms.The GPSsolutionplottedinblueisshownhereasareference.Theprocessingofbothnorthandeast velocitiestendstoprovetheefficiencyofthedisplacementdirectiondetectionalgorithmdiscussed above and detailed in chapter 3.However, it stillissensitiveto the dynamic experienced by the sensorsassemblywhichshallnotbetoohighascomparedtothoseofthepedestrian.

Figure 6.26: Displacement direction detection result. 6.3.2.4 Conclusion The aim of this subsection was to analyse the performance of two different inertial navigation algorithms used as an alternative positioning system during GPS outages. Both were testedwithlowcostsensorsforthesocalledconstrainednavigation.Theclassicinertialnavigation

Page163 GPS/IMUHybridisationforPersonalNavigation algorithmhasbeenfoundtogivetheworstperformance,whetherthedriftfreeattitudefilterisused ornot. ItsintegrationwiththeCINShasindeedledtotheimplementationoftheEINS,whose performance is improved by more than 90% compared to what can be achieved with the CINS using the same lowcost sensors. However, even if the navigation solution drift is well reduced becauseoftheattitudefilter,thisisnotenoughtobeusedasanalternativepositioningsystemfor pedestrians.Indeed,accelerometerbiasesarebadlyestimatedandconsequentlyareresponsiblefor theresidualerrors.Thepositionisdriftingsothatthisalgorithmcanonlybeusedforshortterm positioningforbothconstrainedandunconstrainednavigation. To cope with this issue, the PNS mechanisation has been implemented and tested on the sametrials.Coupledwiththeattitudefilterandproperlycalibratedandinitialised,thisalgorithm providesreliablepositionsolutionsovertime,withahorizontalRMSerrorwithin25metresfor12 minutesofconstrainednavigationwithoutGPSassistanceforvelocitymodelcalibration. The unconstrained navigation mode was also studied and tested with the PNS algorithm modifiedtoenabletheestimationofthetruepedestriandisplacementdirection.Inthismode,the sensors assembly has got its own motion relative to those of the pedestrian. Assuming a low dynamicwithrespecttopedestrianmotion,itwasshownthatthetruedisplacementdirectioncould be estimated with an acceptable accuracy (25 metres for 4 minutes of navigation). Even if the horizontalerrorishigherthanintheconstrainednavigationmode,themodifiedalgorithmmakes thesystemrobusttolowmotionofthesensorsassembly.However,itobviouslydoesnotreflectthe all day life behaviour of a handheld positioning device, and therefore does not allow the total generalisationofthepedestrianmechanisationconcept. Accordingtothesefirstconclusions,onlythePNSmechanisationwithintheframeofthe constrainednavigation willbeconsideredinthefollowing.Inthiscontext,arealtimeintegrated systemisdevelopedtoassesstheperformancethatcanbeachievedwiththeuseoflowcostsensors tosupplyGPSduringoutagesandimprovetheaccuracyofthepositioncomputedbythenavigation system.Thisrealtimesoftwareisbasedontheattitudefilterdetailedinchapter4andthepedestrian mechanisationdiscussedinchapter3andrecalledabove.Detailsandperformanceassessmentare giveninthenextsubsection. 6.3.3 Integrated Navigation System 6.3.3.1 Introduction The hybridisation of the GPSmodules with other sensorsis a good mean to improve the availability and the accuracy of the navigation system. As discussed in the beginning of this chapter,severalintegrationschemesarepossible(looseandtightcoupling).Consideringtheuseof lowcostinertialsensorsofMEMStype,theapproachcanbethesameasinthelandvehiclecase. The tight integration would be very well suited in this typical navigation use case since the pedestrianisverylikelytogoinsidebuildingswhereonlyfewGPSmeasurementsareavailable. However, ENAC lab did not own any HSGPS or AGPS receiver capable of providing raw measurements(i.e.pseudorangesandpseudorangerates)atthetimethestudywasconducted,which wouldhaveallowedatightcouplingimplementation.SinceHSGPSandAGPSmodulescapableof providing processed measurements (i.e. position and velocity) were nevertheless available, the following will address the loose coupling ofsuchGPSbasedmodules with the lowcostsensors assemblydescribedinchapter3.ArealtimeC/C++implementationisdescribedhereafterthatalso

Page164 GPS/IMUHybridisationforPersonalNavigation includesasanimportantfeaturetheattitudefilterdescribedinchapter4.Thisrealtimesoftwareis thenusedtoassesstheperformanceofthesystemintypicalpedestrianenvironments. Oneimportantissuethatmustbehandledwhendealingwithhybridisationinurbanareais the detection of outliers and bad GPS measurements since they are used to correct the inertial navigationsystemerrors.Suchanissueisallthemoreimportantsincerawmeasurementsarenot available in our hybridisation case. No particular RAIM or integrity monitoring algorithm have beenused. GPSprocessedmeasurementsareratherusedinthesoftwarewhensignalsarestrong enoughtoreasonablyassumethatnomajordegradationinthepositionaccuracymayhappen.This willcertainlydecreasetheamountofGPSdatausedforcorrectionpurposes,butasshownabove, the PNS mechanisation provides good performance up to about 15 minutes without any update, assumingaproperinitialisationofthenavigationalgorithm. The PNS mechanisation is used in the following as the primary navigation system that provides the position ofthe user. The GPS modules are used to correct the positionand attitude errorswhenthemeasurementsaredeclaredreliable.AnExtendedKalmanFilterisusedtofuseboth navigation systems. The PNS mechanisation is based on the estimation of the velocity of the pedestrian,whosemodelhasbeendetailedinchapter3andisrecalledhereafterinequation(6.26). v pedestrian (t) = A(t)⋅ Mean + B(t)⋅ Freq + C(t)⋅ Std (6.26) Inthedevelopedsoftware,nostepdetectionalgorithmisimplemented.Thereasonforthatis firsttogetamorerobusttravelleddistanceestimationprocedurewithrespecttomissandfaultstep detectionsthatmayoccur,andsecondtoeasetheintegrationofdataintheEKF.Intheproposed implementation,theparametersMEAN,FREQandSTDarecomputingoveratimewindowof2 secondseverysamplingperiod.Thevarianceoftheaccelerationmagnitudeischeckedtodeclare whethertheuseriswalkingornotaccordingtoapredeterminedthreshold.Thismethodologyalso hastheadvantageofrenderingthesynchronisationoftheGPSmoduleswiththesensorseasier. The following describes in details the Kalman filter designed to fuse the two navigation systemsaccordingtoaloosecouplingarchitecture. 6.3.3.2 Coupling Methodology 6.3.3.2.1 Kinematic Model and State Vector As a result of the motivations detailed above, the integration of the different navigation systems is done through a Kalman filter according to a loose coupling architecture. The filter is naturallydesignedtoestimate8errorstates,whichbasicallyarethe2Dpositionerror,theerrors affectingtheheadingprovidedbythePNSandtheerrormadeontheregressioncoefficientsusedto modelthepedestrianvelocity.Thecorrespondingstatevectorisgiveninequation(6.27).  •  δX = δN δE bψ bψ ,ir bψ δA δB δC (6.27)  ,ir ,al  where: – δXisthestatevector. – δN,δEarerespectivelytheerrormadeonthenorthandeastcomponentoftheuser’sposition. – bψ,ir istheinrunbiasaffectingthePNSheading.

Page165 GPS/IMUHybridisationforPersonalNavigation

– bψ,al istheinitialoffsetbetweentheGPSheadingandthePNSheading. – δAistheregressioncoefficienterrorfortheMEANparameter. – δBistheregressioncoefficienterrorfortheFREQparameter. – δCistheregressioncoefficienterrorfortheSTDparameter. ThegeneralmodeloftheerrorsincludedintheKalmanfilterisgiveninequation(6.28).It is defined as the difference between the value provided by the PNS and the GPS. The “x” in equation(6.28)isa generalvariablethatcould standforthenorth,east,velocityandheadingor regressioncoefficientserror. δx(t) = x PNS (t) − xGPS (t) (6.28) The stochastic part of the state transition matrix is composed of the biases affecting the heading of the PNS and the error made on the regression parameters used to model the velocity magnitudeofthepedestrian.TheheadingusedinthePNSmechanisationcanbebasedeitheron gyroscope measurements or on the attitude filter. As the pedestrian is very likely to go inside buildingswheremagneticinterferencesmayoccur,theerroraffectingthePNSheadingcannotbea prioricharacterised. The worst case that may degrade the performance of the PNS is a long term magnetic interference that would degrade the efficieny of the heading drift correction by processing magnetometermeasurements.However,itisdifficulttoestimatetheprobabilityofoccurrenceof suchausecase.Therefore,inordertotakeintoaccountthatworstcaseinthedesignoftheKalman filter, the error affecting the PNS heading is assumed to follow an integrated random walk as described in equation (6.29), whose driving noise is a function of the magnetic interference magnitude. •• ψ = (6.29) b ,ir wb,ir (t) ThesecondpartofthebiasaffectingthePNSheadingistheoffsetthatisintroducedbythe positionofthesensorsassemblyontotheuser’sbody.Itindeedintroducesanoffsetbetweenthe trueazimuthofdisplacementgivenbytheGPSandtheheadingprovidedbytheassembly.Thisbias ismodelledasaconstantrandomprocess,asdescribedbyequation(6.30). • bψ ,al = 0 (6.30) OnceGPSmeasurementsareavailable,itispossibletocomputetheregressioncoefficient A,BandCasgiveninequation(6.26)inordertogetamodelofthepedestrianvelocity.Inthis EKF,theregressioncoefficientserrorsaremodelledasrandomwalkprocesses.Thecorresponding equations are given below from equation (6.31) to (6.33). The stochastic models are chosen empiricallywithlowdrivingnoisevariances(2ּ10 3)accordingtowhathasbeenobservedduring severaltrials. • δ = (6.31) A(t) wδA (t) • δ = (6.32) B(t) wδB (t) • δ = (6.33) C(t) wδC (t)

Page166 GPS/IMUHybridisationforPersonalNavigation

AccordingtothePedestrianNavigationSystemmechanisation,thepositionalongthenorth axisistheintegrationresultofthepedestrianvelocityprojection.BothPNSandGPSnorthposition estimatesaregivenbelow.Theinitialpositionisassumedknown.Thesame t N PNS (t) = N PNS )0( + v PNS (u)⋅cos(ψ PNS (u))⋅ du ∫0 t N GPS (t) = N GPS )0( + vGPS (u)⋅cos(ψ GPS (u))⋅ du ∫0 TheestimationofthePNSerrorsisonlypossiblewhenGPSmeasurementsareconsidered reliable.Thenorthpositionerrorasdefinedinequation(6.28)isobviouslynotlinearwithrespectto thepedestrianheadingandvelocityerrors.Itshouldbelinearwithrespecttotheerrorsincludedin thestatevectorinordertoeasethedesignoftheKalmanfilter.Assumingψ PNS thelinearisation pointandneglectingasafirstapproximationthesecondorderderivationterms,thepositionerror alongthenorthaxisδNasdefinedinequation(6.28)canbewrittenasfollows: t δN(t) = δN )0( + [δv(u)⋅cos(ψ PNS (u))− v PNS (u)⋅sin(ψ PNS (u))⋅δψ (u)]⋅ du (6.34) ∫0 Itisthenstraightforwardtogetthetimederivativeofthenorthpositionerrorasexpressedin equation (6.34). It is given below in equation (6.35), which stands for the first state transition functionneededtobuildthekinematicpart. • δN(t) = cos(ψ PNS (t))⋅δv(t) − v PNS (t) ⋅sin(ψ PNS (t))⋅δψ (t) (6.35) Followingthesamemethodology,thetimederivativeoftheeastpositionerrorisasgivenin equation(6.36). • δE(t) = sin(ψ PNS (t))⋅δv(t) + v PNS (t)⋅cos(ψ PNS (t))⋅δψ (t) (6.36) Itisstraightforwardto getthevelocity errormodelasafunctionofthestochasticerrors. Basedonthevelocitymodelusedintheframeofthissubsection,Equation(6.37)givesthetime derivativeofthevelocityerrorasafunctionoftheregressioncoefficienterrors. • • • • δv(t) = δA(t)⋅ Mean +δB(t)⋅ Freq +δC(t)⋅ Std (6.37) The kinematic model given below in equation (6.38) is then fully described by the combination of the equations (6.29), (6.30), (6.31), (6.32), (6.33), (6.35), (6.36) and (6.37). The continuous state transition matrix F is obvious to compute. Hereafter is recalled the continuous covariancematrixQ. • δX (t) = F(t)⋅δX (t) + G(t)⋅ w(t) (6.38) where: − G(t) = diag([0 0 0 1 0 1 1 1]T ) − w isthestatenoisevector,whosecovariancematrixis Q(t) = cov(w(t))

Page167 GPS/IMUHybridisationforPersonalNavigation

Asthehybridisationisdonewithnavigationsystemscapableofprovidingdigitaldata,the continuous definition of the kinematic part of the Kalman filter has no physical meaning but is ratherarigorousimplementationmethodology.Thediscreteformofthemodelgiveninequation (6.38)isdoneaccordingtotheproceduredetailedin[44]andrecalledinappendixC. 6.3.3.2.2 Measurements Equations In the integrated pedestrian navigation system developed within section 6.3, the GPS receiverisassumedtobethereferencesensor(i.e.thesensorthatprovidesnonbiasedinformation). ThenumberofexternalmeasurementsusedtocorrectthePNSerrorsateachhybridisationepoch (position, velocity, heading…) mainly depends on the quality of the GPS data as well as the dynamicoftheuser. As discussed in chapter 2, the different GPSbased positioning modules are designed to increase the availability of the position solution. As a consequence, even if weak signals are tracked,themodulesarelikelytocomputethelocationoftheuser.However,suchmeasurements (namelypositionandvelocity)areverynoisyandaffectedbymultipathinharshenvironments.In suchconditions,theinitialisationandthecalibrationofthepedestriannavigationalgorithmmaybe unreliable, which consequently will degrade the positioning performance of the integrated navigationsystemduringoutages.RAIMtechniquescouldhavebeenimplementedtodetectand excludebadGPSmeasurementsasdiscussedforexamplein[49]and[50],buttheintegrationlevel chosen here does not allow such measurement quality monitoring (we only have to deal with position and velocity measurements). Furthermore, such quality monitoring techniques do not providereliableresultsinharshenvironmentsduetothelimitedamountofdatathatarenotaffected by errors (multipath, crosscorrelation, noise…) as compared to the data set used for analysis purposes[50].Inthefollowing,theGPSmeasurementreliabilityassessmentisratherbasedona practical approach. The C/N 0 of the satellites that are used to compute the position solution is permanentlychecked,togetherwiththecurrentHorizontalDilutionofPrecision(HDOP)figureof merit.Accordingtoseveralteststhathavebeenconductedindifferenturbanenvironments,ithas beenfoundthatinmostofthecaseswhentheHDOPwasbelow2.5andtheC/N0ofthe4 th worst satelliteusedtocomputethepositionoftheuserwashigherthan25dBHz,themeasurementswere enough reliable to allow the calibration of the velocity model and correct the position error. Otherwise,theintegratednavigationsystem reliesexclusively onthedataprovidedbythe IMU. Suchadecisionalgorithmhasthenbeenimplementedintherealtimepositioningsoftware. ThechoiceoftheexternalmeasurementsisbasicallyillustratedinFigure6.27.Thefirstuse caseoccurswhenGPSprocesseddataaredeclaredreliable.Inthatcase,thevelocityasestimated by the receiver is checked to detect whether the user is moving or not. A crosscheck is also performed with the simple motion detection algorithm discussed in chapter 5 and based on the processingoftheaccelerationmagnitudeofthesensorsunit.Ifamotionisdetected,GPSpositions, velocitiesandheadingsareusedasmeasurements.Ifnot,theheadingisprovidedbytheattitude filterifnomagneticinterferenceisdetected,andnomeasurementsareusedforheadingcorrection ifinterferencesaredetected.WhenGPSmeasurementsaredeclarednotreliable,theonlyexternal measurement than can be used to correct the PNS errors is the heading provided by the attitude filter,assumingnomagneticinterference. Themeasurementserrorsarecomputedasdefinedbelowinequation(6.39).Theindex‘i’ standsforthepossiblemeasurementsthatcanbeusedforcorrectionpurposes,asdiscussedabove and illustrated in Figure 6.27. The observation matrix H k at epoch k is then straightforward to compute.Thegeneralobservationmodelisgiveninequation(6.40).

Page168 GPS/IMUHybridisationforPersonalNavigation

Figure 6.27: Possible measurement configurations. δ = GPS − PNS zi zi zi (6.39) δ = ⋅δ + zk H k X k vk (6.40) 6.3.3.2.3 Mechanisation and System Configuration Figure 6.28 summarises the hybrid system architecture, as implemented in the real time positioningsoftware.Aclosedlooploosecouplingmethodologyisused.TheGPSmodule(which canbeeitheraHSGPSoranAGPS)providesposition,velocityandheadingmeasurements.The attitudefilterprovidesanestimateofthepedestrianheading.Themeasurementdatasetischosen accordingtothedecisionlogicdescribedintheprevioussubsection.

Figure 6.28: Real time sensor fusion architecture (closed-loop loose coupling architecture).

Page169 GPS/IMUHybridisationforPersonalNavigation

Allthefiltersdescribedaboveaswellasthepedestrianmechanisationareimplementedin C/C++inordertheintegratednavigationsystemtobeabletoprovideapositionsolutioninreal time.Aspartofthefunctionalitiesofthesoftware,rawdatafromallsensorscanbestoredwhile operatingthenavigationsystemforpostprocessinganalysis. Thesynchronisationofthedataisdonepriortothehybridisation.Thesamplingrateofthe data provided by the Xsens MTi is 50Hz whereas the GPS modules are configured to output measurementsat1Hz.Botharenotsynchronisedtoeachotherusingaspecifichardwaresothatan offsetislikelytoaffectthetimestampingofthedata.ThelefthandpartofFigure6.29illustrates suchanissue.AsthesamplingrateoftheMTiis50Hz,thisshiftisatmostequalto10ms,whichis considerednegligiblewithnomajorimpactonthefurtherprocessingofthemeasurements.

Figure 6.29: Data synchronisation principle. Oncethedatahavebeencollected,theyaresynchronisedinorderforthetimewindowused tocomputethepedestrianvelocitymodelparameterstomatchtheGPSmeasurementsoccurrences, asillustratedintherighthandpartofFigure6.29(parametersarecomputedattheMTisampling rate).Asaresult,thesynchronisationmethodintroducesatimelagofonesecondintheposition solutioncomputedbytheintegratednavigationsystem,whichremainsacceptable. Figure 6.30 illustrates the integrated pedestrian navigation system developed within the scope of this study. The offtheshelf MTi is connected via the USB port to the processing unit (Dialogue FlyBook) and provides accelerations, rotation rates and magnetic field measurements. TheGPSmoduleweusedisBluetoothcapableandcanbeconfiguredeitherinahighsensitivityor assistedmode.DataareprovidedthroughNMEAframestotheprocessingunit.TheThalesAlenia Space assistance server processes the GPS signals to elaborate the assistance data that are transmittedtotheprocessingunitonthedemandoftheuserthroughawirelessconnection(inthe test conducted, the wireless connection is the GPRS, which is supported on the GSM cellular network). The data are then uploaded into the assisted GPS chipset for further processing. The processingunitcomputesanddisplaysthepositionoftheuseronamapthatcanbewhetheronits screenoradistantone. TheinterfaceoftherealtimepedestriannavigationsoftwareisshowninFigure6.31.Itis basicallycomposedofalocalmapwherearedisplayedtheHSGPSorAGPSpositionsolutionsas wellasthehybridpositionsolution.Theinterfacealsoallowstheusertoseeinrealtimethecurrent navigationmode(i.e.GPS,MEMSstandaloneorhybridmode).Asrawdatacanbecollectedwhile the software computes the position of the pedestrian, it offers some postprocessing capabilities using for instance Matlab, in order to adjust some algorithms and emphasizes typical pedestrian navigationissues.

Page170 GPS/IMUHybridisationforPersonalNavigation

Figure 6.30: Integrated Pedestrian Navigation System.

Figure 6.31: Real time Pedestrian Navigation System interface [53]. 6.3.3.3 Test Results The integrated pedestrian navigation system described in the previous section has been testedinactualconditions[53].Testresultsarepresentedinthissection.Asafirstassessmentof the hybridisation algorithm described above, the two HSGPS and AGPS outdoor/indoor trials

Page171 GPS/IMUHybridisationforPersonalNavigation presentedinchapter2areusedasshorttermtestcases.ThetwopathsascomputedbythetwoGPS modulesareplottedhereafterinblueasareminderinFigure6.32andinFigure6.33.Asfocusedby thegreenrectangles,outagesoccurwhenthepedestrianwalksinsidethebuildings.

Figure 6.32: HSGPS tracking performance in urban Figure 6.33: AGPS tracking performance in urban and indoor environments. and indoor environments. TheresultofthehybridisationoftheHSGPSmodulewiththelowcostIMUisshownin Figure6.34.Inthefigure,theoutputoftheintegratednavigationsystemusingbothinformationof thePNSandtheHSGPSmoduleisplottedingreen.ThistrajectoryillustratestheoutputofthePNS that has been corrected using HGSPS measurements. Since no measurement quality monitoring algorithm is applied on GPS measurements, the hybrid solution may sometimes be affected by errorsasforinstancemultipath,asshownwithinthemagentacircleinFigure6.34.Thisisclearlya drawbackoftheloosecouplingarchitectureusedheretofusethetwonavigationsystems.Inredis plotted the position solution of the integrated navigation system relying exclusively on the MTi data.Inthatcase,theGPSmeasurementsarewhetherdeclarednotreliableaccordingtotheempiric th decision logic added in the sensors fusion filter (HDOP and 4 worst C/N 0 thresholds of respectively2.5and25dBHz),orsimplynotavailable(outage).AsitcanbeseeninFigure6.34, thehybridisationtremendouslyimprovesthepositionavailabilityandaccuracy,especiallywhenthe pedestrianisinsidethebuilding.

HSGPSsolution AGPSsolution

HybridisedSolution PNSstandalone HybridisedSolutio n PNSstandalone Figure 6.34: HSGPS/IMU hybridisation results. Figure 6.35: AGPS/IMU hybridisation results.

Page172 GPS/IMUHybridisationforPersonalNavigation

Thesameconclusionscanalmostbedrawninthecaseofthehybridisationofthelowcost sensorsassemblywiththeAGPSmodule,asshowninFigure6.35.Thehybridpositionsolutionis neverthelessmoreaccuratethaninthepreviouscase,asgraphicallycomparedwiththereference trajectoryfollowedduringthetrial. Oneinterestingpointtonoticeaccordingtotheresultsshowninthetwofiguresisthatthere are more epochs where the navigation system relies exclusively on the IMU in the HSGPS hybridisationcasethanintheAGPShybridisationcase.Themeasurementsareindeedlessnoisy and more reliable according to our empiric decision logic. The position solution is also more accuratethankstoabetterdilutionofprecisionduetotheavailabilityoftheephemerisofallthe satellitesthataretracked(ascomparedtotheHSGPScasewhereeachnavigationmessagehastobe demodulatedforeachsatellite).ThissuggeststhatAGPSismoresuitedforhybridisationpurposes. Inordertoassessthemediumtolongtermperformanceoftheintegratedsystem,alonger test using only the AGPS module is conducted. The reference trajectory and the AGPS position solutionareplottedbelowinFigure6.36.Thereferencetrajectoryisplottedintwocolours.The yellowdashedpartshowstheoutdoorpathfollowedbythepedestrianwhilewalkingandtheorange partillustratestheindoorpathofthetrial.Asitcanbeseeninthefigure,twooutagesintheAGPS single point position solution plotted in bluecan be observed(identified as the magenta circles), whichmakesimpossiblethetrackingofthepedestrianinsidethebuildings.Inthesetwoareas,the integratednavigationsystemisexpectedtotremendouslyincreasethetrackingofthepedestrian.

Figure 6.36: Pedestrian trial inside and outside buildings. AGPS single point position solution (blue) and reference trajectory (yellow outdoors, orange indoors). TheperformanceofthehybridpositioningsystemisplottedinFigure6.37usingthesame colourlegendasinthepreviousfigures(Figure6.34andFigure6.35).Thegreenplotstandsforthe hybridsolutioncorrectedwithGPSmeasurements,whereastheredplotisthepurePNStrajectory. Thehybridpositionsolutionisfarmorerelevantofthetruetrajectoryfollowedduringthetrial,asit

Page173 GPS/IMUHybridisationforPersonalNavigation wasexpected.Therearetwomainperiodswheretheintegratednavigationsystemreliesexclusively on the IMU data, which corresponds approximately to the outages experienced by the AGPS receiver. This tends to prove the reliability of the AGPS measurements. The estimation of the headingisquitegood,butthetravelleddistanceissometimesverybadlyestimated,asforexample duringthefirstoutage(identifiedbythemagentacircleinFigure6.37).Inthatcase,thetravelled distanceisunderestimated.

Figure 6.37: AGPS/IMU hybridisation. Long test. This bad travelled distance estimation is directly the consequence of a bad pedestrian velocitymodelling,whichinturniscloselyrelatedtothequalityoftheGPSmeasurementsusedfor calibrationpurposes.Toanalysethereasonofthisbadtravelleddistanceestimation,Figure6.38 presentstheregressioncoefficientsascorrectedbytheKalmanfilter,aswellastheavailabilityof theGPSmeasurements(includingtheepochswhereGPSmeasurementsaredeclaredunreliable). Justbeforethefirstoutage(aroundtime2min),theregressioncoefficientsexperiencevery largevariationsduetoverynoisyGPSmeasurementsthathavenotbeenexcludedaccordingtothe decision logic implemented in the sensors fusion filter (i.e. the 4 th satellite used to compute the position solution is higher than 25 dBHz). Outliers or large multipath may have affected the measurements used for correction, which consequently are responsible for this large variation, clearlynotrelevantofwhatphysicallyshouldhavebeenobserved. WhenthefirstGPSoutageoccurs,theinaccurateregressioncoefficientsarekeptconstant leadingtoabadestimationofthetravelleddistance.Inthecasepresentedhereafter,thecoefficients are lower than their value estimated with good GPS measurements, which explains why the estimated travelled distance is underestimated. The first decision logic is therefore not enough efficienttopreventbadGPSmeasurementsfromdegradingtheinitialisationofthePNSforfurther standalonenavigation.

Page174 GPS/IMUHybridisationforPersonalNavigation

Figure 6.38: GPS measurements availability and Figure 6.39: GPS measurements availability and regression coefficients (unitless) without variability corrected regression coefficients (unitless) after detection (real time results). variability detection (post processing results). In order to enhance the monitoring of the quality of the GPS measurements and get the integrated navigation system more robust, another condition is added to the sensors fusion filter according to the conclusions that have just been drawn. If a strong variability in the regression coefficients is detected (which obviously does not reflect a real change in the pace of the pedestrian), then the GPS measurements are assumed unreliable. The regression coefficients are furthermorecorrectedbytheirmeanvalueoverthepreviousminute,whichisanapproximationof their actual values (it is important to say here thatanotheroptionwould have been to check the innovationoftheEKFinordertodetectstrongdifferencebetweenmeasurementsandpredictions, meaningthatGPSmeasurementsmaybeunreliable). The effect of the correction brought to the regression coefficients is illustrated in Figure 6.39. These results are obtained using the raw data collected during the trial with the real time software. The proposed correction method is clearly efficient as compared to the previous estimation, even if in that case it requires some time to detect bad GPS measurements. Such a qualitytestontheestimatedregressioncoefficientshasbeenfoundenoughreliabletoremovethe first decision logic based on the C/N0 of the 4 th satellite used in the computation of the user’s position.AsitcanbeseeninFigure6.39,theregressioncoefficientshaveasmoothershapewithis consistentwiththetypicalpaceofapedestrian,whateveritsvelocity. Theimpactofcorrectionmethodontotheaccuracyofthepositionsolutionasprovidedby the integrated pedestrian navigation system is illustrated in Figure 6.40. The travelled distance accuracyistremendouslyincreasedduringthefirstGPSoutageandthepositionsolutionisclearly relevantofthetruepathfollowedinsidethebuilding.The2Dhorizontalaccuracystayswithin10m fromthetruetrajectoryforthewholetest,evenduringthetwooutageswhichbothlastabout2min.

Page175 GPS/IMUHybridisationforPersonalNavigation

Figure 6.40: AGPS/IMU hybridisation results. Long test with corrected regression coefficients (post processing results). 6.3.4 Conclusion Arealtimepedestriannavigationsystemhasbeendevelopedbasedonthecombinationof different GPS modules (HSGPS and AGPS) with a lowcost IMU made of accelerometers, gyroscopesandmagnetometers.Thepurposeofthisintegrationwastwofold:first,tofacetypical GPS outages that occur inside buildings andsecond to increase theposition solution availability (andsomehowaccuracyaswell)whateverthelocationofthepedestrian.Anoptimisedpedestrian mechanisationhasbeenusedtolimittheimpactofbothaccelerometers andgyroscopesbiasand consequentlyimproveinthesametimetheperformanceofthenavigationsystemduringoutages. BothintegrationswithHSGPSandAGPShavebeentested. TheresultsoftheconductedtrialshaveshownthatAGPSprovidesmeasurementslessnoisy thanHSGPSdoes,whichmakesitmoresuitedtohybridisationpurposes.Becausethereisnoneed todemodulatetheephemerisofthesatelliteinvisibility,theAGPSreceiverproducesmeasurements of better quality which is of tremendous importance since no RAIM or no GPS measurement quality monitoring algorithm has beenimplementedas partoftheintegrationnavigationsystem. However,amethodaimedatdetectingunreliableAGPSmeasurementsthroughthedynamicofthe estimated regression coefficients has been developed. Its implementation and test on real data collectedwiththedevelopedsoftwareduringthedifferenttrialshasdemonstrateditsefficiency. The accuracy of the developed integrated pedestrian navigation system stays within 10 metres (horizontal position error) from the true trajectory according to the trial exercised, which makessuchanintegratedpedestriannavigationsystemverypromisingforindoorapplications.

Page176 GPS/IMUHybridisationforPersonalNavigation

6.4 Conclusion

Inthischapter,theenhancementoftheavailabilityandtheaccuracyofapositioningsystem basedonGPShavebeendiscussed.ThehybridisationofareceiverwithlowcostsensorsofMEMS typewasmorespecificallyaddressed.Inafirsttime,anonconventionaltightcouplingarchitecture build around the attitude filter developed in chapter 4 and a simplified INS mechanisation was detailed.Itwasshownthatsuchacouplingmethodologyinvolvingmorelinearequationsthanthe standard tight hybridisation can give quite accurate position solutions using very few GPS measurements(atleast2).Indeed,thehybridisedsystemwasfoundtobeaccuratewithin70metres for15minutesofnavigationusingonly2Dopplermeasurements(horizontalerror).Topreventthe position error from cumulating because of the memory effect of the dead reckoning algorithm, pseudorange measurements were found necessary to be integrated as measurements. Due to the goodperformanceoftheDopplerbasednavigationsystem,theiruseisnotmandatory,whichmakes possible the accurate navigation (2D error below 70 metres) in environments very affected by multipath. The pedestrian navigation was also addressed through the pedestrian mechanisation. The integration with both HSGPS and AGPS was tested. Assuming the sensors unit attached to the body,itwasshownthatthecombinationofAGPS,theattitudefilterdetailedinchapter4andthe pedestrian mechanisation can give position solutions with interesting an interesting accuracy, as compared to what is currently achievable with HSGPS and AGPS receivers. The real time pedestrian navigation system has indeed shown a 2D error of 10 metres from the reference trajectory,evenduringcompleteGPSoutagesofabout2min,accordingtothetrialsexercised.

Page177 ConclusionsandFutureWork

Chapter 7: Conclusions and Future Work Thischapterrecallsthemainobjectivessetupatthebeginningofthethesisanddiscusses theachievementsofthecontributionsthathavebeendetailedthroughoutthereport.Adiscussionof thetechnicalpointsthatwouldbeinterestingtofurtherinvestigateisalsoprovided. 7.1 Conclusions

Asdiscussedintheintroduction,thepurposeofthisPh.Dthesiswastoanalysethebenefit thatcanbebroughttoGPSbasedpositioningtechniques(namelyHSGPSandAGPS)withtheuse oflowcostsensors.In chapter 1 ,theperformanceofthenewprocessingtechniquessuchasAGPS andHSGPShavebeenanalysedanddetailed.Giventhelowperformanceofthesystemsinharsh environments,inertialnavigationalgorithmsbasedongyroscopes,accelerometers,magnetometers aswell asapressuresensorhavebeenstudiedforbothpedestrian andlandvehiclecases.Weak pointsrelativetotheinertialalgorithmsandsensorsqualityhavebeenstressed,motivatingthestudy of augmentations based on low cost sensors. Several techniques were proposed to enhance the performance of the standalone inertial navigation systems. Some of them can be used to reduce AGPS/HSGPSacquisitionstagecomplexity;theotherscanratherbeusedinGPS/lowcostsensors hybridisationschemes. In chapter 2 ,thenewGPSarchitecturesdesignedtofaceurbanandindoorissuessuchas HSGPS and AGPS were presented, and their performance were analysed theoretically and practicallyintermsoftimetoacquire,timetofix,aswellaspositionaccuracy.Itwasshownthat AGPS clearly outperforms HSGPS in terms of time to first fix. Even if such a result was predictable, it was also shown that AGPS produces measurements of better quality than HSGPS probablyduetoephemerisdatatransmittedtothehandset.ItindeedrelievestheGPSchipsetfrom decodingthenavigationmessageofthetrackedsignalinordertocomputethepositionoftheuser. ThisnavigationdatademodulationcanbeverydifficultinurbanareasassoonastheC/N 0ofthe satellitegoesbelow25 dBHz.However,itfinallywasdemonstratedthattheseAGPStechniques were somehow inefficient in very harsh environments such as inside buildings or in deep urban areas. Chapter 3 was dedicated to the analysis of inertial navigation algorithms performance. Mechanisationsforlandvehicleandpedestriannavigationwereanalysedingreatdetailsandtheir respectiveweakestpointswerediscussed.Intheparticularcaseofpedestriannavigation(PNS),a relationship between the frequency, the standard deviation and the mean of the acceleration magnitude and the pedestrian velocity was established in order to compensate for accelerometer biases. Theoretical simulations showed that it was possible to stay below 150 metres from the referencetrajectoryfor10minutesofautonomousnavigation,clearlyoutperformingtheclassical INS mechanisation. However, such a comparisonmay be somehowunfair as such a comparison involvesanonoptimisedclassicalINS,includingimprovementscomparabletothoseofthePNS. As the unit containing the sensors may be packedinhandheld devices, the singularity issue that mayaffecttheEuler’s anglesandsotheheadingwas analysed.An algorithmdedicatedtoavoid such singularities was proposed and successfully tested on real data collected during pedestrian walks. The problem of estimating the true pedestrian heading that arises when sensors are

Page178 ConclusionsandFutureWork embeddedinhandhelddeviceswasalsoaddressed.Aheadingestimationtechniquewasproposed and results demonstrated the effectiveness of the methodology especially for low to medium motionsoftheunitwithrespecttotheuser.However,typicalcellphonemovementsrenderthetrue headingmeasurementinaccurate. As the two independent navigation systems were characterised, chapter 4 discussed the improvementoftheinertialnavigationalgorithmsperformanceinordertoincreasetheaccuracyof the data that seemed to be useful in further integration. Algorithms based on the processing of sensorsdataweresetuptoreducetheimpactofthebiasesthatdramaticallydecreasetheaccuracy oftheinertialpositionsolutionandattitudeangles.Inparticular,anattitudefilterwasdevelopedto limittheimpactofgyroscopebiasesontheheadingaccuracy.Theaccuracyofthefilterwastested onactuallandvehicleandpedestriantrials.Itwasfoundthat1degreeaccuracywasachievablein thepedestriannavigationcase,accordingtotheteststhatwereconducted.However,suchaccuracy isverydependentonthedurationofmagneticinterferencesthatmayoccur.Thelandvehicletrial demonstratedthatinsuchnavigationtype,magnetometerdatawereoftenunreliable.Theuseofa pressure sensor as a barometer was studied as well. The vertical velocity was found very noisy makingmandatoryalowpassfilteringofthemeasurements.Differentintegrationtechniqueshave beenstudied.Theintegrationofthealtitudemeasurementsasanadditivepseudorangemeasurement wasfoundtogivethebestimprovementsintermsof3Dpositionaccuracy.Intheperspectiveofan integratedGPS/inertialsensorssystem,heightconstraintseemshowevermoreadaptedtogivea greatdealofperformanceforaminimalincreaseofalgorithmcomplexity. Chapter 5 discussed the integration of the lowcost sensors and augmentationalgorithms studied in chapter 4 with AGPS / HSGPS receivers in order to decrease the complexity of the acquisitionstagebyreducingthenumberoffrequencybinstosearchin.Resultshaveshownthatin thepedestriancasewherethevelocitycanbemodelledwithin±0.3m/saccuracy,theinformation provided by MEMS sensors decreases the user’s Doppler uncertainty to ±6Hz. The user’s contributionontheoverallfrequencysearchtimeisconsequentlyreducedupto95%comparedto thefrequencysearchtimeassumingauser’sDoppleruncertaintyof±250Hz.Theavailabilityofthe Dopplerpredictionisfurthermore100%.Inthelandvehiclecase,thepredictionperformsaswell byreducingtheuser’sDoppleruncertaintydownto±25Hz.However,theDopplerpredictioncan onlybedoneoncetwosatellitesareacquiredsincethevelocityprovidedbythesensorsassemblyis notenoughreliableinthatcase.Moreover,theuser’sDopplerpredictionavailabilityisdegraded anddependsonthegeometryofthesatelliteswithrespecttotheuser’sheading. Finally, chapter 6 discussed the hybridisation of the low cost sensors with AGPS and HSGPS.Anonconventionaltightcouplingarchitecturebuiltaroundtheattitudefilterdevelopedin chapter 4 and a simplified INS mechanisation was found to beaccurate within 70 metres for 15 minutes of navigation using only 2 Doppler measurements (horizontal error). To prevent the position error from cumulating because of the memory effect of the Dead Reckoning algorithm, pseudorange measurements were found necessary to be integrated as measurements. Due to the goodperformanceoftheDopplerbasednavigationsystem,theiruseisnotmandatory,whichmakes possible the accurate navigation (2D error below 70 metres) in environments very affected by multipath.Thepedestriannavigationwasaddressedassumingthesensorsunitattachedtothebody. Therealtimepedestriannavigationprototypesystemdevelopedtoassesstheperformanceofsucha navigationmethodhasdemonstratedapromisingaccuracywithrespecttothetrialsexercised(2D errorof10metres,evenduringcompleteGPSoutageofapproximately2minutes).

Page179 ConclusionsandFutureWork

7.2 Future Work

Although the integration of low cost sensors together with hardwarebased or software basedGPSreceiverinhandhelddevicesisbeingmoreandmoreobvious,thepossiblemotionofthe sensorswithrespecttotheuserisabigissue.Itisverydifficulttokeeptrackoftheuser’sheading as the handset may have its own attitude, which consequently limits the use of the pedestrian mechanisation. Opposite, if sensors are attached to the user’s body, a good accuracy can be achieved and the performance of an integrated pedestrian navigation system can be significantly increased. As a consequence, the opinion of the author would be to focus further researches on the processingimprovementofAGPSandHSGPScores.Inparticular,algorithmsusingamotion/static status of one user (thanks to accelerometers) as well as attitude measurements of the receiver’s antenna(thankstoanattitudefilterorsimplygyroscopes)maybefurtherinvestigatedfromboth standalone and differential positioning point of view. A more sophisticated motion recognition algorithmshouldbedevelopedinordertopreciselydetectthetypeofmotionexperiencedbythe handset containing the sensors, including states such as idling pedestrian with a moving sensors unit,walkingpedestrianwithmovingsensorsassembly… The attitude filter proposed in this thesis may also be improved by estimating magnetic interferencesratherthanrelyingexclusivelyongyroscopedata.Thiswouldcertainlyincreasethe complexityofthefilterbutwouldinturndecreasethesensitivitytomagneticperturbations. Anotherinterestingpointtofocusonwouldbetheuseofsensorsinformationinorderto improve the acquisition of GPS signals. With the modernisation of the GNSS signals, the combinationofMEMSsensorswiththeGPSacquisitionstagecanindeedbyfruitfulforacquiring pilottones,especiallywhenthereceiverismovingandthesignaltoacquireexhibitalowpower. Improvingthelandvehiclenavigationwithasetoflowcostsensorsisdifficulttoachieve duetolargebiasesthataffecttheaccelerationmeasurements.Eveniftheheadingaccuracycanbe improvedwithanattitudefilterastheonedevelopedinthisthesis,thetravelleddistanceestimation isstillanissue.Oneinterestingpointwouldbetoanalysethebenefitbroughtbywheelspeedand steering sensors, whose information is accessible through the vehicle local area network. In that perspective, the performance of the proposed hybridisation scheme could be studied. The use of AGPSorHSGPSreceiversmayalsobeofgreatinterest.

Page180 ConclusionsandFutureWork

Page181 AppendixA:DopplerEffect

Appendix A: Doppler Effect Definition The Doppler effect is the variation of communication signal frequencies caused by the relativemotionofthetransmitterwithrespecttothereceiver.InGPStransmissions,thiseffectcan be decomposed into a first effect due to satellite motion with respect to the Earth and a second effectcausedbyuser'smotionwithrespecttotheEarth(theeffectofthereceiverlocaloscillatoris hereneglected).Assumingtimesynchronisation,thereceivedphaseoftheGPSsignalcarrierfrom satellite i atepoch t isequalto: ϕ i = π ( −τ i )−θ i = π −θ i (t) 2 L1 t (t) 0 2 ft 0 where:

– L1 standsfortheL1carrierfrequency. – τ i isthepropagationdelayaffectingthesignalfromsatellite i . – f istheinstantaneousfrequencyofthereceivedsignal. θ i – 0 istheinitialphaseoffsetaffectingthereceivedsignal. – ϕ i isthephaseofthereceivedsignal. Thegeometricdistancebetweensatellite i andtheuserdependsonbothmovementsofthe GPSemittersatelliteonitsorbitwithrespecttoanEarthCentredEarthFixed(ECEF) reference frame, and the user (or more precisely receiver’s antenna) on the Earth. The instantaneous frequencyofthereceivedsignalisgivenby: 1 dϕ i (t) dτ i (t) L dDi (t) L f (t) = = L − L = L − 1 = L − 1 vi (t) = L + f i (t) 2π dt 1 1 dt 1 c dt 1 c d 1 d where: – Di (t) = c ⋅τ (t) isthesatellitetousergeometricdistance. i – vd istheDopplervelocity(i.e.therateofchangeofthesatellitetousergeometricdistance) L – f i (t) = − 1 vi (t) istheDopplerfrequencyaffectingthereceivedsignal. d c d i Giventheabovenotations,andassuming f d constantoverashorttimeinterval,thephaseof thereceivedsignalcanbewrittenasgivenbelow.Inthatcase,itisthenfullydescribedbytheL 1 carrierfrequency,theinitialphaseandtheDoppleraffectingthecarrier. ϕ i = π + π i −θ i (t) 2 1tL 2 fd ( )tt 0 Doppler Frequency for Typical Use Cases Let’sassumeaconfigurationwithonesatelliteinmotionandauseronground,asillustrated inthefigurebelow.Theprojectionofthesatellitevelocityontotheuser’sLineofSightisequalto

Page182 AppendixA:DopplerEffect

vds [5].Itcanbewrittenasafunctionofthesatellitevelocityaccordingtothefollowingequation: = (β ) vds vs sin

B vs Satellite vds S Di(t) β E vdu A rs α θ O RE

Earth

Given the basic relationships that characterises the OAS triangle, it is straightforward to expresstheprojectedsatellitevelocityasafunctionofthe θ angle: sin(β ) sin(α ) OASrelationships: = and r 2 = OA2 + Di2 − 2⋅OA⋅ Di ⋅cos(θ ) OA Di s v R cosθ v R cosθ v = s E = s E ds AS 2 + 2 − ()θ RE rs 2RErs sin Theperiodofanorbitinsecondsofsolartimeisgivenby T = 2π a3 µ .Theperiodofthe GPSsatelliteis12siderealhours,thatis11h58minand2.045ssolartime.Siderealtimeisslightly shorterthansolartime.Onesiderealdayisequalto86164.1secondsofmeansolartime[5].Thus, = assumingtheorbitofGPSsatellitesacirclewithameanradiusof a 26560 km ,thevelocity vs of aGPSsatellitewithrespecttoanECEFreferenceframeisthen: π ⋅ π ⋅ ⋅ 3 = 2 a = 4 26560 10 ≈ −1 vs 3873 5. m.s Tsolar _ time 86164.09054 ThemaximumsatelliteDopplervelocityisobtainedwhenthe θ derivativeofv ds isequalto θ = θ zero,orequivalentlywhen d max .Thisoccurswhenthesatelliteisatthehorizontaloftheuser. Insuchacase, v = v R r ≈ 929 m.s −1 whichgivesamaximumDopplershiftduetosatellite dsmax s E s motionofabout f ≈ 9.4 kHz . dsmax

Page183 AppendixA:DopplerEffect

Followingthesamemethodology,theeffectoftheuser’smotionontheoverallDopplerwill bemaximumforanullelevationE.Assumingtheuseriswalking,hismaximumvelocityisabout 10 km/h (2,8 m/s), which introduces a maximum Doppler shift on the received GPS L 1 carrier frequency of about f = L v cos(E ) c = L v c ≈14 6. Hz . Assuming the maximum dumax 1 u min 1 dumax velocityofauserinavehicleofabout150km/h(41.7m/s),themaximumDopplershiftintroduced bytheuser’smotionisequalto f ≈ 219 Hz . dumax The overall Doppler affecting the received signal at the user’s antenna is then the combinationofthetwocontributionsdescribedaboveplusanextracontributionduetothereceiver local oscillator drift. That contribution, for a 1 ppm local oscillator is around 5.1 ⋅109 ×10−6 = 5.1 kHz .

Page184 AppendixA:DopplerEffect

Page185 AppendixB:QuaternionBasedAttitudeComputation

Appendix B: Quaternion-Based Attitude Computation Edward’s Algorithm This section describes the Edouard’s algorithm that is used to compute the attitude of a mobilebasedongyroscopesmeasurements[20],[21].Assumeatriadofgyroscopesmountedonthe mobile.Themeasuredvaluesaretherotationratesofthemobilewithrespecttotheinertialframe (I) , expressed in the mobile frame (m) . Using the quaternionbased attitude determination, the differentialequationtosolveforisequation3.9.Thisequationinvolvestherotationrateof (m) with respectto (n) ,whichcanbedecomposedasfollows: ω (m) = ω (m) −ω (m) m / n m / I n / I where: ω (m) – m / I isthesensedvaluescomingfromthegyrosoutput. ω (m) – n / I canbedecomposedintothesumof: ω (m) n / e ,whichistherotationrateofthenavigationframe (n) withrespecttotheECEFframe (e) ω (m) e / I ,whichistherotationrateof (e) withrespectto (I) . ω (m) = −1 ⋅[ ( + ) − ( + ) − λ ( + )]T − n / e Rm2n vE RΦ h vN Rλ h vE tan( ) RΦ h ω (m) = −1 ⋅[ω λ −ω λ ]T − e / I Rm2n ei cos( ) 0 ei sin( )

− vN , vE aretheNorthandEastvelocitycomponentsofthemobile. − λ isthecurrentlatitudeofthemobile. ω − ei istheactualrotationrateoftheEarthwithrespecttotheinertialframe.

− RΦ isthetransverseradiusofcurvature(Seesection3.3.2fordetails).

− Rλ istheradiusofcurvatureinameridian(Seesection3.3.2fordetails). − h isthecurrentaltitudeofthemobile. a)InitialisationoftheRotationQuaternion Thecomputationoftherotationquaternionismainlycomposedofthreesteps.Thefirststep φ istheinitialisationoftherotationquaternionQ.Itisusuallydonewithinitialvaluesofroll 0 ,pitch θ ψ 0 andheading 0 accordingtothefollowingequations: φ  θ  ψ  φ  θ  ψ  q = cos 0 ⋅cos 0 ⋅cos 0  + sin 0 ⋅sin 0 ⋅sin 0  0  2   2   2   2   2   2  φ  θ  ψ  φ  θ  ψ  q = sin 0 ⋅cos 0 ⋅cos 0  − cos 0 ⋅sin 0 ⋅sin 0  1  2   2   2   2   2   2  φ  θ  ψ  φ  θ  ψ  q = sin 0 ⋅cos 0 ⋅sin 0  + cos 0 ⋅sin 0 ⋅cos 0  2  2   2   2   2   2   2  φ  θ  ψ  φ  θ  ψ  q = cos 0 ⋅cos 0 ⋅sin 0  − sin 0 ⋅sin 0 ⋅cos 0  3  2   2   2   2   2   2 

Page186 AppendixB:QuaternionBasedAttitudeComputation

Consequently,therotationquaternionQatfirstepochisgivenby: r r r = + ⋅ + ⋅ + ⋅ Q0 q0 q1 i q2 j q3 k b)InitialisationofAngularIncrements AngularincrementsareintermediatevariablesneededallalongtheEdward’scomputation process.Theyareusedtostoreangularincrementinformationexperiencedbythesensorsassembly betweentwoconsecutiveepochs.Edwardintroducedtwoareasbeforeandaftertheinstantatwhich thequaternionassociatedtotherotationiscomputed,asdescribedbelow.

t0δt t0 t0+δt t

validityofΘ* validityofΘ

onecomputationstep +δ (m) (m) (m) t0 t ω& (t ) ω&& (t ) ω&&& (t ) Θ = ω (m) ⋅ = ω (m) ⋅δ + m / n 0 ⋅δ 2 + m / n 0 ⋅δ 3 + m / n 0 ⋅δ 4 ∫ m / n (t) dt m / n (t0 ) t t t t t0 2 6 24 (m) (m) (m) t0 ω& (t ) ω&& (t ) ω&&& (t ) Θ* = ω (m) (t)⋅dt = ω (m) (t )⋅δt − m / n 0 ⋅δt 2 + m / n 0 ⋅δt 3 − m / n 0 ⋅δt 4 ∫ −δ m / n m / n 0 t0 t 2 6 24 r r r Θ Θ = + Θ ⋅ + Θ ⋅ + Θ ⋅ − isthelastangularincrement. 0i i j j k k . r r r Θ* Θ* = + Θ* ⋅ + Θ* ⋅ + Θ* ⋅ − isthenexttolastangularincrement. 0i i j j k k . Thecurrentangularincrement Θ isinitialisedtozero: (Θ ) = (Θ ) = (Θ ) = 0 . i 0 j 0 k 0 c)UpdateoftheRotationQuaternion ThethirdstepistheupdateofthequaternionQ.Theangularincrement Θ iscomputedfrom ω (m) = ω (m) +ω (m) −ω (m) the values of m / n m / I e / n e / I as described above. The next to last increment is first Θ* = Θ Θ ≈ ω (m) ⋅δ updated ( ), and then the current increment angle is computed ( m / n (t0 ) t ). The quaternionQisupdatedaccordingtothefollowingequation[20],[21]:  1 2  1− Θ  8  − − −   q0  q0 q1 q2 q3   1 1 2  1      − Θ ⋅Θ + ()Θ* ⋅Θ − Θ* ⋅Θ  q q q − q q i j k k j  1 ()()+δ =  1 0 3 2  ⋅  2 48  24  t0 t t0    −   1 1 2  1  q2 q2 q3 q0 q1 − Θ ⋅Θ + ()Θ* ⋅Θ − Θ* ⋅Θ   j k i k i     −   2 48  24 q3  q3 q2 q1 q0     1 − 1 Θ 2 ⋅Θ + 1 ()Θ* ⋅Θ − Θ* ⋅Θ    k i j j i   2 48  24 

Page187 AppendixB:QuaternionBasedAttitudeComputation

Θ = Θ2 + Θ2 + Θ2 with i j k QuaternionQisthennormalisedsincearotationquaternionmustbeunitary: Q Q Q = = Q 2 + 2 + 2 + 2 q0 q1 q2 q3 Oncethecomputationprocessisdone,itisstraightforwardtogettherotationmatrixfrom (m) to (n) ,ortheattitudeanglespitch,rollandheading. Rotationmatrixfrom (m) to (n) : q2 + q2 − q2 − q2 2(q q − q q ) 2(q q + q q )   0 1 2 3 1 2 0 3 1 3 0 2  = ()()+ 2 + 2 − 2 − 2 − Rm2n  2 q1q2 q0q3 q0 q2 q3 q1 2 q3q2 q0q1   ()()− + 2 + 2 − 2 − 2   2 q1q3 q0q2 2 q2q3 q0q1 q0 q3 q1 q2  Attitudeangles: θ = (− ( + )) Roll: arcsin 2 q1q3 q0q2  2(q q − q q )  Pitch: φ = arctan 3 2 0 1   − + ()2 + 2   1 2 q0 q1   2(q q − q q )  Heading: ψ = arctan 1 2 0 3   − + ()2 + 2   1 2 q0 q3 

Page188 AppendixB:QuaternionBasedAttitudeComputation

Page189 AppendixC:LeastSquaresandKalmanFiltering

Appendix C: Least Squares and Kalman Filtering ThepurposeofthisappendixisnottosetupLeastSquaresandKalmanFilteringtheories and algorithms, but it rather aims at simply describing their respective basic principles and fundamentalimplementationstepsastheyarewidelyusedinGPSandINS/GPSintegration.For moredetails,seeforinstance[44],[45]or[51]. Least Squares a)LeastSquaresSolutions LeastSquaresaimatfittingmeasurementsprovidedbyanexternalsourcetoamathematical modeldependingonseveralparameterstoestimate.Ideally,thesystemshallbelinearinorderto implementthealgorithm.Butinmostofcasesitisnotsothatthesystemmustbelinearisedpriorto usethealgorithmunderitsiterativeform. Inthelinearcase,let’sassumethemathematicalmodelofthesystemasfollows: Y (t) = H ⋅ X (t) + B(t) where: − Y isthevectorofexternalmeasurements. − X isthevectoroftheparametertoestimate.Itisadeterministicvector. − H isthemeasurementmatrix. − B is the noise affecting the measurements. It is assumed stationary with the following properties: E[B]= 0 and Cov(B) = R . Itcanbeshown[45]thattheLSsolution Xˆ ofthesystempreviouslydescribedisgivenby: −1 Xˆ = [H T ⋅ H ] ⋅ H T ⋅Y An optimal estimator is obtained if we have information about the noise affecting the measurements.Insuchacase,theadditionoftheinverseofthenoisecovariancematrixallowsto weighteachofthemeasurementsaccordingtothepowerandthecorrelationofthenoiseaffecting thosemeasurements.TheoptimalLSsolutionisthusasfollows: −1 Xˆ = [H T ⋅W ⋅ H ] ⋅ H T ⋅W ⋅Y ,with W = R−1 b)IterativeLeastSquaresAlgorithm Intheusualcaseofnonlinearsystem,themathematicalmodelcanbewrittenasfollows. Samenotationsarereusedherewith h standingforthenonlinearmeasurementfunction. Y (t) = h(X (t))+ B(t)

Page190 AppendixC:LeastSquaresandKalmanFiltering

In such a nonlinear case, the parameters are estimated iteratively once the model has becomelinear.Let’snote Xˆ anestimationof X atepoch t .Thefirststepistoget h linear.With ∆X defined as the difference between the actual parameters and their respective estimation (i.e. ∆X (t) = X (t) − Xˆ (t) ) h canbewrittenasfollows: ∂h h()X (t) = h(Xˆ (t))+ ∆X (t)⋅ (Xˆ (t)) ∂X Thenonlinearsystemcanthenberewrittenas: ∆Y (t) = H ⋅ ∆X (t) + B(t) where: – ∆Y (t) = Y (t) − h(Xˆ (t))  ∂h ∂h  1 (Xˆ (t)) L 1 (Xˆ (t))  ∂x ∂x  ∂h  1 n  – H = ()Xˆ (t) = M M ∂   X ∂h ∂h  N ()Xˆ (t) L N ()Xˆ (t)  ∂ ∂   x1 xn  The new system is linear. Therefore the error vector ∆X can be computed through the classicalLeastSquareestimationmethodforagivenepoch t .However,sinceapproximationshave been made when getting the model linear, the vector ∆X of unknown parameters will contain errors.Therefore,toensureagoodresulttotheLeastSquareestimationcomputation,aniterative processhastobeimplementedforeachepoch.Atepoch t andaccordingtoLeastSquaretheory, theestimationoftheunknownparameterscontainedin ∆X arethusgivenby: −1 ∆Xˆ = [H T ⋅ H ] ⋅ H T ⋅∆Y The iterative process for epoch ends when the error vector ∆Xˆ has a norm below a predefined threshold, or when the difference between the observed measures and the noiseless predictedones ∆Y issmallenough.Asasummary,theIterativeLeastSquarealgorithmisgiven below. Steps Operations Comments ˆ = ˆ 1 X (t) X 0 (t) Setinitialvalueofestimatesforiteration0 ∂h H = (Xˆ ) i ∂X i 2 ∆ = − ( ˆ ) Iteration i :doLeastSquareestimation Yi Y (t) h X i (t) − ∆ ˆ () = [ t ] 1 t × ∆ () X i t Hi Hi Hi Yi t ˆ = ˆ + ∆ ˆ 3 X i+1 X i X i Updateestimates ∆Y < Threshold ,or i If ∆Y or ∆Xˆ hassignificantlownorm,stop 4 i i ∆ ˆ < X i Threshold iterativeprocess,otherwisereturntostep2

Page191 AppendixC:LeastSquaresandKalmanFiltering

Kalman Filtering Kalman filtering is a recursive technique that allows the estimation of a state vector characterisingasystem.ItdiffersfromtheLeastSquaresinthesenseitusesamathematicalmodel that gives the relationship between the state vector and the system, and also observations (or measurements)collectedfromthatsystem.Foragivenepochk,theestimationofthesatevectoris done by combining its previous value at epoch k1 with observations collected from that epoch. Usually,thesystemisdescribedinitscontinuousformandthenasto getdiscretisedinorderto adaptitsuseonrealusecasesthatonlyinvolvesampleddata. a)StateModel Thegeneralmodelofasystemisasfollows: x&(t) = f (x(t))+ w(t) y(t) = h()x(t) + v(t) where: – f isthesatetransitionfunction. – h istheobservation(ormeasurement)function. – x isthestatevector. – w isthestatenoise. – y aretheobservations(measurements). – v isthemeasurementnoise. Thismodeliscomposedoftwoparts.Thefirstoneisthestochasticpartthatinvolvesthe timederivativeofthestatevector.Thesecondoneinvolvesthemeasurementsobtainedfromthe system.Thesetwoequationsfullydescribethesystem. b)DiscretisationProcess TheKalmanequationsasgivenaboveshallbeusedonadiscreetsystem.Asthesystemmay bedescribedinitscontinuousform,onehasfirsttogetitdiscreet.Thediscretisationprocedureis basedonTaylorseries.Equationsaregivenbelowforeachmatrixinvolvedinthealgorithm. StateTransitionMatrix: (F(t)⋅T )2 F = exp()F(t)⋅T = I + F(t)⋅T + s + o()T 2 k s s 2! s StateCovarianceMatrix: T 2 Q = Q(t)⋅T + ()F(t)⋅Q(t) + Q(t)⋅ F(t)T ⋅ s + o()T 2 k s 2 s MeasurementMatrix: = = Yk Y(t k) MeasurementCovarianceMatrix:

Page192 AppendixC:LeastSquaresandKalmanFiltering

= = Rk R(t k) Oneimportantthingtonoticeisthatdiscretisationofthecontinuousstatetransitionmatrix F isvalidifandonlyifitcanbeconsideredconstantduringthediscretisationtime Ts .Itisgenerally notthecaseinGNSS/INSintegration,whichisthereforeusuallyprocessedonsubdivisionsof Ts [20]. c)KalmanFilterEquations TheequationsofthediscreteKalmanfilterarededucedfromtheabovesystemmodel.There are5equationsthatmustbesequentiallycomputedasfollows: ˆ = ˆ 1 Prediction X k+1 k f (X k k ) Σ = Σ T + 2 CovariancePrediction k+1 k Fk k k Fk Qk = Σ T Σ T + −1 3 KalmanGain K k+1 k+1 k H k+1 (H k+1 k+1 k H k+1 Rk+1 ) ˆ = ˆ + − ˆ 4 StateVectorUpdate X k+1 k+1 X k+1 k K k+1[Yk+1 h(X k+1 k )] Σ = Σ − Σ 5 CovarianceUpdate k+1 k+1 k+1 k Kk+1H k+1 k+1 k where: ∂ ∂ = f ( ˆ ) = h ( ˆ ) – F X and H + X . k ∂X k k k 1 ∂X k+1 k

– Qk isthestatenoisecovariancematrixatepochk.

– Rk isthemeasurementnoisecovariancematrixatepochk.

– Yk isthemeasurementvectoratepochk.

Page193 AppendixD:FrequencyEstimationTechniques

Appendix D: Frequency Estimation Techniques Thisappendixassessestheperformanceoffourmethodsdedicatedtotheestimationofthe stepfrequencycharacterisingapedestrianaccelerationsignal.Thesemethodsarecomparedusing real data recorded during typical pedestrian walks. The focus is put in the frequency estimation usingveryfewsamples.Detailsaboutthesetechniquesaregivenbelowinthetable. Description of the Techniques Technique PrincipleoftheFrequencyEstimationTechnique Number The first method is to detect step occurrences in the total acceleration signal, as definedinequation3.34.Occurrencesaretimetaggedandthestepfrequencyisthen 1 deduced.Asthefrequencyestimationisperformedateachstep;thistechniqueisa stepbasedfrequencydetermination

The second technique uses the wellknown periodogram as a tool to estimate the frequency.Thistechniqueisappliedonasignalthatcontainsatleasttwostepimpacts in order to detect a periodicity.The frequency estimation accuracy depends on the 2 numberofsamplesavailabletocomputetheperiodogram.Onesolutiontogetridoff thislackofresolutionistoincreasethenumberofsamplesusedinthecomputation process,evenifitreducesthecapabilityofdetectingrapidfrequencyvariations.

To cope with the resolution issue of technique n°2, the use of High Resolution techniques is investigated. Several High Resolution methods exist, namely the 3 correlationtechniqueusingtheLevinsonDurbinalgorithm,themodifiedcovariance andthePronytechniques.Detailsabouttheirprinciplesandpropertiescanbefound in[58].Allthethreemethodsareimplementedandtested.

Thelasttechniqueusedtoestimatethefrequencycharacterisingthepedestrianwalk isbasedonfilteringtheaccelerationsignalthroughaKalmanfilter.Twofiltersare tested, one able to track one sinuslike signal, the other one able to track a combinationoftwosinuslikesignals.Observationmodelsaregivenbelow,aswell asthecommonstatevectorcomposedoftheamplitude,thefrequency,themeanand thephaseoftheaccelerationsignal. 4 = + ( π ⋅ ⋅ + Φ) Observationmodel: ak M Asin 2 F t StateVector X = [M A F Φ]T or = + ( π ⋅ ⋅ + Φ )+ ( π ⋅ ⋅ + Φ ) Observationmodel: ak M A1 sin 2 F1 t 1 A2 sin 2 F2 t 2 = [ Φ Φ ]T StateVector: X M A1 A2 F1 F2 1 2 The comparison of the four techniques is done with both timetagged and steptagged systems.Thesignalusedtoassesstheaccuracyoftechnique1to4isrecordedduringawalkona

Page194 AppendixD:FrequencyEstimationTechniques

flatsurface.Theaccelerationmagnitude ak asdefinedinequation3.34isshownbelow. Total acceleration 35

30

25

20

15 Acceleration (m/s²)

10

5

0 0 500 1000 1500 2000 2500 3000 Samples Performance Assessment a)SteptaggedFrequencyEstimation The first technique was tested using a step detection algorithm in order to get step occurrencesfromtheaccelerationmagnitude.Astheothertechniquesrequiresmorethanexactlya periodofdatainordertoestimatethestepfrequency,halfasecondofsignalwasaddedbeforeand after the two consecutive step occurrences. That new short signal was then used as an input for techniquesn°2,n°3andn°4.TestswereconductedtofindthebestorderneededcomputetheProny, correlationandmodifiedcovarianceHighResolutionmodels.Thebestorderwasempiricallyfound to be 14 (usual order estimation methods such as AIC, CAT or FPE [58] did not provide any relevantinformation). Results of frequency estimation over 1and 2steps areshown below. In both figures,the cyanplotisthemeanGPSvelocityaveragedover1and2steps.Frombothfigures,itisobvious thatthefrequencyparameterhasthesamebehaviourastheGPSvelocity,thusshallbeincludedin thevelocitymodel.Asitcouldhavebeenexpected,thestepbasedtechniqueproducesnoisystep frequencyestimates.Opposite,techniquesn°2,n°3andn°4givesmootherfrequencyestimations. Results from technique n°4 based on Kalman filtering are not presented here. Although the implementationworkswellonsyntheticdata,theconvergenceofthefilterprocessingrealdatawas foundverydifficulttoachieve.Themainreasonforthatisthatvariablescarriedbythestatevector (i.e.mean,amplitude,frequencyandphase) compensateeachotherforindividualvariations,and therealaccelerationsignalisnotstationary.

Page195 AppendixD:FrequencyEstimationTechniques

Frequency estimation over 1 step(s) 3 Step Prony Correlation (Levi) Modified Cov 2.5 Period. PSD V GPS

2

1.5 Frequency (Hz)

1

0.5

0 0 10 20 30 40 50 60 70 80 90 100 Frequency estimation over 2 step(s) 2.6 Step Prony 2.4 Correlation (Levi) Modified Cov Period. 2.2 PSD V GPS

2

1.8

1.6

Frequency (Hz) 1.4

1.2

1

0.8

0.6 0 5 10 15 20 25 30 35 40 45 50 The table below gives the correlation computed between the mean GPS velocity and the differentestimatedfrequency.Whateverthecomputationspan(i.e.1or2steps),theperiodogram andPSDmethodsarethebestones. Methods Step Prony Levi Mod.Cov. Periodogram PSD Correlationforfreq. 0,440 0,941 0,888 0,943 0,944 0,944 estimatedover1step Correlationforfreq. 0,908 0,966 0,912 0,964 0,967 0,967 estimatedover2steps

Page196 AppendixD:FrequencyEstimationTechniques b)TimetaggedFrequencyEstimation Asacomparison,resultsofstepfrequencyestimationbyprocessingdataateachsampling periodoveratimewidowsof1and2secondsareshownbelow. Frequency estimation over 1s 5 Prony Correlation (Levi) 4.5 Modified Cov. Period. PSD 4 V GPS

3.5

3

2.5

Frequency (Hz) 2

1.5

1

0.5

0 0 100 200 300 400 500 600 Samples Frequency estimation over 2s 5 Prony Correlation (Levi) 4.5 Modified Cov. Period. PSD 4 V GPS

3.5

3

2.5

Frequency (Hz) 2

1.5

1

0.5

0 0 100 200 300 400 500 600 Samples HighResolutiontechniquesfailtoestimatethefrequencyinmanycases.Thisexplainsthe poor correlations between frequency estimations andthemean GPSvelocity, as presented in the tablebelow.Thisismainlyduetobadorderof themodelusedintherespectivehighresolution

Page197 AppendixD:FrequencyEstimationTechniques algorithms (usual methods that estimate this order such as AIC, CAT or FPE did not provide relevantinformation),aswellasthenonstationarypropertyofthesignaltoanalyse. Methods Prony Levi Mod.Cov. Periodogram PSD Correlationforfreq. 0,314 0,661 0,402 0,765 0,834 estimatedover1second Correlationforfreq. 0,375 0,920 0,796 0,931 0,931 estimatedover2seconds As a conclusion, according to correlation performance presented in both tables, the techniques that give the best performance are the periodogram and PSD estimation. The periodogramtechniqueisusedthroughoutthisthesis.

Page198 AppendixD:FrequencyEstimationTechniques

Page199 Bibliography

Bibliography [1] GPSICD200C. http://www.navcen.uscg.gov/pubs/gps/icd200/default.htm . [2] B. W. Parkinson, J. J. Spilker. The Global Positioning System: Theory and Applications . AmericanInstituteofAeronauticsandAstronautics,1996. [3] C.Macabiau. GPS internalcoursenotes,ENAC,2002. [4] J.K.Holmes. CoherentSpreadSpectrumSystems .R.E.KriegerPublishingCompany,1990. [5] J. Bao, Y. Tsui. Fundamentals of Global Positioning System Receivers A Software Approach .WileyInterscience. [6] CMacabiau,ACEscher. GNSS masterinternalcoursenotes,ENAC,2002. [7] CMacabiau. AnalysisoftheFeasabilityofUsingGPSCarrierPhaseAmbiguityResolution TechniquesforPrecisionApproach .Ph.D.ThesisReport,September29,1997. [8] P. Misra, P. Enge. Global Positioning System Signals, Measurements, and Performance. GangaJamunaPress,2001. [9] J.A.Farrell,M.Barth. TheGlobalPositioningSystemandInertialNavigation .McGraw Hill,1999. [10] G. Macgougan. High Sensitivity GPS Performance Analysis in Degraded Signal Environments, MScThesis,UniversityofCalgaryGeomaticsEngineering,2003. [11] A.J.vanDierendonck,P.Fenton,T.Ford. TheoryandPerformanceofNarrowCorrelator SpacinginaGPSreceiver .JournalofTheInstituteofNavigation,vol.39,no.3,pp.265 283,1992. [12] D.Kubrak,C.Macabiau,M.Monnerat. VehicularNavigationusingaTightIntegrationof AidedGPSandLowCostMEMSSensors .ProceedingsoftheIONNTM2006. [13] B.Peterson,D.Bruckner,andS.Heye. MeasuringGPSSignalsIndoors .IONGPS1997. [14] F.vanDiggelen. GlobalLocateIndoorGPSChipset &Services ,Proceedingsofthe ION GPS2001. [15] F.vanDiggelen,C.Abraham. IndoorGPSTechnology .GlobalLocateinc.CTIAWireless Agenda,Dallas2001. [16] D. Kubrak, C. Macabiau, M. Monnerat. Analysis of a softwarebased AGPS acquisition performanceusingstatisticalprocesses .ProceedingsoftheIONNTM2005. [17] V.Garbi,S.Corazza. Fieldtrial:AssistedGPS(A835,A1000,HP6515) andautonomous GPS(BT338) .AlcatelAleniaSpace,internalreport,2006.

Page200 Bibliography

[18] M.S.Grewal,L.R.Weill,A.P.Andrews. GlobalPositioningSystems,InertialNavigation, andIntegration .JohnWiley&SonsInc,2001. [19] M.Kayton,W.Fried. AvionicsNavigationSystems ,secondedition.JohnWiley&SonsInc. [20] A.C. Escher. Study of the contribution of GNSS/INS Hybridisation to GNSS Integrity MonitoringforCivilAviationApplications .Ph.D.ThesisReport,INPToulouse,2003. [21] J.C.Radix. SystèmesinertielsàcomposantsliésSTRAPDOWN .Cépaduèséditions,1991. [22] USNationalGeophysicalDataCentrewebsite( http://www.ngdc.noaa.gov ). [23] NemerixNJ2020datasheet(downloadedfromNemerixwebsite,2006). [24] SiRFstarIII TM GPSSingleChipdatasheet(downloadedfromSiRFwebsite,2006). [25] PhilipsApplicationNoteAN00022. ElectronicCompassDesignusingKMZ51andKMZ52 (downloadedfromPhilipswebsite,2005). [26] AnalogDevicesADXRS300datasheet(downloadedfromAnalogDeviceswebsite,2005). [27] AnalogDevicesADXL203datasheet(downloadedfromAnalogDeviceswebsite,2005). [28] AnalogDevicesADXL202Edatasheet(downloadedfromAnalogDeviceswebsite,2005). [29] Q. Ladetto. On foot navigation: continuous step calibration using both complementary recursivepredictionandadaptiveKalmanfiltering .ProceedingsoftheIONGNSS2000. [30] V.Gabaglio.Ph.D.ThesisReport,EPFLwebsite,2003. [31] IntersemaMS5534Datasheet(downloadedfromIntersemawebsite,2005). [32] J.Stephen,G.Lachapelle. DevelopmentofaGNSSBasedMultiSensorVehicleNavigation System .ProceedingsoftheIONNTM2000. [33] G.J. Olson et al. Nongimbaled SolidState Compass . SolidState Sensor and Actuator Workshop,June1994. [34] M.J.Caruso, L.SWithanawasam. VehicledetectionandcompassapplicationsusingAMR MagneticSensors .Honeywellwebsite. [35] E.R. Bachmann, X. Yun, R.B. McGhee, Sourceless Tracking of Human Posture Using Small Inertial/Magnetic Sensors , IEEE Computational Intelligence in Robotics and AutomationSymposium,2003. [36] D.Kubrak,C.Macabiau,M.Monnerat. PerformanceAnalysisofMEMSbasedPedestrian NavigationSystems .ProceedingsoftheIONGNSS2005. [37] S.Sukkarieh. LowCost,HighIntegrity,AidedInertialNavigationSystemsforAutonomous Land Vehicles , PhD Thesis, Department of Mechanical and Mechatronic Engineering,

Page201 Bibliography

UniversityofSydney,Australia,2000. [38] D.Brzezinska,C.Toth,Y.Yi. BridgingGPSGapsinUrbanCanyons:CanZUPTReally Help? ProceedingsoftheIONGPS2001. [39] S. Godha et al. Performance Analysis of MEMS / IMU / HSGPS / Magnetic Sensor IntegratedSysteminUrbanCanyons .ProceedingsoftheIONGNSS2005. [40] S.GodhaandM.E.Cannon. IntegrationofDGPSwithaLowCostMEMS–BasedInertial MeasurementUnit(IMU)forLandVehicleNavigationApplication .ProceedingsoftheION GNSS2005. [41] CollinJ.,J.Kappi,andK.Saarinen. UnaidedMEMSBasedINSApplicationinaVehicular Environment .ProceedingsoftheIONGNSS2001. [42] G. Dissanayake, S. Sukkarieh, E. Nebot, H. DurrantWhyte. The Aiding of a LowCost Strapdown Inertial Measurement Unit UsingVehicle Model Constraints for LandVehicle Applications .IEEETransactionsonRoboticsandAutomation,vol.17,n°5,October2001. [43] M.S.Grewal,A.P.Andrews. Kalmanfiltering–Theoryandpractice .PrenticeHall,1993. [44] R. G. Brown, P. Y. C. Hwang. Introduction to Random Signals and Applied Kalman Filtering .Wiley,3 rd Edition,1994. [45] C.Macabiau. KalmanFiltering internalcoursenotes,ENAC,2003. [46] J. Collin, H. Kuusniemi, O. Mezentsev, G. MacGougan, G. Lachapelle. HSGPS under Heavy Signal Masking – Accuracy and Availability Analysis . Proceedings of 6 th Nordic RadioNavigationConferenceandExhibition“NORNA03”,StockholmHelsinki. [47] H. Hou. Modeling Inertial Sensors Errors Using Allan Variance . Msc Thesis. UCGE ReportsNumber20201.September2004. [48] S. Nassar. Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications . Ph.D. Thesis Report. UCGE Reports Number 20183. November 2003. [49] O. Mezentsev. Sensor Aiding of HSGPS Pedestrian Navigation . Ph.D. Thesis Report, UniversityofCalgarywebsite(PLANgroup),2005. [50] H. Kuusniemi. UserLevel Reliability and Quality Monitoring in SatelliteBasedPersonal Navigation .Ph.D.ThesisReport,UniversityofCalgarywebsite(PLANgroup),2005. [51] C.Macabiau. LeastSquares internalcoursenotes,ENAC,2003. [52] D.Kubrak,C.Macabiau,M.Monnerat. LowCostMEMSSensorsforAidedGNSSProcessing Enhancement . Proceedings of the 13 th Saint Petersburg International Conference on IntegratedNavigationSystems.2006.

Page202 Bibliography

[53] D.Kubrak,C.Macabiau,M.Monnerat. RealTimePedestrianNavigationSystem .Proceedings oftheIONGNSS2006. [54] WichtTechnologieConsulting. Thinksmall! issue2,volume1,May2006. [55] InvenSenseIDG1000IntegratedDualAxisGyroscopedatasheet(fromInvensensewebsite, 2006). [56] AnalogDevicesADXL330datasheet(fromAnalogDeviceswebsite,2006). [57] AKM8970N3Dmagneticcompassdatasheet(fromAKMwebsite,2006). [58] C.LambertNebout. ParametricandNonParametricEstimationTechniques internalcourse notes,ENAC,2003. [59] H.S. Hopfield. TwoQuadratic Tropospheric Refractivity Profile for Correction Satellite Data.JournalofGeophysicalResearch ,74(18),4487–4499.1969. [60] S.Alban,D.Akos,S.Rock&D.GebreEgziobher. PerformanceAnalysisandArchitectures forINSAidedGPStrackingloops .ProceedingsoftheIONNTM2003. [61] D.Li,J.Wang. PerformanceAnalysisoftheUltraTightGPS/INSIntegrationBasedonan Improved Kalman Filter Design for Tracking Loops . International Global Navigation SatelliteSystemsSociety.IGNSSSymposium2006.

Page203