The Influence of the Dietary Inclusion of the Alkaloid Gramine, on Rainbow Trout (Oncorhynchus Mykiss) Growth, Feed Utilisation and Gastrointestinal Histology

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of the Dietary Inclusion of the Alkaloid Gramine, on Rainbow Trout (Oncorhynchus Mykiss) Growth, Feed Utilisation and Gastrointestinal Histology Aquaculture 253 (2006) 512–522 www.elsevier.com/locate/aqua-online The influence of the dietary inclusion of the alkaloid gramine, on rainbow trout (Oncorhynchus mykiss) growth, feed utilisation and gastrointestinal histology Brett Glencross a,d,*, David Evans a,d, Neil Rutherford a,d, Wayne Hawkins b,d, Peter McCafferty c,d, Ken Dods c,d, Brian Jones a, David Harris c,d, Lincoln Morton c,d, Mark Sweetingham b,d, Sofie Sipsas b,d a Department of Fisheries-Research Division, PO Box 20, North Beach, WA 6020, Australia b Department of Agriculture-Government of Western Australia, Baron Hay Court, South Perth, WA 6150, Australia c Chemistry Centre (WA), 125 Hay St, East Perth, WA 6004, Australia d Centre for Legumes in Mediterranean Agriculture (CLIMA), Aquaculture Feed Grains Program, University of Western Australia, Crawley, WA 6909, Australia Received 9 March 2005; received in revised form 30 June 2005; accepted 1 July 2005 Abstract This study examined the influence of the alkaloid gramine, when included in diets for rainbow trout. Quinolizidine alkaloids have been suggested as a potential anti-nutritional problem with the use of lupin (Lupinus sp.) meals in aquaculture diets. The findings from the present study show that above a critical threshold, the alkaloid gramine does have a strong anti-palatability effect. The effect is noted at a minimum gramine concentration of 500 mg/kg of diet, though not at 100 mg/kg. A continuing strong anti-palatability response is noted at higher inclusion levels and at the highest gramine inclusion concentration examined in this study (10,000 mg/kg), insufficient feed was consumed to even supply maintenance protein and energy demands. No adaptation to concentrations of gramine was observed throughout the 6-week study. No effects on nitrogen, energy or phosphorus digestibility were seen at the 500 mg/kg inclusion concentration of gramine relative to the reference diet, although the inclusion of the yellow lupin kernel meals (both Wodjil and Teo varieties) in the diet did improve the digestibility of phosphorus. Growth, as assessed using a range of parameters including weight gain, growth rate, nutrient and energy retention of fish fed the experiment treatments was largely consistent with feed intake. Survival of fish was significantly reduced at gramine inclusion levels above 1000 mg/kg. Feed conversion ratio (FCR) and feed conversion efficiency (FCE) were also reflective of feed intake and growth levels observed of each treatment. The concentrations of the plasma thyroid hormones tri-iodothyronine (T3) and thyroxine (T4) of fish from each of the treatments were consistent with feed intake (including the controls) suggesting that the concentrations of these hormones are in response to feed intake, not specifically the gramine levels in the diets. However, the inclusion of the Lupinus luteus kernel meals resulted in a significant change in T4 levels, with a degree of independence of the * Corresponding author. Department of Fisheries-Research Division, PO Box 20, North Beach, WA 6020, Australia. Tel.: +61 8 9239 8103; fax: +61 8 9239 8105. E-mail address: [email protected] (B. Glencross). 0044-8486/$ - see front matter D 2005 Published by Elsevier B.V. doi:10.1016/j.aquaculture.2005.07.009 B. Glencross et al. / Aquaculture 253 (2006) 512–522 513 feed intake, suggesting that there may be another mechanism by which these meals are influencing the concentrations of this hormone. In this study, there was an increase in the density of melano-macrophage centres (MMC) with high dietary levels of gramine. However, in the absence of any histological evidence for a toxic effect, it is likely that the increased MMC densities observed in the fish fed high concentrations of gramine are associated with starvation. This study demonstrated that the lupin alkaloid gramine, can have a strong anti-nutritional effect on fish at inclusion concentrations greater than 100 mg/kg, but that its mode of action is primarily through an anti-palatability effect. It is therefore considered unlikely that alkaloid effects would be observed in diets even with 50% inclusion of kernel meals from Australian commercial L. luteus varieties. D 2005 Published by Elsevier B.V. Keywords: Plant proteins; Fish meal replacement; Anti-nutritional factors; Alkaloids 1. Introduction Consumption of gramine at toxic levels in mice has been noted to lead to psychotropic levels of excite- It is well recognized in the aquaculture feeds indus- ment and seizure. The mode of action for gramine as try that there is a need to reduce reliance on fish meal an ANF, or toxicity data on this compound is limited. in aquaculture feeds (Naylor et al., 2000). Increasing However, mammalian effects include changes in the actual or prospective utilization of other protein tubules and glomeruli in the kidney, ureter and blad- meals in diets for aquatic species, substantial risk der, endocrine changes in spleen weight, and bio- reduction is achieved. The use of plant protein chemical changes such as enzyme inhibition, meals as alternative protein resources has been well induction via changes in blood or tissue levels of studied and many viable options including soybean, phosphatases (TXCYAC, 1980), although no specific glutens and lupin meals have been adopted indust- data is available for any fish species. Tolerance con- rially (Carter and Hauler, 2000; Storebakken et al., centrations to the inclusion of dietary gramine in other 2000; Glencross et al., 2004). However, the introduc- vertebrate species (rats, pigs and poultry) have been tion of anti-nutritional factors and other biologically determined at; about 300 mg/kg for rats, N500 mg/kg active compounds can accompany the use of plant diet for pigs and about 650 mg/kg diet for poultry protein meals (Francis et al., 2001). (Pastuszewska et al., 2001). The effects of concentra- Anti-nutritional factors (ANF) can affect the uti- tions as low as 250 mg/kg of Lupinus angustifolius lization of food by an animal through several ave- alkaloids have been reported in rats (Butler et al., nues, including the metabolic axis, nutrient 1996), although concentrations of alkaloids from L. digestibility or ingredient palatability (Refstie et al., albus were only reported to have an adverse effect at 1998, 1999; Glencross et al., 2003a,b). Alkaloids are 320 mg/kg (Zdunczyk et al., 1998). heterocyclic amino acid derivatives produced by The current Australian commercial L. luteus vari- plants as a chemical defence mechanism. While ety (Wodjil) has very low gramine concentration alkaloids are found in most legume species, they compared to European varieties such as Teo. How- have traditionally been found in high concentrations ever, Wodjil has proven agronomically costly to in the seeds of plants from the Lupinus genus (Pet- produce because of the high levels of insecticide terson et al., 1997; Wasilewko and Buraczewska, use required to deal with substantial insect infesta- 1999). Notably, a variety of alkaloids are found in tion problems (Perry et al., 1998; Berlandier and these seeds. In some varieties of the species Lupinus Sweetingham, 2003). There is evidence that aphid luteus, a major alkaloid component is gramine (Pet- infestation is directly related to the low inherent terson, 2000). Feeding studies with kernel meals from concentration of gramine (Risdall-Smith et al., the seeds of L. luteus have shown good prospect for 2004). Higher alkaloid varieties of L. luteus, such their use in aquaculture feeds because of their high as Teo, have better resistance to insect infestation, digestible protein content, although some deteriora- but it is unclear whether the higher alkaloids will tion in growth performance at high inclusion levels influence the usefulness of the kernel meal as an has been noted (Glencross et al., 2004). aquaculture feed ingredient. 514 B. Glencross et al. / Aquaculture 253 (2006) 512–522 This study reports on the nutritional influence of Table 1 gramine on the feed intake, growth, some biochemical Composition of the ingredients (all values are g/kg DM unless otherwise stated) parameters and tissue histology of rainbow trout. This c d e was examined over a range of inclusion concentra- Nutrient Fish Pregelled Cellulose Wodjil Teo meala wheat tions above and below naturally occurring concentra- starchb tions found in domesticated varieties of L. luteus. Dry matter 917 906 933 924 920 content (g/kg) Crude protein 770 7 3 512 541 2. Materials and methods Crude fat 68 11 2 79 79 Ash 142 3 2 54 73 2.1. Ingredients and diet preparation Crude fibre 0 10 660 33 35 Phosphorus 22 0 0 6 7 Organic matter 858 997 998 946 927 Purified gramine was purchased (Aldrich catalogue Gross energy 21.3 17.2 17.3 20.9 20.9 No. 1080-6, 99% purity). The gramine was dissolved (MJ/kg DM) in methanol and was added to a methanol-saturated Alkaloids 0 0 0 32 4087 cellulose slurry and the mixture was thoroughly (mg/kg DM) Arginine 43 0 0 47 61 mixed. The solvent was removed in vacuo and the Histidine 25 0 0 14 14 gramine/cellulose mixture was dried under vacuum. Isoleucine 28 2 0 17 20 Cellulose was used as a carrier for the gramine allow- Leucine 55 0 0 35 43 ing for easy dispersion of the gramine in the indivi- Lysine 46 1 0 23 17 dual diets. The gramine/cellulose mixture was added Methionine 21 0 0 4 3 Phenylalanine 29 0 0 18 21 to the experimental diets according to the formula- Threonine 32 2 0 16 19 tions in Table 1. All ingredients were ground such that Valine 34 0 0 17 19 they passed through a 600-Am screen. All experiment a Chilean Anchovy meal supplied by Skretting Australia, Cam- diets were formulated to be isonitrogenous (400 g/kg) bridge, Tasmania, Australia.
Recommended publications
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Insecticidal and Antifungal Chemicals Produced by Plants
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Insecticidal and antifungal chemicals produced by plants: a review Isabelle Boulogne, Philippe Petit, Harry Ozier-Lafontaine, Lucienne Desfontaines, Gladys Loranger-Merciris To cite this version: Isabelle Boulogne, Philippe Petit, Harry Ozier-Lafontaine, Lucienne Desfontaines, Gladys Loranger- Merciris. Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chem- istry Letters, Springer Verlag, 2012, 10 (4), pp.325 - 347. 10.1007/s10311-012-0359-1. hal-01767269 HAL Id: hal-01767269 https://hal-normandie-univ.archives-ouvertes.fr/hal-01767269 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Version définitive du manuscrit publié dans / Final version of the manuscript published in : Environmental Chemistry Letters, 2012, n°10(4), 325-347 The final publication is available at www.springerlink.com : http://dx.doi.org/10.1007/s10311-012-0359-1 Insecticidal and antifungal chemicals produced by plants. A review Isabelle Boulogne 1,2* , Philippe Petit 3, Harry Ozier-Lafontaine 2, Lucienne Desfontaines 2, Gladys Loranger-Merciris 1,2 1 Université des Antilles et de la Guyane, UFR Sciences exactes et naturelles, Campus de Fouillole, F- 97157, Pointe-à-Pitre Cedex (Guadeloupe), France.
    [Show full text]
  • Hallucinogens: an Update
    National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Hallucinogens: An Update 146 U.S. Department of Health and Human Services • Public Health Service • National Institutes of Health Hallucinogens: An Update Editors: Geraline C. Lin, Ph.D. National Institute on Drug Abuse Richard A. Glennon, Ph.D. Virginia Commonwealth University NIDA Research Monograph 146 1994 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGEMENT This monograph is based on the papers from a technical review on “Hallucinogens: An Update” held on July 13-14, 1992. The review meeting was sponsored by the National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the U.S. Department of Health and Human Services. The U.S. Government does not endorse or favor any specific commercial product or company.
    [Show full text]
  • The Electrochemistry and Fluorescence Studies of 2,3-Diphenyl Indole Derivatives
    THE ELECTROCHEMISTRY AND FLUORESCENCE STUDIES OF 2,3-DIPHENYL INDOLE DERIVATIVES A thesis in fulfillment of the requirements for the degree of Master of Philosophy By Nidup Phuntsho Supervisors Prof. Naresh Kumar (UNSW) A/Prof. Steve Colbran (UNSW) Prof. David StC Black (UNSW) School of Chemistry Faculty of Science University of New South Wales Kensington, Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Fam1ly name· Phuntsho First name: N1dup Other name/s: Abbreviation for degree as g1ven in the University calendar: MSc School Chemistry Faculty; Science Title· The electrochemistry and fluorescence studies of 2,3- diphenyl indole derivatives Abstract 350 words maximum: (PLEASE TYPE) A series of 2,3-diphenyl-4,6-dimethoxyindole derivatives with C-7 substitutions were successfully synthesized. All the novel indolyl derivatives were fully characterized using 1H NMR, 13C NMR, IR spectroscopy and high-resolution mass spectrometry (HRMS) techniques. Electrochemical oxidation pathways for indolyl derivatives were explored using cyclic voltammetry (CV), spectroelectrochemistry and electronic paramagnetic resonance (EPR) spectroscopy. The electrochemical mechanisms of 2,3-disubstituted-4,6- dimethoxyindole derivatives were proposed based on results obtained from the above-mentioned techniques. This thesis also includes the synthesis of novel indolyl ligands and explores their use in metal-binding fluorescence studies. Novel indolyl chemosensors based di-2-picolylamine (DPA) and a range of amino acids were synthesized. A group of biologically relevant metal ions was selected to study their bindin!1 modes and how that affected the fluorescence emission intensity of the ligands. DPA-based indole ligand was found to be Cu • ion selective.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI Chemical Activity Count (+)-AROMOLINE 1 (+)-CATECHIN 5 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-PRAERUPTORUM-A 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-ACETOXYCOLLININ 1 (-)-APOGLAZIOVINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-EPICATECHIN 4 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 Chemical Activity Count 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,8-CINEOLE 1 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-GINGEROL 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 14-ACETOXYCEDROL 1 14-O-ACETYL-ACOVENIDOSE-C 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H-
    [Show full text]
  • Review Article New Insight Into Adiponectin Role in Obesity and Obesity-Related Diseases
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 658913, 14 pages http://dx.doi.org/10.1155/2014/658913 Review Article New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases Ersilia Nigro,1 Olga Scudiero,1,2 Maria Ludovica Monaco,1 Alessia Palmieri,1 Gennaro Mazzarella,3 Ciro Costagliola,4 Andrea Bianco,5 and Aurora Daniele1,6 1 CEINGE-Biotecnologie Avanzate Scarl, Via Salvatore 486, 80145 Napoli, Italy 2 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, UniversitadegliStudidiNapoliFedericoII,` Via De Amicis 95, 80131 Napoli, Italy 3 Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Seconda Universita` degli Studi di Napoli, Via Bianchi 1, 80131 Napoli, Italy 4 Cattedra di Malattie dell’Apparato Visivo, Dipartimento di Medicina e Scienze della Salute, UniversitadelMolise,` ViaDeSanctis1,86100Campobasso,Italy 5 Cattedra di Malattie dell’Apparato Respiratorio, Dipartimento di Medicina e Scienze della Salute, UniversitadelMolise,` ViaDeSanctis1,86100Campobasso,Italy 6 Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Seconda UniversitadegliStudidiNapoli,` Via Vivaldi 42, 81100 Caserta, Italy Correspondence should be addressed to Aurora Daniele; [email protected] Received 2 April 2014; Accepted 12 June 2014; Published 7 July 2014 Academic Editor: Beverly Muhlhausler Copyright © 2014 Ersilia Nigro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution,
    [Show full text]
  • Information to Users
    INFORMATION TO USERS While the most advanced technology has heen used to photograph and reproduce this manuscript, the qualify of the reproduction is heavily dependent upon the qualify of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the origined, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarify on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illustrations that cannot he reproduced satisfactorily by xerography. 8703560 Houck, David Renwick STUDIES ON THE BIOSYNTHESIS OF THE MODIFIED-PEPTIDE ANTIBIOTIC, NOSIHEPTIDE The Ohio State University Ph.D. 1986 University Microfilms I nternetionsi!300 N. Zeeb R oad, Ann Arbor, Ml 48106 STUDIES ON THE BIOSYNTHESIS OF THE MODIFIED-PEPTIDE ANTIBIOTIC, NOSIHEPTIDE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By David Renwick Houck, B.S., M.S.
    [Show full text]
  • A Concise Asymmetric Synthesis of Microtubule Inhibitor Tryprostatin B
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2019 Part I: A Concise Asymmetric Synthesis of Microtubule Inhibitor Tryprostatin B Part II: Synthesis and Biological Assessment of Histone Deacetylase (HDAC) Inhibitors Part III: Acid Catalyzed Reactions of Aromatic Ketones with Ethyl Diazoacetate Md Mizzanoor Rahaman University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Rahaman, Md Mizzanoor, "Part I: A Concise Asymmetric Synthesis of Microtubule Inhibitor Tryprostatin B Part II: Synthesis and Biological Assessment of Histone Deacetylase (HDAC) Inhibitors Part III: Acid Catalyzed Reactions of Aromatic Ketones with Ethyl Diazoacetate" (2019). Theses and Dissertations. 2329. https://dc.uwm.edu/etd/2329 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. PART I: A CONCISE ASYMMETRIC SYNTHESIS OF MICROTUBULE INHIBITOR TRYPROSTATIN B PART II: SYNTHESIS AND BIOLOGICAL ASSESSMENT OF HISTONE DEACETYLASE INHIBITORS PART III: ACID CATALYZED REACTIONS OF AROMATIC KETONES WITH ETHYL DIAZOACETATE by Mizzanoor Rahaman A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry at The University of Wisconsin-Milwaukee December 2019 ABSTRACT PART I: A CONCISE ASYMMETRIC SYNTHESIS OF MICROTUBULE INHIBITOR TRYPROSTATIN B PART II: SYNTHESIS AND BIOLOGICAL ASSESSMENT OF HISTONE DEACETYLASE INHIBITORS PART III: ACID CATALYZED REACTIONS OF AROMATIC KETONES WITH ETHYL DIAZOACETATE by Mizzanoor Rahaman The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Professor M.
    [Show full text]
  • Metabolomic Insights Into the Mechanisms Underlying Tolerance to Salinity in Different Halophytes T
    Plant Physiology and Biochemistry 135 (2019) 528–545 Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes T ∗ Jenifer Joseph Benjamina, Luigi Lucinib, , Saranya Jothiramshekara, Ajay Paridaa,c a Department of Plant Molecular Biology, MS Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Taramani, Chennai, 600113, India b Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy c Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar, 751023, Odisha, India ARTICLE INFO ABSTRACT Keywords: Salinity is among the most detrimental and diffuse environmental stresses. Halophytes are plants that developed Salicornia the ability to complete their life cycle under high salinity. In this work, a mass spectrometric metabolomic Suaeda approach was applied to comparatively investigate the secondary metabolism processes involved in tolerance to Sesuvium salinity in three halophytes, namely S. brachiata, S. maritima and S. portulacastrum. Regarding osmolytes, the Plant abiotic stress level of proline was increased with NaCl concentration in S. portulacastrum and roots of S. maritima, whereas Osmolytes glycine betaine and polyols were accumulated in S. maritima and S. brachiata. Oxidative stress Important differences between species were also found regarding oxidative stress balance. In S. brachiata, the amount of flavonoids and other phenolic compounds increased in presence of NaCl, whereas these metabolites were down regulated in S. portulacastrum, who accumulated carotenoids. Furthermore, distinct impairment of membrane lipids, hormones, alkaloids and terpenes was observed in our species under salinity.
    [Show full text]
  • Anti-Quality Factors Associated with Alkaloids in Eastern Temperate Pasture
    J. Range Manage. 54: 474–489 July 2001 Anti-quality factors associated with alkaloids in eastern temperate pasture F.N. THOMPSON, J.A. STUEDEMANN, AND N.S. HILL Authors are professor emeritus of physiology, College of Veterinary Medicine University of Georgia, Athens, Ga 30602, animal scientist, J.Phil Campbell, Sr., Natural Resource Conservation Center, USDA-ARS, Watkinsville, Ga 30677 and professor Department of Crop and Soil Sciences, University of Georgia, Athens, Ga 30602. Abstract Resumen The greatest anti-quality associated with eastern temperature El principal factor anti-calidad asociado con los de zacates pasture grasses is the result of ergot alkaloids found in endo- templados del este que se utilizan para praderas es el resultado phyte-infected (Neotyphodium ceonophialum) tall fescue (Festuca de los alcaloides Ergot encontrados en el pasto Alta fescue infec- arundinacea Schreb.) The relationship between the grass and the tado de hongo endófito (Neotyphodium ceonophialum). La endophyte is mutalistic with greater persistence and herbage relación entre el pasto y el endófito es mutualista, con mayor mass as a result of the endophyte. Ergot alkaloids reduce growth persistencia y masa de forraje como resultado del endófito. Los rate, lactation, and reproduction in livestock. Significant effects alcaloides Ergot reducen la tasa de crecimiento, la lactación y la are the result of elevated body temperature and reduced periph- reproducción del ganado. Los efectos críticos son el resultado de eral blood flow such that necrosis may result. Perturbations also la elevada temperatura corporal y el reducido flujo periférico de occur in a variety of body systems. Planting new pastures with sangre que puede ocasionar en necrosis.
    [Show full text]
  • Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer
    International Journal of Molecular Sciences Review Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer Yetirajam Rajesh 1 and Devanand Sarkar 2,* 1 Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] 2 Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA * Correspondence: [email protected]; Tel.: +1-804-827-2339 Abstract: Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related Citation: Rajesh, Y.; Sarkar, D. metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their Association of Adipose Tissue and role as potential therapeutic targets.
    [Show full text]
  • Natural Products As Chemopreventive Agents by Potential Inhibition of the Kinase Domain in Erbb Receptors
    Supplementary Materials: Natural Products as Chemopreventive Agents by Potential Inhibition of the Kinase Domain in ErBb Receptors Maria Olivero-Acosta, Wilson Maldonado-Rojas and Jesus Olivero-Verbel Table S1. Protein characterization of human HER Receptor structures downloaded from PDB database. Recept PDB resid Resolut Name Chain Ligand Method or Type Code ues ion Epidermal 1,2,3,4-tetrahydrogen X-ray HER 1 2ITW growth factor A 327 2.88 staurosporine diffraction receptor 2-{2-[4-({5-chloro-6-[3-(trifl Receptor uoromethyl)phenoxy]pyri tyrosine-prot X-ray HER 2 3PP0 A, B 338 din-3-yl}amino)-5h-pyrrolo 2.25 ein kinase diffraction [3,2-d]pyrimidin-5-yl]etho erbb-2 xy}ethanol Receptor tyrosine-prot Phosphoaminophosphonic X-ray HER 3 3LMG A, B 344 2.8 ein kinase acid-adenylate ester diffraction erbb-3 Receptor N-{3-chloro-4-[(3-fluoroben tyrosine-prot zyl)oxy]phenyl}-6-ethylthi X-ray HER 4 2R4B A, B 321 2.4 ein kinase eno[3,2-d]pyrimidin-4-ami diffraction erbb-4 ne Table S2. Results of Multiple Alignment of Sequence Identity (%ID) Performed by SYBYL X-2.0 for Four HER Receptors. Human Her PDB CODE 2ITW 2R4B 3LMG 3PP0 2ITW (HER1) 100.0 80.3 65.9 82.7 2R4B (HER4) 80.3 100 71.7 80.9 3LMG (HER3) 65.9 71.7 100 67.4 3PP0 (HER2) 82.7 80.9 67.4 100 Table S3. Multiple alignment of spatial coordinates for HER receptor pairs (by RMSD) using SYBYL X-2.0. Human Her PDB CODE 2ITW 2R4B 3LMG 3PP0 2ITW (HER1) 0 4.378 4.162 5.682 2R4B (HER4) 4.378 0 2.958 3.31 3LMG (HER3) 4.162 2.958 0 3.656 3PP0 (HER2) 5.682 3.31 3.656 0 Figure S1.
    [Show full text]