Phyllodulcin, a Natural Sweetener, Regulates Obesity-Related
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ep 1384475 A1
Europäisches Patentamt *EP001384475A1* (19) European Patent Office Office européen des brevets (11) EP 1 384 475 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: A61K 31/352, C07D 311/76, 28.01.2004 Bulletin 2004/05 A61P 1/16, A23L 1/30, A23K 1/16 (21) Application number: 02713236.4 (86) International application number: (22) Date of filing: 28.03.2002 PCT/JP2002/003098 (87) International publication number: WO 2002/080904 (17.10.2002 Gazette 2002/42) (84) Designated Contracting States: • KAYAHASHI, Shun, AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Tsukuba Research Laboratories MC NL PT SE TR Tsukuba-shi, Ibaraki 305-0841 (JP) Designated Extension States: • HASHIZUME, Erika, AL LT LV MK RO SI Tsukuba Research Laboratories Tsukuba-shi, Ibaraki 305-0841 (JP) (30) Priority: 05.04.2001 JP 2001106600 • NAKAGIRI, Ryusuke, Tsukuba Research Laboratories (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Tsukuba-shi, Ibaraki 305-0841 (JP) Chiyoda-ku, Tokyo 100-8185 (JP) (74) Representative: Casalonga, Axel et al (72) Inventors: BUREAU D.A. CASALONGA - JOSSE • SAKAI, Yasushi, Paul-Heyse-Strasse 33 Foods & Liquors Research Laborat. 80336 München (DE) Inashiki-gun, Ibaraki 300-0398 (JP) (54) LIVER FUNCION PROTECTING OR AMELIORATING AGENT (57) A liver function protecting or improving agent which comprises a compound represented by the formula (I) {in the formula (I), R1,R2,R3,R4,R5,R6,R7,R8and R9 may be the same or different, and represent hydrogen, halogen, hydroxy, alkoxy or alkyl; and RA represents the formula (II) EP 1 384 475 A1 Printed by Jouve, 75001 PARIS (FR) (Cont. -
Food Additives and Ingredients Course Teacher
STUDY MATERIAL Class : M. Sc. Previous Year IInd Semester Department of Food Science & Technology Course Name : Food Additives and Ingredients Course Teacher : Dr. Smt. Alpana Singh A) Theory Lecture Outlines 1. Introduction: What are Food Additives? - Role of Food Additives in Food Processing -functions - Classification - Intentional & Unintentional Food Additives 2. Toxicology and Safety Evaluation of Food Additives - Beneficial effects of Food Additives /Toxic Effects - Food Additives generally recognized as safe (GRAS) - Tolerance levels &Toxic levels in Foods - LD 50 Values of Food additives. 3. Naturally occurring Food Additives - Classification - Role in Food Processing – Health Implications. 4. Food colors - What are food colors - Natural Food Colors - Synthetic food colors - types -their chemical nature - their impact on health. 5. Preservatives - What are preservatives - natural preservation- chemical preservatives – their chemical action on foods and human system. 6. Anti-oxidants & chelating agents - what are anti oxidants - their role in foods - types of antioxidants - natural & synthetic - examples - what are chelating agents - their mode of action in foods - examples. 7. Surface active agents - What are surface active agents - their mode of action in foods -examples. 8. Stabilizers & thickeners - examples - their role in food processing. 9. Bleaching & maturing agents: what is bleaching - Examples of bleaching agents - What is maturing - examples of maturing agents - their role in food processing. 10. Starch modifiers: what are starch modifiers - chemical nature - their role in food processing. 11. Buffers - Acids & Alkalis - examples - types - their role in food processing. 12. Sweeteners - what are artificial sweeteners & non nutritive sweeteners - special dietary supplements & their health implication - role in food processing. 13. Flavoring agents - natural flavors & synthetic flavors - examples & their chemical nature -role of flavoring agents in food processing. -
Can “Functional Sweetener” Context Increase Liking for Cookies Formulated with Alternative Sweeteners?
foods Article Can “Functional Sweetener” Context Increase Liking for Cookies Formulated with Alternative Sweeteners? Soo-Hyun Lee 1 , Seo-Youn Choe 2, Ga-Gyeong Seo 3 and Jae-Hee Hong 1,3,* 1 Research Institute of Human Ecology, Seoul University, Seoul 03080, Korea; [email protected] 2 Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; [email protected] 3 Department of Food and Nutrition, College of Human Ecology, Seoul University, Seoul 03080, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-880-6837 Abstract: Various strategies for replacing sugar with naturally derived sweeteners are being devel- oped and tested. In this study, the effect of the “functional sweetener” context, which is created by providing health-promoting information, on liking for the sweeteners was investigated using a cookie model system. Cookie samples were prepared by replacing the sugar of 100% sucrose cookies (control) with phyllodulcin, rebaudioside A, xylobiose and sucralose either entirely or partly. The sen- sory profile of the samples was obtained using descriptive evaluations. Hedonic responses to cookie samples were collected from 96 consumers under blind and informed conditions. Replacement of 100% sucrose with rebaudioside A or phyllodulcin significantly increased bitterness but replacement of 50% sugar elicited sensory characteristics similar to those of the control. Although the “functional sweetener” context did not influence overall liking, liking for the samples was more clearly distin- guished when information was provided. Consumers were segmented into three clusters according to their shift in liking in the informed condition: when information was presented, some consumers Citation: Lee, S.-H.; Choe, S.-Y.; Seo, decreased their liking for sucralose cookies, while other consumers increased or decreased their G.-G.; Hong, J.-H. -
(12) Patent Application Publication (10) Pub. No.: US 2003/0096047 A1 Riha, III Et Al
US 20030096.047A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0096047 A1 Riha, III et al. (43) Pub. Date: May 22, 2003 (54) LOW CALORIE BEVERAGES CONTAINING (60) Provisional application No. 60/179,833, filed on Feb. HIGH INTENSITY SWEETENERS AND 2, 2000. ARABINOGALACTAN Publication Classification (76) Inventors: William E. Riha III, Somerset, NJ (US); Martin Jager, Gauersheim (DE) (51) Int. Cl. ................................................. A23L 11236 (52) U.S. Cl. .............................................................. 426/548 Correspondence Address: Ferrells, PLLC P.O. BOX 312 (57) ABSTRACT Clifton, VA 20124-1706 (US) (21) Appl. No.: 10/245,129 Low calorie beverages Sweetened with high intensity Sweet eners are provided with arabinogalactan in an amount effec (22) Filed: Sep. 17, 2002 tive to mask bitter aftertaste or other off-note sensory Related U.S. Application Data characteristics associated with the high intensity Sweeteners. Particularly preferred embodiments include blends of high (63) Continuation of application No. 09/761,302, filed on intensity SweetenerS and ratioS of arabinogalactan to each Jan. 17, 2001, now abandoned. high intensity Sweetener in the blend of at least about 40. US 2003/0096047 A1 May 22, 2003 LOW CALORIE BEVERAGES CONTAINING HIGH products. Also included are anti-flatulent agents used to help INTENSITY SWEETENERS AND break up the gas created as the polysaccharides are metabo ARABINOGALACTAN lized by the intestinal microflora. 0008 WIPO Publication No. WO 99/17618 (Wrigley) CLAIM FOR PRIORITY discloses chewing gums containing arabinogalactan and 0001. This non-provisional application claims the benefit methods of making Such gums. In one embodiment the gum of the filing date of U.S. -
Vasorelaxant Effects of Methanolic Extract and Principal Constituents of Sweet Hydrangea Leaf on Isolated Rat Aorta
Journal of the Academic Society for Quality of Life (JAS4QoL) 2018 Vol. 4(1) 2:1-6 Vasorelaxant Effects of Methanolic Extract and Principal Constituents of Sweet Hydrangea Leaf on Isolated Rat Aorta Souichi NAKASHIMA, Seikou NAKAMURA, Takuya IWAMOTO, Yui MASUKAWA, Yuika EMI, Ayako OHTA, Nami NOMURA, Hisashi MATSUDA* Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8 !", #apan. &itation: NAKASHIMA, S.; NAKAMURA, S.; IWAMOTO, T.; MASUKAWA, Y.; EMI, Y.; OHTA, A.; NOMURA, N.; MATSUDA, H. (asorelaxant Effects o, Methanolic *)tract an- Princi$al &onstituents o, ./eet Hy-rangea Leaf on Isolate- Rat Aorta JAS4QoL 2018, 4(1) 2'!-6% 5nline' h6$'77as48ol.org/9$:"08 ;art! 3eceive- Date' "0!870=7"> Acce$te- Date' "0!870=7"6 Pu?lishe-' "0!870 70! 2018 International Conference and Cruise • @e "0!8 2nternational &onference on Aality o, 1i,e /ill ?e a 5-night Genting Dream Cruise leaving Sunday, Sept. 2nd, 2018 ,rom .ingapore, visiting Malaysia, &am?o-ia, 1aem &habang in @ailand, and returning to Singapore on !riday, Sept. 6th, 2018% • Be are no/ calling ,or $apers% Procee-ings as /ell as $hotos and other information ,rom $ast con- ,erences can be found at h6$'77as48ol.org/ic8ol/"0!87 By special arrangement with the cruise operators, Conference attendees will receive a one-time special discount. Full details to be as4qol.org icqol !"#$ accomodations . % 4uthor for correspon-ence (matsu-aDmb%kyoto-$hu%ac%E$F #asorelaxant %ffects of Methanolic %xtract and (rincipal Constituents of S)eet Hydrangea Leaf on Isolated Rat Aorta Souichi NAKASHIMA, Seikou NAKAMURA, Takuya IWAMOTO, Yui MA- SUKAWA, Yuika EMI, Ayako OHTA, Nami NOMURA, and Hisashi MATSUDA* Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8 !", #apan. -
Risk Assessment Report Advantame (Food Additives)
[Tentative translation] Risk Assessment Report Advantame (Food Additives) Food Safety Commission of Japan (FSCJ) July 2013 1 [Tentative translation] Contents Page Chronology of Discussions ................................................................................................. 3 List of members of the Food Safety Commission of Japan (FSCJ) ................................. 3 List of members of the Expert Committee on Food Additives, the Food Safety Commission of Japan (FSCJ)............................................................................................. 4 Executive summary............................................................................................................. 5 I. Outline of the items under assessment ........................................................................... 6 1. Use ................................................................................................................................ 6 2. Names of the principal components ........................................................................... 6 3. Molecular and structural formulae ........................................................................... 6 4. Molecular weights ....................................................................................................... 6 5. Characteristics ............................................................................................................ 6 6. Stability ....................................................................................................................... -
Differentiation Inducing Activities of Isocoumarins from Hydrangea Dulcis Folium
566 Notes Chem. Pharm. Bull. 48(4) 566—567 (2000) Vol. 48, No. 4 Differentiation Inducing Activities of Isocoumarins from Hydrangea Dulcis Folium Kaoru UMEHARA,* Misae MATSUMOTO, Mitsuhiro NAKAMURA, Toshio MIYASE, Masanori KUROYANAGI, and Hiroshi NOGUCHI School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Shizuoka 422–8526, Japan. Received September 13, 1999; accepted December 20, 1999 In the course of searching for differentiation inducers against leukemic cells from plants, we have recognized the differentiation inducing activities of the methanolic extract of Hydrangea Dulcis Folium. Activity guided sep- aration of the extract was carried out using M1 cells, and seven isocoumarins were isolated as active substances. These isocoumarins showed the activities at the concentration of 100 mM and non-cytotoxic effects even at 300 mM. Key words differentiation; Hydrangea Dulcis Folium; M1 cell; phagocytosis Differentiation inducers are of potential interest for the shown). They showed hardly any antiproliferative activities, treatment of human cancers promoting the terminal differen- and a more than 70% of growth ratio was found in 300 m M of tiation of certain human tumor cells. We have reported the these compound treated groups. Glucosides were good pro- differentiation inducing activities of triterpenes, flavones, lig- inducers. nans, and steroids.1) These compounds differentiated mouse Isocoumarins (6—8) were recongnized to have higher ac- myeloid leukemia (M1) cells into phagocytic cells, and some tivities than dihydroisocoumarins (1—5). Phagocytic activi- of them also induced the differentiation of human acute ties were observed when M1 cells were treated with 100 m M promyelocytic leukemia (HL-60) cells. In the course of of isocoumarins (6—8) and the activities were nearly equal searching for differentiation inducers against leukemic cells, to 300 m M treated groups of dihydroisocoumarins (1—5). -
Zusatzstoffe, Aromen Und Enzyme in Der Lebensmittelindustrie
Zusatzstoffe, Aromen und Enzyme in der Lebensmittelindustrie Abschätzung der Auswirkungen des „Food Improvement Agents Package“ auf Forschung, Entwicklung und Anwendung Impressum Herausgeber, Medieninhaber und Hersteller: Bundesministerium für Gesundheit, Sektion II Radetzkystraße 2, 1031 Wien erstellt vom Institut für Lebensmitteltechnologie Department für Lebensmittelwissenschaften und -technologie Universität für Bodenkultur, Muthgasse 18, A-1190 Wien Für den Inhalt verantwortlich: Ao. Univ.-Prof. DI Dr. E. Berghofer Druck: Kopierstelle des BMG, Radetzkystraße 2, 1031 Wien Bestellmöglichkeiten: Telefon: 0810/81 81 64 E-Mail: [email protected] Internet: http://www.bmg.gv.at Erscheinungstermin: August 2010 ISBN 978-3-902611-40-6 Diese Studie/Broschüre ist kostenlos beim Bundesministerium für Gesundheit, Radetzkystraße 2, 1031 Wien, erhältlich. Report zur Abschätzung der Auswirkungen des FIAP auf Forschung, Entwicklung und Anwendung von Zusatzstoffen, Aromen und Enzymen in der Lebensmittelindustrie Institut für Lebensmitteltechnologie Department für Lebensmittelwissenschaften und -technologie Universität für Bodenkultur, Wien Ao. Univ.-Prof. DI Dr. nat. techn. Emmerich Berghofer November 2009 Auswirkungen des FIAP | Inhalt Inhalt EINLEITUNG .................................................................................................................. 1 1. Allgemeines .................................................................................................................... 2 2. Zusatzstoffhersteller ..................................................................................................... -
Alternative-Sweeteners-2001.Pdf
ISBN: 0-8247-0437-1 This book is printed on acid-free paper. Headquarters Marcel Dekker, Inc. 270 Madison Avenue, New York, NY 10016 tel: 212-696-9000; fax: 212-685-4540 Eastern Hemisphere Distribution Marcel Dekker AG Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-261-8482; fax: 41-61-261-8896 World Wide Web http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the headquarters address above. Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Current printing (last digit): 10987654321 PRINTED IN THE UNITED STATES OF AMERICA Preface Alternative sweeteners, both as a group and in some cases individually, are among the most studied food ingredients. Controversy surrounding them dates back al- most a century. Consumers are probably more aware of sweeteners than any other category of food additive. The industry continues to develop new sweeteners, each declared better than the alternatives preceding it and duplicative of the taste of sugar, the gold standard for alternative sweeteners. In truth, no sweetener is perfect—not even sugar. Combination use is often the best alternative. While new developments in alternative sweeteners continue to abound, their history remains fascinating. Saccharin and cyclamates, among the earliest of the low-calorie sweeteners, have served as scientific test cases. -
WO 2016/133977 Al O
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2016/133977 Al 25 August 2016 (25.08.2016) P O P C T (51) International Patent Classification: Plaza, Cincinnati, OH 45202 (US). LIN, Peter, Yau Tak; A61K 8/37 (2006.01) A61Q 11/00 (2006.01) One Procter & Gamble Plaza, Cincinnati, OH 45202 (US). A61K 8/60 (2006.01) (74) Agent: KREBS, Jay A.; c/o The Procter & Gamble Com (21) International Application Number: pany, Global Patent Services, One Procter & Gamble PCT/US2016/018198 Plaza, C8-229, Cincinnati, OH 45202 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 17 February 2016 (17.02.2016) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 14/626,421 1 February 2015 (19.02.2015) US MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (71) Applicant: THE PROCTER & GAMBLE COMPANY PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, [US/US]; One Procter & Gamble Plaza, Cincinnati, OH SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 45202 (US). -
Isocoumarins and 3,4-Dihydroisocoumarins, Amazing Natural Products: a Review
Turkish Journal of Chemistry Turk J Chem (2017) 41: 153 { 178 http://journals.tubitak.gov.tr/chem/ ⃝c TUB¨ ITAK_ Review Article doi:10.3906/kim-1604-66 Isocoumarins and 3,4-dihydroisocoumarins, amazing natural products: a review Aisha SADDIQA1;∗, Muhammad USMAN2, Osman C¸AKMAK3 1Department of Chemistry, Faculty of Natural Sciences, Government College Women University, Sialkot, Pakistan 2Department of Chemistry, Government College of Science, Lahore, Pakistan 3Department of Nutrition and Dietetics, School of Health Sciences, Istanbul_ Geli¸simUniversity, Avcılar, Istanbul,_ Turkey Received: 23.04.2016 • Accepted/Published Online: 10.09.2016 • Final Version: 19.04.2017 Abstract: The isocoumarins are naturally occurring lactones that constitute an important class of natural products exhibiting an array of biological activities. A wide variety of these lactones have been isolated from natural sources and, due to their remarkable bioactivities and structural diversity, great attention has been focused on their synthesis. This review article focuses on their structural diversity, biological applications, and commonly used synthetic modes. Key words: Isocoumarin, synthesis, natural product, biological importance 1. Introduction The coumarins 1 are naturally occurring compounds having a fused phenolactone skeleton. Coumarin 1 was first extracted from Coumarouna odorata (tonka tree). 1 The isocoumarins 2 and 3,4-dihydroisocoumarins 3 are the isomers of coumarin 1. A number of substituted isocoumarins have been found to occur in nature; however, the unsubstituted isocoumarins have not been observed to occur naturally. Furthermore, sulfur, selenium, and tellurium analogues 4a{4c have also been known since early times (Figure 1). Figure 1. Some naturally occurring isocoumarins. The isocoumarins and their analogues occur in nature as secondary metabolites (i.e. -
(12) Patent Application Publication (10) Pub. No.: US 2008/0161324 A1 Johansen Et Al
US 2008O161324A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0161324 A1 Johansen et al. (43) Pub. Date: Jul. 3, 2008 (54) COMPOSITIONS AND METHODS FOR Publication Classification TREATMENT OF VRAL DISEASES (51) Int. Cl. (76) Inventors: Lisa M. Johansen, Belmont, MA A63/495 (2006.01) (US); Christopher M. Owens, A63L/35 (2006.01) Cambridge, MA (US); Christina CI2O I/68 (2006.01) Mawhinney, Jamaica Plain, MA A63L/404 (2006.01) (US); Todd W. Chappell, Boston, A63L/35 (2006.01) MA (US); Alexander T. Brown, A63/4965 (2006.01) Watertown, MA (US); Michael G. A6II 3L/21 (2006.01) Frank, Boston, MA (US); Ralf A6IP3L/20 (2006.01) Altmeyer, Singapore (SG) (52) U.S. Cl. ........ 514/255.03: 514/647; 435/6: 514/415; Correspondence Address: 514/460, 514/275: 514/529 CLARK & ELBNG LLP 101 FEDERAL STREET BOSTON, MA 02110 (57) ABSTRACT (21) Appl. No.: 11/900,893 The present invention features compositions, methods, and kits useful in the treatment of viral diseases. In certain (22) Filed: Sep. 13, 2007 embodiments, the viral disease is caused by a single stranded RNA virus, a flaviviridae virus, or a hepatic virus. In particu Related U.S. Application Data lar embodiments, the viral disease is viral hepatitis (e.g., (60) Provisional application No. 60/844,463, filed on Sep. hepatitis A, hepatitis B, hepatitis C, hepatitis D, hepatitis E). 14, 2006, provisional application No. 60/874.061, Also featured are screening methods for identification of filed on Dec. 11, 2006. novel compounds that may be used to treat a viral disease.