Biostratigraphy: Microfossils and Geological Time Brian Mcgowran Frontmatter More Information

Total Page:16

File Type:pdf, Size:1020Kb

Biostratigraphy: Microfossils and Geological Time Brian Mcgowran Frontmatter More Information Cambridge University Press 0521837502 - Biostratigraphy: Microfossils and Geological Time Brian McGowran Frontmatter More information Biostratigraphy Microfossils and Geological Time Using fossils to tell geological time, biostratigraphy balances biology with geology. In modern geochronology – meaning timescale-building and making correlations between oceans, continents and hemispheres – the microfossil record of speciations and extinctions is integrated with numerical dates from radioactive decay, geomagnetic reversals through time, and the cyclical wobbles of the Earth-Sun-Moon system. This important modern synthesis follows the development of biostratigraphy from classical origins into petroleum exploration and deep-ocean drilling. It explores the three-way relationship between species of micro-organism, their environments and their evolution through time as expressed in skeletons preserved as fossils. This book is essential reading for advanced students and researchers working in basin analysis, sequence stratigraphy, palaeoceanography, palaeobiology and related fields. B RIAN M C G OWRAN worked as a governmental and consultant geologist- palaeontologist in Australia, New Guinea and the southwest Pacific for several years. For three decades he was an academic, teaching and supervising in a wide range of the Earth sciences, and he has held visiting positions at the Universities of Vienna and Princeton and at the Geological Survey of Austria. His previous publications include technical books on geological excursions through the famous and touristic Cenozic outcrops of southern Australia, as well as over 200 journal articles. Oceanic drilling in the Indian Ocean in the early days of the Deep Sea Drilling Project anchored his long-time interest in the history of the Cenozoic Era and especially on the interplay through geological time of the three environmental realms – the terrestrial and oceanic realms, and the shallow seas spilling across the continental margins, the neritic realm, in between. His main focus in recent years has been the geological record of southern Australia, a locale that has had the front-row seat witnessing the birth and development of the Southern Ocean, engine room of the cooling planet during the Cenozoic Era. © Cambridge University Press www.cambridge.org Cambridge University Press 0521837502 - Biostratigraphy: Microfossils and Geological Time Brian McGowran Frontmatter More information Biostratigraphy Microfossils and Geological Time BRIAN MCGOWRAN The University of Adelaide © Cambridge University Press www.cambridge.org Cambridge University Press 0521837502 - Biostratigraphy: Microfossils and Geological Time Brian McGowran Frontmatter More information CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521837507 # Cambridge University Press 2005 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2005 Printed in the United Kingdom at the University Press, Cambridge A record for this publication is available from the British Library ISBN-13 978-0-521-83750-7 hardback ISBN-10 0-521-83750-2 hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. © Cambridge University Press www.cambridge.org Cambridge University Press 0521837502 - Biostratigraphy: Microfossils and Geological Time Brian McGowran Frontmatter More information For the six women in my inner universe: Fiona, Heidi, Lisi, Rosi, Jasmine and Susi © Cambridge University Press www.cambridge.org Cambridge University Press 0521837502 - Biostratigraphy: Microfossils and Geological Time Brian McGowran Frontmatter More information Contents Preface xi Acknowledgments xix 1 Biogeohistory and the development of classical biostratigraphy 1 Summary 1 Introduction 1 Significance of fossils 3 Zones and zonation through a century 8 2 The biostratigraphy of fossil microplankton 19 Summary 19 Introduction 19 An ascending conceptual series in planktonic zones 21 Planktonic foraminifera in the Caucasus 22 The Trinidad connection 25 From assemblage zones to range zones 28 From range zones to phylozones 29 Coping with provinciality 33 Towards the chronozone 36 Datums 38 Cross-correlation, calibration and quality control 42 Correlations in the Austral Palaeogene 46 3 Biostratigraphy: its integration into modern geochronology 47 Summary 47 Arcane initials aplenty: the CTS, the GPTS and the IMBS 47 Homotaxy and diachrony 54 Biostratigraphy and cyclostratigraphy 65 vii © Cambridge University Press www.cambridge.org Cambridge University Press 0521837502 - Biostratigraphy: Microfossils and Geological Time Brian McGowran Frontmatter More information viii Contents 4 Biostratigraphy and biohistorical theory I: evolution and correlation 85 Summary 85 Two approaches to evolutionary theory 85 Micropalaeontology and biostratigraphy: preconceptions and practice 86 The thoughts of Martin Glaessner 88 Planktonic foraminifera in correlation: bioentities or biocharacters? 91 Planktonic foraminifera: biogeography and stratification 105 Planktonic foraminifera and stable isotopes 108 Planktonic foraminifera and molecular systematics 114 Speciation in biostratigraphically important lineages 117 Stage of evolution: the larger foraminifera 134 Stage of evolution: the Cenozoic mammals 147 The tensions in biostratigraphy: can the species survive? 152 Concluding comments: evolution and biochronology 158 5 Systemic stratigraphy: beyond classical biostratigraphy 164 Summary 164 Systemic stratigraphy 164 Biostratigraphy of reversible events and high-resolution biostratigraphy 166 Sequence biostratigraphy 176 6Biostratigraphy and biohistorical theory II: carving Nature at the joints 205 Summary 205 Hierarchy, tiering and the scales of time and life 205 Are there natural biostratigraphic units? 214 Cenozoic chronofaunas of Tethyan neritic foraminifera 227 On the durations of Cenozoic biozones and biochrons 244 Why are good index fossils, good index fossils? 248 Taxic stratigraphic ranges and quantified biostratigraphy 263 7 Biostratigraphy and chronostratigraphic classification 271 Summary 271 Introduction: why do we need a geological timescale? 271 What is a stage? 277 Microfossils and stages 282 Concurrent boundaries in a nested hierarchy? 284 Microplankton and classical stages 286 Where is the Cretaceous–Palaeogene boundary? 291 Where is the Paleocene–Eocene boundary? 297 Where is the Eocene–Oligocene boundary? 300 © Cambridge University Press www.cambridge.org Cambridge University Press 0521837502 - Biostratigraphy: Microfossils and Geological Time Brian McGowran Frontmatter More information Contents ix Where is the Palaeogene–Neogene boundary? 305 Where is the Miocene–Pliocene boundary? 310 Where is the Pliocene–Pleistocene boundary? 312 Regional timescales 312 Depositional sequences and regional stages 336 Conclusion: on fossils and time 339 8 On biostratigraphy and biogeohistory 346 Summary 346 The idea of Earth history 346 But is it history? 355 ‘Consilience of inductions’ 360 Another voice: hermeneutics rides again 364 Early biostratigraphy: theory-free? 366 Species and biostratigraphy 369 On the ‘species problem’ 372 Species as individuals 377 The change in world view 383 Finale: the three central concerns of biostratigraphy 394 References 397 Index 447 © Cambridge University Press www.cambridge.org Cambridge University Press 0521837502 - Biostratigraphy: Microfossils and Geological Time Brian McGowran Frontmatter More information Preface Some geologists and palaeontologists recount their awakenings as occurring while collecting minerals and rocks, or when suddenly seeing – really seeing – fossils in rocks for the first time. Others chose geology to fill in the fourth subject in first-year science, as not much more than a happy accident. Many of the teachers at my high school were of the Depression generation for whom teaching was the main career option before the war, and some were indeed excellent in the mathematics-science area. But becoming a successful junior cricketer was more important to me than becoming a scientist. In those days science for the A-stream comprised physics, chemistry and maths, all of which held some interest for me, but that was all. Botany or physiology were for girls, and evolutionary biology and geological time remained as much a shrouded mystery for my generation as it was for our otherwise well-educated antecedents. I came upon W. W. Norton’s Physical Geology (1915) by chance at the age of 16 – it had belonged to an aunt who did Geology I with Douglas Mawson – and I became entranced with theories of the landscape and its history which, together with other natural history and human history, were quite absent from my formal education. When I should have been studying for the public exams, I was digging around in the geology section of the Adelaide public library. Without being very self-aware about it, I was groping towards the realization that Earth and life evolution
Recommended publications
  • In Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core) Molly F
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 2009 Significance of the Trace Fossil Zoophycos in Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core) Molly F. Miller Vanderbilt University, [email protected] Ellen A. Cowan Appalachian State University, [email protected] Simon H. H. Nielsen Florida State University Follow this and additional works at: http://digitalcommons.unl.edu/andrillrespub Part of the Oceanography Commons, and the Paleobiology Commons Miller, Molly F.; Cowan, Ellen A.; and Nielsen, Simon H. H., "Significance of the Trace Fossil Zoophycos in Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core)" (2009). ANDRILL Research and Publications. 61. http://digitalcommons.unl.edu/andrillrespub/61 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Antarctic Science 21(6) (2009), & Antarctic Science Ltd (2009), pp. 609–618; doi: 10.1017/ s0954102009002041 Copyright © 2009 Cambridge University Press Submitted July 25, 2008, accepted February 9, 2009 Significance of the trace fossil Zoophycos in Pliocene deposits, Antarctic continental margin (ANDRILL 1B drill core) Molly F. Miller,1 Ellen A. Cowan,2 and Simon H.H. Nielsen3 1. Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37235, USA 2. Department of Geology, Appalachian State University, Boone, NC 28608, USA 3. Antarctic Research Facility, Florida State University, Tallahassee FL 32306-4100, USA Corresponding author — Molly F.
    [Show full text]
  • Geochronological and Paleomagnetic Constraints on the Lower Cretaceous Dalazi Formation from the Yanji Basin, NE China, and Its Tectonic Implication
    minerals Article Geochronological and Paleomagnetic Constraints on the Lower Cretaceous Dalazi Formation from the Yanji Basin, NE China, and its Tectonic Implication Zhongshan Shen 1,2,3, Zhiqiang Yu 4,5,* , Hanqing Ye 1,2,3, Zuohuan Qin 6 and Dangpeng Xi 6 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; [email protected] (Z.S.); [email protected] (H.Y.) 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China 4 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 CAS Centre for Excellence in Life and Paleoenvironment, Beijing 100044, China 6 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; [email protected] (Z.Q.); [email protected] (D.X.) * Correspondence: [email protected] Abstract: The Lower Cretaceous Dalazi Formation in the Yanji Basin, eastern Jilin Province is of particular interest because it contains key fresh water fossil taxa, oil and gas resources, a potential terrestrial Albian–Cenomanian boundary, and regional unconformities. However, the lack of a Citation: Shen, Z.; Yu, Z.; Ye, H.; Qin, precise chronology for the non-marine strata has precluded a better understanding of the regional Z.; Xi, D. Geochronological and stratigraphic correlation and terrestrial processes. Here, we report magnetostratigraphic and U–Pb Paleomagnetic Constraints on the geochronologic results of a sedimentary sequence from the Xing’antun section in the Yanji Basin.
    [Show full text]
  • Biostratigraphy
    Biostratigraphy Geology 331 Paleontology The Grand Canyon of the Colorado River in Arizona Lithostratigraphic correlation between Grand Canyon, Zion, and Bryce Canyon national parks allows construction of a composite stratigraphic column. Lithostratigraphic correlation Grand Canyon, Zion Canyon, Bryce Canyon between Grand Canyon, Zion, and Bryce Canyon national parks Top of Navaho Ss. allows construction of a Top of Kaibab Ls. composite stratigraphic column. Zion Canyon National Park, Jurassic Sedimentary Rocks Jurassic Navaho Sandstone, Zion National Park, wind-blown cross-bedding. Bryce Canyon, Utah, Cretaceous sedimentary rocks Correlation • Determination of the equivalence of bodies of rock at different locations. There are two kinds of correlation: • Lithostratigraphic - matching up continuous formations. • Chronostratigraphic - matching up rocks of the same age. Usually done with fossils using biostratigraphy. Correlation • Over short distances lithostratigraphic correlation is the same as chronostratigraphic correlation. • Over medium distances they are not the same. • Over long distances only chronostratigraphic correlation can be used. Original Lateral Continuity: permits lithostratigraphic correlation – note the continuous beds Lithostratigraphic and Chronostratigraphic Relationships Sedimentary facies, and their subsequent rocks, are usually time-transgressive. http://www.geol.umd.edu/~tholtz/G331/lectures/331strat.html Sedimentary Facies Modern Barrier Island Time Lines Sedimentary Facies in the subsurface Wire line logs Time
    [Show full text]
  • Newsletter Number 80
    The Palaeontology Newsletter Contents 80 Editorial 2 Association Business 3 News 16 Association Meetings 19 From our correspondents The very Dickens of a palaeontologist 23 PalaeoMath 101: Round the Bend … 32 Future meetings of other bodies 49 Meeting Report British Ecological Society Macro-SIG 57 Reporter: A fossil-fuelled future? 60 Encouraging palaeontology in schools 63 James Mckay – palaeo artist 75 Caithness fish on Edinburgh street 79 Palaeontology vol 55 parts 3 & 4 82–83 SPP 87: Tabulate Corals in Poland 84 Reminder: The deadline for copy for Issue no 81 is 3rd November 2012. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 80 2 Editorial Summer is upon us, whatever that means for you. For me in Scotland it is the long hours of daylight and the chance to get round lots of mountaintops in a day and collect fossils in better light than usual. As the short report about Ken Shaw’s fossil fish find in a paving slab in the heart of Edinburgh shows, sometimes exciting finds await us in rather unexpected places. For others, school is out – but Gordon Neighbour’s article on palaeontology and schools reminds us that we should be looking to what we can do to help encourage school pupils to engage with palaeontology. Although Liam Herringshaw’s somewhat downbeat article about the lack of retention of post-Ph.D. palaeontologists by UK universities and other institutions may have those pupils asking why they should focus on palaeontology. The analytical palaeobiologist in me would ask immediately whether other “clades” of Earth Scientists are having a similarly hard time of it.
    [Show full text]
  • Biostratigraphy and Palaeobiology of Early Neoproterozoic Strata of the Kola Peninsula, Northwest Russia
    Biostratigraphy and palaeobiology of Early Neoproterozoic strata of the Kola Peninsula, Northwest Russia JOAKIM SAMUELSSON Samuelsson, J.: Biostratigraphy and palaeobiology of Early Neoproterozoic strata of the Kola Peninsula, Northwest Russia. Norsk Geologisk Tidsskrift, Vol. 77, pp. 165-192. Oslo 1997. ISSN 0029-196X. Shales and siltstones from the Early Neoproterozoic K.ildinskaya, Volokovaya and Einovskaya Groups and the Skarbeevskaya Fonnation (Kildin Island, Sredni and Rybachi Peninsulas) and the Chapoma Fonnation (Tiersky Coast) on the Kola Peninsula, Northwest Russia yielded assemblages of moderately well-preserved organic-walled acid-resistant microfossils (acritarchs, and prob­ able cyanobacterial sheaths). The assemblages consist of cosmopolitan taxa recovered from various Early Neoproterozoic (Late and Terminal Riphean) settings in Scandinavia, Russia, Yakutia, North America and elsewhere. Among the recovered taxa, Lopho­ sphaeridium laufeldii Vida) 1976 comb. nov., Satka colonialica Jankauskas, Simia annulare (Timofeev) Mikhailovna, Tasmanites rifejicus Jankauskas, Valeria lophostriata Jankauskas and Vandalosphaeridium ?varangeri Vida! are regarded as the biostratigraphi­ cally most significant. One taxon, Trachysphaeridium laufeldi Vida) is transferred to Lophosphaeridium laufeldii (Vida!) Samuelsson comb. nov. The units examined herein are all considered to be Late Riphean in age and are correlated with other units of similar age in northem and southem Scandinavia, Svalbard, East Greenland and the southem Urals. Joakim Samuelsson, Uppsala University, Institute of Earth Sciences, Micropalaeontology, Norbyviigen 22, S-752 36 Uppsala, Sweden. Introduction Neoproterozoic strata worldwide (e.g. Vidal 1976a; Vidal During the Neoproterozoic, the Baltica palaeocontinent 1981a; Knoll 1982a, 1982b; Vidal & Siedlecka 1983; underwent major sedimentological, tectonic and palaeo­ Knoll 1984; Vidal 1985; Knoll et al. 1989; Jankauskas et geographical changes (Kumpulainen & Nystuen 1985; al.
    [Show full text]
  • Lab 8: Graptolites and Trace Fossils
    Geos 223 Introductory Paleontology Spring 2006 Lab 8: Graptolites and Trace Fossils Name: Section: AIMS: This lab will introduce you to graptolites (Part A), and to a branch of paleontology known as ichnology (the study of trace fossils; Part B). By the end of Part A this lab you should be familiar with the basic anatomy of graptolites, and have an appreciation for how graptolites are used in the biostratigraphic zonation of the Lower Paleozoic. By the end of Part B of this lab you should be familiar with the basic ethological groups of trace fossils, and have an appreciation for how trace fossils can provide important paleoecological and paleoenvironmental information. PART A: GRAPTOLITES. Graptolites (Class Graptolithina) are an extinct group of colonial hemichordate deuterostomes, similar in morphology and life habit to the modern colonial pterobranch hemichordate Rhabdopleura. The graptolite colony consisted of many clonal zooids, each occupying a theca in the communal skeleton (the rhabdosome). The thecae formed in rows along branches of the rhabdosome called stipes. The rhabdosome was made of a non-mineralized, organic, non-chitinous protein called periderm. Graptolite colonies were either erect fan-like structures growing from the seafloor (most dendroid graptolites, ranging from the Middle Cambrian to the Late Carboniferous) or free-floating in the plankton (the commoner graptoloid graptolites, probably descended from dendroid ancestors and ranging from the Early Ordovician to the Early Devonian). Graptoloid graptolites are very important biostratigraphic zone fossils in Lower Paleozoic strata. 1 DENDROID GRAPTOLITES: A1: Dictyonema. Dendroid graptolite colonies formed fan-like structures with thecae-bearing stipes held apart by horizontal struts (dissepiments).
    [Show full text]
  • Convolutional Neural Networks As an Aid to Biostratigraphy and Micropaleontology: a Test on Late Paleozoic Microfossils
    PALAIOS, 2020, v. 35, 391–402 Research Article DOI: http://dx.doi.org/10.2110/palo.2019.102 CONVOLUTIONAL NEURAL NETWORKS AS AN AID TO BIOSTRATIGRAPHY AND MICROPALEONTOLOGY: A TEST ON LATE PALEOZOIC MICROFOSSILS RAFAEL PIRES DE LIMA,1,2 KATIE F. WELCH,1 JAMES E. BARRICK,3 KURT J. MARFURT,1 ROGER BURKHALTER,4 MURPHY CASSEL,1 AND GERILYN S. SOREGHAN1 1School of Geosciences, The University of Oklahoma, 100 East Boyd Street, RM 710, Norman, Oklahoma 73019, USA 2The Geological Survey of Brazil–CPRM, 55 Rua Costa, S˜ao Paulo, S˜ao Paulo, Brazil 3Department of Geosciences, Mail Stop 1053, Texas Tech University, Lubbock, Texas 79409, USA 4Sam Noble Museum, The University of Oklahoma, 2401 Chautauqua Ave., Norman, Oklahoma 73072, USA email: [email protected]; [email protected] ABSTRACT: Accurate taxonomic classification of microfossils in thin-sections is an important biostratigraphic procedure. As paleontological expertise is typically restricted to specific taxonomic groups and experts are not present in all institutions, geoscience researchers often suffer from lack of quick access to critical taxonomic knowledge for biostratigraphic analyses. Moreover, diminishing emphasis on education and training in systematics poses a major challenge for the future of biostratigraphy, and on associated endeavors reliant on systematics. Here we present a machine learning approach to classify and organize fusulinids—microscopic index fossils for the late Paleozoic. The technique we employ has the potential to use such important taxonomic knowledge in models that can be applied to recognize and categorize fossil specimens. Our results demonstrate that, given adequate images and training, convolutional neural network models can correctly identify fusulinids with high levels of accuracy.
    [Show full text]
  • Paleontology of the Bears Ears National Monument
    Paleontology of Bears Ears National Monument (Utah, USA): history of exploration, study, and designation 1,2 3 4 5 Jessica Uglesich ,​ Robert J. Gay *,​ M. Allison Stegner ,​ Adam K. Huttenlocker ,​ Randall B. ​ ​ ​ ​ Irmis6 ​ 1 Friends​ of Cedar Mesa, Bluff, Utah 84512 U.S.A. 2 University​ of Texas at San Antonio, Department of Geosciences, San Antonio, Texas 78249 U.S.A. 3 Colorado​ Canyons Association, Grand Junction, Colorado 81501 U.S.A. 4 Department​ of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706 U.S.A. 5 University​ of Southern California, Los Angeles, California 90007 U.S.A. 6 Natural​ History Museum of Utah and Department of Geology & Geophysics, University of Utah, 301 Wakara Way, Salt Lake City, Utah 84108-1214 U.S.A. *Corresponding author: [email protected] or [email protected] ​ ​ ​ Submitted September 2018 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3442v2 | CC BY 4.0 Open Access | rec: 23 Sep 2018, publ: 23 Sep 2018 ABSTRACT Bears Ears National Monument (BENM) is a new, landscape-scale national monument jointly administered by the Bureau of Land Management and the Forest Service in southeastern Utah as part of the National Conservation Lands system. As initially designated in 2016, BENM encompassed 1.3 million acres of land with exceptionally fossiliferous rock units. Subsequently, in December 2017, presidential action reduced BENM to two smaller management units (Indian Creek and Shash Jáá). Although the paleontological resources of BENM are extensive and abundant, they have historically been under-studied. Here, we summarize prior paleontological work within the original BENM boundaries in order to provide a complete picture of the paleontological resources, and synthesize the data which were used to support paleontological resource protection.
    [Show full text]
  • Fossils, Rocks, and Time
    * W T' U.S. Department of the Interior / U.S. Geological Survey Fossils, Rocks, and Time ' Sfi 0. Front and back cover: This photographic collage of fossils shows the amazing diversity of plant and animal life on Earth over the last 600 million years. Fossils, Rocks, and Time by Lucy E. Edwards and John Pojeta, Jr. A scientist examines and compares fossil shells. Introduction e study our Earth for many reasons: to find water to drink or oil to run our cars Earth is Wor coal to heat our homes, to know constantly where to expect earthquakes or landslides or floods, and to try to understand our natural sur­ changing roundings. Earth is constantly changing nothing nothing on its on its surface is truly permanent. Rocks that are now on top of a mountain may once have been surface is truly at the bottom of the sea. Thus, to understand permanent. the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of cen­ turies. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the cal­ endar, which is based on the movements of Earth in space. One spin of Earth on its axis is a day, and one trip around the Sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved.
    [Show full text]
  • Tertiary Stratigraphy and Paleobotany of the Cook Inlet Region, Alaska
    Tertiary Stratigraphy and Paleobotany of the Cook Inlet Region, Alaska By JACK A. WOLFE, D. M. HOPKINS, and ESTELLA B. LEOPOLD TERTIARY BIOSTRATIGRAPHY OF THE COOK INLET REGION, ALASKA GEOLOGICAL SURVEY PROFESSIONAL PAPER 398-A Discussion of stratigraphic signrJicance of fossil plants from the Chichaloon, Kenai, and TsadzKa Formations Property of District Library Alaska District UNITED STATES GOVERNMENT PRINTING OFFICE. WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 70 cents (paper cover) CONTENTS Abstract--,---------------------------------------- Geology-Continued Introduction,-------------------------------------- Neogene stratigraphy-Continued Previous geologic studies......................... Kenai and Tsadaka Formations-Continued Acknowledgments----- - - - - - - - - - - - - - - - - - - - - - - - - - - Provincial stages-Continued Evolution of stratigraphic nomenclature and age assign- Seldovian Stage-Continued ments------------------------------------------- Mollusks-- - - - - - - .- - - - - - - - - - - - - - Age ------------..-------------- Gwlogy------------------------------------------- Homerian Stage-, - --- - - - - - - - - - - - -- - Paleogene stratigraphy .......................... Definition ---,-- - - - - - - - - - - - - - - - - Chickaloon Formation -,,----- ------ ---- --- -- Flora andage-------------------------- Fresh-water mollusks-----,---
    [Show full text]
  • S Rule in the Evolution of Giant Flying Reptiles
    ARTICLE Received 19 Nov 2013 | Accepted 5 Mar 2014 | Published 2 Apr 2014 DOI: 10.1038/ncomms4567 OPEN Competition and constraint drove Cope’s rule in the evolution of giant flying reptiles Roger B.J. Benson1, Rachel A. Frigot2, Anjali Goswami3, Brian Andres4 & Richard J. Butler5 The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. 1 Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK. 2 Center for Functional Anatomy and Evolution, Johns Hopkins University, Baltimore, Maryland 21205, USA. 3 Department of Genetics, Evolution & Environment and Department of Earth Sciences, University College London, London WC1E 6BT, UK. 4 School of Geosciences, University of South Florida, Tampa, Florida 33620, USA. 5 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
    [Show full text]
  • Evolutionary Paleontology Analysis Links to Primary Literature Biostratigraphy Biological Aspects Additional Readings Taphonomy Evolutionary Process and Life History
    Paleontology - AccessScience from McGraw-Hill Education http://accessscience.com/content/paleontology/484100 (http://accessscience.com/) Article by: Brett, Carlton E. Department of Geological Sciences, University of Rochester, Rochester, New York. Gould, Stephen J. Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts. Last updated: 2014 DOI: https://doi.org/10.1036/1097-8542.484100 (https://doi.org/10.1036/1097-8542.484100) Content Hide Applications of Paleontology Trace fossil studies (ichnology) Life properties Systematics and taxonomy Paleoecology and paleoenvironmental Sketch of life history Evolutionary paleontology analysis Links to Primary Literature Biostratigraphy Biological Aspects Additional Readings Taphonomy Evolutionary process and life history The study of life history as recorded by fossil remains. The term fossil, from the Latin “fossilis” (digging; dug up), originally referred to a variety of objects dug from the Earth, some of which were believed to be supernatural substances imbued with mystical powers. However, in a modern context, fossils can be defined as recognizable remains or traces of activity of prehistoric life. This broad definition takes in a diversity of ancient remains, but specifically excludes inorganic, mineralized structures, even those that spuriously resemble life forms (for example, dendritic patterns of manganese crystals: dendrites), sometimes termed pseudofossils (false fossils). See also: Fossil (/content/fossil/270100) The definition also makes several qualifying statements: Fossils must be recognizably tied to once-living organisms, excluding amorphous organic matter such as coal and petroleum (but see information on biomarkers below), although these are certainly derived from the products of organisms and sometimes referred to as “fossil fuels.” The definition also encompasses two broad categories of fossils: (a) remains that are primarily skeletal hard parts (body fossils) and (b) traces of activity that is evidence of behavior of living organisms (trace fossils).
    [Show full text]