Systems with Infinite-Dimensional State Space: the Hilbert Space Approach

Total Page:16

File Type:pdf, Size:1020Kb

Systems with Infinite-Dimensional State Space: the Hilbert Space Approach Systems with Infinite-Dimensional State Space: The Hilbert Space Approach Abstract-The contrd of infmitedimensional systems has received of them. Ideally, a complete theory would have several layers. much attention from engineers and even mathematicians Realizability There should be a general theory giving the structure common although fmt considered m [4] has been ignored until recently. Ironi- to many situations and then there should be a branched hier- dyenough while state-space systems theory was developing in the edy 1960’s a mathematical study of scattering and of wn-selfadjoint archy of increasingly special conditions and increasingly spe- operptorsproduced a parallel theory which was infmite dimensional cific theorems. Such an extensive theory will, of course, take %om the beginning. When the dose relationship between the two sub a long time to develop. On the positive side the general theory jects became known time invariant infiitedimensional systems theory of infinite-dimensional A, B, C, D-type linearsystems now advanced quickly and at a general level it now seems reasonably com- seems reasonably complete and that is whatthis article pre- plete. This paper desaibes the connection between mathematical scat- tering and systems Itthen gives a thaough treatment of infite sents. We describe a realistic setting for many infinite-dimen- dimensionnl rime invariant continuous time systems The last section sional problems to which the main properties of general finite- lists recent scattering results whi& might be of engineering intexest. dimensional systems adapt suitably. Although the world abounds in important infinite- I.INTRODUCTION dimensional systems, of what benefit is a theory about them? Certainly the abstract considerations to be presented here are ERY ROUGHLY SPEAKING, a situation which re- not of immediate interest to the practicing engineer. However, quires infinitelymany parameters to specify will be they may ultimately be influential. For example, theone V modeled by asystem with infinite-dimensional state problem common to mostinfinite-dimensional design situa- space. Very early in the come of a design, one restricts atten- tions is: How does one select a finitely parameterized approxi- tion to a few parameters which he believes are the most im- mation and how does one determine its accuracy?Problems portant. However, the resulting heavily proscribedsystems of this type are mathematically speaking infinite dimensional will still have infinite-dimensional state space. For example, a and one would have little hope of developing a decent theory variable coefficienttransmission linehas an infinitely of finite-dimensional approximationswithout first having a parameterized space of capacitance, inductance, etc., distribu- good theory of infinite-dimensionalsystems. Hopefully the tions and any system corresponding to a transmission line will approach taken here addresses that need and provides a foun- have infinitedimensional state space. Even though there are dation for building the more specialized layers of theory which many ways to discard all but a finite numberof design parame- will follow. Another benefit of having an infinite-dimensional ters such as to consider only cascades of a prescribed number theory closely attuned to a classical mathematical physics ap- of uniform lines or to prescribe u priori the tapering of the proach (as this one is) is that developments in that area can be line, all such systemsstill have infinite-dimensional state adapted to (and encouraged by) engineering theory; some of space. In thissame vein semiconductorsadmit an infinite Section IV andthe entirety of Section V are examples. variety of doping intensities, of geometries, and of doping Whereas, it would be highly irresponsible to urge a practicing geometries and even the practical devices with heavily re- engineer to learn the abstract theory described herein it would stricted geometries and doping patterns have an infinite-dimen- be equally foolish for theoretical engineers to abandon such sional space of states. This applies to an enormous number of pursuits since unifieda andthorough understanding of devices and though finite dimensional systems suffice as mod- infinite-dimensional realizability should be valuable. els for basic circuits, many components of a modem circuit Now that we have motivated a study of infinite-dimensional when modeled carefully would be infinite dimensional. From systems, we give some idea of what the theory entails and how this viewpoint, infinitedimensional engineering problems pos- itconnects with other areas. The basic general principles sibly outnumber the intrinsically finite-dimensional ones. To which have emerged in finite-dimensional systems theory are reemphasize this point we mention that besides the many in- the fact that two ‘minimal’ systems with the same frequency- finite-dimensional systems thought of more in connection with response function (FRF) are isomorphic, every rational func- control (cf. [43]) there are transmission lines, microwave cir- tion is the FRF forsome ‘minimal’ system, and the eigenvalues cuits, thin film devices, surface acoustic wave devices and in- of the ‘state operator’ for a minimal system give the pole loca- deed most semiconductor devices. tions of the FRF. During the early 1960’s,while this was de- In fact, there are so many examples of infinite-dimensional veioping a mathematicalcounterpart evolved independently. systems that any theory general enough to deal with most of The mathematical theory is infinite dimensional and by com- them would be too general to say much specific about any one bining it with’the systems approach precise analogs of these basic theorems are now available in infinite dimensions. Thus Manuscript received January 15, 1975;revised June 15, 1975. there has been a recent advance in systems theory initiated by This work was supported in part by the National Science Foundation. The author is withthe Department of Mathematics, University of the discovery of existing mathematical work and greatly expe- California at San Diego, La Jolla, CA. dited by its application. A surprising fact is that not only do 146 IEEE,PROCEEDINGS OF THE JANUARY 1976 the mathematical works provide techniques for the study of devoted his time to design of lumped circuits using the chain systems, the works themselves are reasonably close to being formalism (cf. the survey [ 16]), and his colleague Arov has studiesof systems, For example, the book by Nagy and pursued infinitedimensional problems [ 1 1. Foias [491, work which was done for purely mathematical rea- Amusingly enough a major problem which has troubled the sons, could be viewed after a translation of terms almost en- field since completion of the earlier work centers on deciding tirely as atreatise on infinitedimensional discrete-timesys- what one means by an infinite dimensional system. The type tems. If the results and methods of the book are restricted to of linear system treated in these works always has the form finitedimensions they agreewith thestandard engineering d ones for the case of‘lossles:’ discrete systems. A description - x(t) = Ax(t) + Bu(t) of the relationship appears in[ 281. dt The work of Lax and Phillips though slightly less similar in y(t)= Cx(t) +Du(r) form is moresimilar in spirit to systemstheory. This is a theory of scattering, which includes nonsymmetric scatterers but amusingly enough it is not at all clear what type of linear as opposed to the radially symmetric ones concentrated upon maps B and C should be. In fact this has been a major prob- in classical physics. The original work compiled in [37] treats lem troubling the field since the connection between systems lossless situations while [38] gives a lossy scattering theory. andoperator theory was discovered.Fuhrmann andHelton This works puts great emphasis on the ‘state operator,’ but in- avoid the problem by treating mostly discrete time systems. put and output operators never appear and are replaced by a In treating the continuous time case Dewilde avoids B, C en- more general notion of “incoming and outgoing space.” De- tirely while Baras and Brockett choose them in a mathemati- spite these differences the author feels that Lax-Phillips scat- cally convenient way which eliminates most standard exam- teringand infinite-dimensional systems theory arelinked so ples. Thus an essential task is to finda formulationfor closely in substanceand spirit that future development of continuoustime systems whichcontains the main examples these subjects should go hand in hand. Section 111 is devoted and to which the basic finite dimensional systems facts extend to describing the preciserelationship between the two sub- in a reasonable fashion. Ironically enough the techniques for jects. An immediateconsequence is thatone can seehow proving these facts have (for the last three yein) been much systems theory looks in the setting of classical scattering, how clearer than what the systems themselves should be. Even for for example the classical objects of scattering, wave operators, studying discrete time systems a slightly broader set up than andscattering operators, compare to objectsin systems the one presently used might be desirable since it is necessary theory. Quite possibly these more established objects will be to embrace some common circumstances (see Section11-B). easier to use for infinite dimensions than controllability and The major accomplishment of this paper is that it gives a observabilityoperators. Thearticle
Recommended publications
  • The Transfer Operator Approach to ``Quantum Chaos
    Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions Front page The transfer operator approach to “quantum chaos” Classical mechanics and the Laplace-Beltrami operator on PSL (Z) H 2 \ Tobias M¨uhlenbruch Joint work with D. Mayer and F. Str¨omberg Institut f¨ur Mathematik TU Clausthal [email protected] 22 January 2009, Fernuniversit¨at in Hagen Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions Outline of the presentation 1 Modular surface 2 Spectral theory 3 Geodesics and coding 4 Transfer operator 5 Connection to spectral theory 6 Conclusions Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions PSL Z The full modular group 2( ) Let PSL2(Z) be the full modular group PSL (Z)= S, T (ST )3 =1 = SL (Z) mod 1 2 h | i 2 {± } 0 1 1 1 1 0 with S = − , T = and 1 = . 1 0 0 1 0 1 a b az+b if z C, M¨obius transformations: z = cz+d ∈ c d a if z = . c ∞ Three orbits: the upper halfplane H = x + iy; y > 0 , the 1 { } projective real line PR and the lower half plane. z , z are PSL (Z)-equivalent if M PSL (Z) with 1 2 2 ∃ ∈ 2 M z1 = z2. The full modular group PSL2(Z) is generated by 1 translation T : z z + 1 and inversion S : z − . 7→ 7→ z (Closed) fundamental domain = z H; z 1, Re(z) 1 . F ∈ | |≥ | |≤ 2 Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions PSL Z H The modular surface 2( )\ The upper half plane H = x + iy; y > 0 can be viewed as a hyperbolic plane with constant{ negative} curvature 1.
    [Show full text]
  • Arxiv:1910.08491V3 [Math.ST] 3 Nov 2020
    Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cram´er representations and applications Amaury Durand ∗† Fran¸cois Roueff ∗ September 14, 2021 Abstract The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. However, the recent literature on this topic is often based on restrictive assumptions or lacks important insights. In this paper, we follow earlier approaches which fully exploit the normal Hilbert module property of the space of Hilbert- valued random variables. This approach clarifies and completes the isomorphic relationship between the modular spectral domain to the modular time domain provided by the Gramian- Cram´er representation. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cram´er-Karhunen-Lo`eve decomposition and harmonic functional principal component analysis without relying on simplifying assumptions. 1 Introduction Functional data analysis has become an active field of research in the recent decades due to technological advances which makes it possible to store longitudinal data at very high frequency (see e.g. [22, 31]), or complex data e.g. in medical imaging [18, Chapter 9], [15], linguistics [28] or biophysics [27]. In these frameworks, the data is seen as valued in an infinite dimensional separable Hilbert space thus isomorphic to, and often taken to be, the function space L2(0, 1) of Lebesgue-square-integrable functions on [0, 1]. In this setting, a 2 functional time series refers to a bi-sequences (Xt)t∈Z of L (0, 1)-valued random variables and the assumption of finite second moment means that each random variable Xt belongs to the L2 Bochner space L2(Ω, F, L2(0, 1), P) of measurable mappings V : Ω → L2(0, 1) such that E 2 kV kL2(0,1) < ∞ , where k·kL2(0,1) here denotes the norm endowing the Hilbert space L2h(0, 1).
    [Show full text]
  • An Introduction to Fractal Uncertainty Principle
    An introduction to fractal uncertainty principle Semyon Dyatlov (MIT / UC Berkeley) The goal of this minicourse is to give a brief introduction to fractal uncertainty principle and its applications to transfer operators for Schottky groups Part 1: Schottky groups, transfer operators, and resonances Schottky groups of SL ( 2 IR ) on the action , Using ' 70 d z 3- H = fz E l Im its and on boundary H = IRV { a } by Mobius transformations : f- (Ibd ) ⇒ 8. z = aztbcztd Schottky groups provide interesting nonlinear dynamics on fractal limit sets and appear in many important applications To define a Schottky group, we fix: of r disks • 2. a collection nonintersecting IR in ¢ with centers in := . AIR Q . , Dzr Ij Dj := and 1 . • denote A { ,2r3 . Ifa Er Atr if I = , f - r if rsaE2r a , that • 8 . such , . Kr fix maps . , ' )= ti racial D; Da , E- Pc SLC 2,112) • The Schottky group free ti . is the group generated by . .fr Example of a Schottky group Here is a picture for the case of 4 disks: IC = = Cil K ( ) Dz , 8. ( Dj ) Dz , IDE - =D ID ) - Ds ( IC ID:) BCCI : , Oy , 83 ⇒ A Schottky quotients ' of Ta k i n g the quotient CH , ) action of P we a the , get by surface co - . convex compact hyperbolic µ ' - M - T l H IIF plane # Three-funneled surface in G - funnel infinite end Words and nested intervals the = 2r encodes Recall I 91 . } that , . P of the I := at r generators group , n : • Words of length " = W . an far / Vj , ajt, taj } ' = : . ⇒ = . ⑨ . - A , An OT A , Ah i • Group elements : : = E T - .
    [Show full text]
  • Reproducing Kernel Hilbert Space Compactification of Unitary Evolution
    Reproducing kernel Hilbert space compactification of unitary evolution groups Suddhasattwa Dasa, Dimitrios Giannakisa,∗, Joanna Slawinskab aCourant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA bFinnish Center for Artificial Intelligence, Department of Computer Science, University of Helsinki, Helsinki, Finland Abstract A framework for coherent pattern extraction and prediction of observables of measure-preserving, ergodic dynamical systems with both atomic and continuous spectral components is developed. This framework is based on an approximation of the generator of the system by a compact operator Wτ on a reproducing kernel Hilbert space (RKHS). A key element of this approach is that Wτ is skew-adjoint (unlike regularization approaches based on the addition of diffusion), and thus can be characterized by a unique projection- valued measure, discrete by compactness, and an associated orthonormal basis of eigenfunctions. These eigenfunctions can be ordered in terms of a Dirichlet energy on the RKHS, and provide a notion of coherent observables under the dynamics akin to the Koopman eigenfunctions associated with the atomic part of the spectrum. In addition, the regularized generator has a well-defined Borel functional calculus allowing tWτ the construction of a unitary evolution group fe gt2R on the RKHS, which approximates the unitary Koopman evolution group of the original system. We establish convergence results for the spectrum and Borel functional calculus of the regularized generator to those of the original system in the limit τ ! 0+. Convergence results are also established for a data-driven formulation, where these operators are approximated using finite-rank operators obtained from observed time series. An advantage of working in spaces of observables with an RKHS structure is that one can perform pointwise evaluation and interpolation through bounded linear operators, which is not possible in Lp spaces.
    [Show full text]
  • Asymptotic Spectral Gap and Weyl Law for Ruelle Resonances of Open Partially Expanding Maps Jean-François Arnoldi, Frédéric Faure, Tobias Weich
    Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps Jean-François Arnoldi, Frédéric Faure, Tobias Weich To cite this version: Jean-François Arnoldi, Frédéric Faure, Tobias Weich. Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2017, 37 (1), pp.1-58. 10.1017/etds.2015.34. hal-00787781v2 HAL Id: hal-00787781 https://hal.archives-ouvertes.fr/hal-00787781v2 Submitted on 4 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps Jean Francois Arnoldi∗, Frédéric Faure†, Tobias Weich‡ 01-06-2013 Abstract We consider a simple model of an open partially expanding map. Its trapped set in phase space is a fractal set. We first show that there is a well defined K discrete spectrum of Ruelle resonances which describes the asymptotisc of correlation functions for large time and which is parametrized by the Fourier component ν on the neutral direction of the dynamics. We introduce a specific hypothesis on the dynamics that we call “minimal captivity”.
    [Show full text]
  • Lecture 2: Basics of Quantum Mechanics
    Lecture 2: Basics of Quantum Mechanics Scribed by: Vitaly Feldman Department of Mathematics, MIT September 9, 2003 In this lecture we will cover the basics of Quantum Mechanics which are required to under­ stand the process of quantum computation. To simplify the discussion we assume that all the Hilbert spaces mentioned below are finite­dimensional. The process of quantum computation can be abstracted via the following four postulates. Postulate 1. Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the state space of the system. The state of the system is completely described by a unit vector in this space. Qubits were the example of such system that we saw in the previous lecture. In its physical realization as a polarization of a photon we have two basis vectors: |�� and |↔� representing the vertical and the horizontal polarizations respectively. In this basis vector polarized at angle θ can be expressed as cos θ |↔� − sin θ |��. An important property of a quantum system is that multiplying a quantum state by a unit complex factor (eiθ ) yields the same complex state. Therefore eiθ |�� and |�� represent essentially the same state. Notation 1. State χ is denoted by |χ� (often called a ket) is a column vector, e.g., ⎛ ⎞ √1/2 ⎝ i 3/2 ⎠ 0 † |χ� = �χ| (often √called a bra) denotes a conjugate transpose of |χ�. In the previous example we would get (1/2, −i 3/2, 0). It is easy to verify that �χ| χ� = 1 and �x|y� ≤ 1.
    [Show full text]
  • Spectral Structure of Transfer Operators for Expanding Circle Maps
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online SPECTRAL STRUCTURE OF TRANSFER OPERATORS FOR EXPANDING CIRCLE MAPS OSCAR F. BANDTLOW, WOLFRAM JUST, AND JULIA SLIPANTSCHUK Abstract. We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators. 1. Introduction One of the major strands of modern ergodic theory is to exploit the rich links between dynamical systems theory and functional analysis, making the powerful tools of the latter available for the benefit of understanding complex dynamical be- haviour. In classical ergodic theory, composition operators occur naturally as basic objects for formulating concepts such as ergodicity or mixing [28]. These operators, known in this context as Koopman operators, are the formal adjoints of transfer op- erators, the spectral data of which provide insight into fine statistical properties of the underlying dynamical systems, such as rates of mixing (see, for example, [2, 7]). There exists a large body of literature on spectral estimates for transfer operators (and hence mixing properties) for various one- and higher-dimensional systems with different degree of expansivity or hyperbolicity (see [1] for an overview). However, to the best of our knowledge, no sufficiently rich class of dynamical systems to- gether with a machinery allowing for the explicit analytic determination of the entire spectrum is known. This is the gap the current contribution aims to fill. In the literature, the term `composition operator' is mostly used to refer to compositions with analytic functions mapping a disk into itself, a setting in which operator-theoretic properties such as boundedness, compactness, and most impor- tantly explicit spectral information are well-established (good references are [23] or the encyclopedia on the subject [9]).
    [Show full text]
  • Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
    Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces Stefan Klus1, Ingmar Schuster2, and Krikamol Muandet3 1Department of Mathematics and Computer Science, Freie Universit¨atBerlin, Germany 2Zalando Research, Zalando SE, Berlin, Germany 3Max Planck Institute for Intelligent Systems, T¨ubingen,Germany Abstract Transfer operators such as the Perron{Frobenius or Koopman operator play an im- portant role in the global analysis of complex dynamical systems. The eigenfunctions of these operators can be used to detect metastable sets, to project the dynamics onto the dominant slow processes, or to separate superimposed signals. We propose kernel transfer operators, which extend transfer operator theory to reproducing kernel Hilbert spaces and show that these operators are related to Hilbert space representations of con- ditional distributions, known as conditional mean embeddings. The proposed numerical methods to compute empirical estimates of these kernel transfer operators subsume ex- isting data-driven methods for the approximation of transfer operators such as extended dynamic mode decomposition and its variants. One main benefit of the presented kernel- based approaches is that they can be applied to any domain where a similarity measure given by a kernel is available. Furthermore, we provide elementary results on eigende- compositions of finite-rank RKHS operators. We illustrate the results with the aid of guiding examples and highlight potential applications in molecular dynamics as well as video and text data analysis. 1 Introduction Transfer operators such as the Perron{Frobenius or Koopman operator are ubiquitous in molecular dynamics, fluid dynamics, atmospheric sciences, and control theory (Schmid, 2010, Brunton et al., 2016, Klus et al., 2018a).
    [Show full text]
  • An Overview of Transfer Operator Methods in Nonautonomous Dynamics: Geometry, Spectrum, and Data
    An overview of transfer operator methods in nonautonomous dynamics: geometry, spectrum, and data Gary Froyland School of Mathematics and Statistics University of New South Wales, Sydney Workshop on Operator Theoretic Methods in Dynamic Data Analysis and Control IPAM, UCLA, 11–15 February 2019 G. Froyland, UNSW, Sydney Nonautonomous transfer operator methods Status This talk Autonomous Nonautonomous Nonautonomous (finite-time) Nonautonomous (finite-time) – advective limit G. Froyland, UNSW, Sydney Nonautonomous transfer operator methods Key tool: the transfer operator Suppose I have a dynamical system T : X → X . The transformation T tells me how to evolve points, or more generally, sets of points. One can canonically identify a subset A ⊂ X with its indicator function 1A contained in some function space B(X ) (= B). For simplicity, if T is invertible and volume preserving, then the transfer operator (or Perron-Frobenius operator), P : B→B is defined by Pf = f ◦ T −1 for all f ∈B. Why composition with T −1 and not with T ? Set Function Object A 1A −1 Evolved object T (A) P(1A)= 1A ◦ T = 1T (A) More generally, the transfer operator is designed to be the natural push forward of a density under T to another density. G. Froyland, UNSW, Sydney Nonautonomous transfer operator methods Key tool: the transfer operator Suppose I have a dynamical system T : X → X . The transformation T tells me how to evolve points, or more generally, sets of points. One can canonically identify a subset A ⊂ X with its indicator function 1A contained in some function space B(X ) (= B). For simplicity, if T is invertible and volume preserving, then the transfer operator (or Perron-Frobenius operator), P : B→B is defined by Pf = f ◦ T −1 for all f ∈B.
    [Show full text]
  • 4 Analysis of Transfer Operators
    4 Analysis of Transfer Operators In the preceding section we have presented an algorithmic approach to the identification of metastable subsets under the two conditions (C1) and (C2), which are functional analytical statements on the spectrum of the propaga- tor Pτ . In this section, we want to transform these conditions into a more probabilistic language, which will result in establishing equivalent condi- tions on the stochastic transition function. For general Markov processes it 1 is natural to consider Pτ acting on L (µ), the Banach space that includes all probability densities w.r.t. µ. Yet, for reversible Markov processes it is advantageous to restrict the analysis to L2(µ), since the propagator will then be self{adjoint. Therefore, in the first two sections we start with analyzing the conditions (C1) and (C2) in L1(µ), while in the third section, we then 2 concentrate on L (µ). For convenience we use the abbreviation P = Pτ and n p(x; C) = p(τ; x; C) for some fixed time τ > 0. As a consequence, P = Pnτ corresponds to the Markov process sampled at rate τ with stochastic tran- sition function given by pn( ; ) = p(nτ; ; ). The results presented in this section mainly follow [?]. · · · · 4.1 The Spectrum and its Parts Consider a complex Banach space E with norm and denote the spec- trum6 of a bounded linear operator P : E E byk ·σ k(P ). For an eigenvalue λ σ(P ), the multiplicity of λ is defined! as the dimension of the general- ized2 eigenspace; see e.g., [?, Chap. III.6].
    [Show full text]
  • Introduction to the Transfer Operator Method
    Omri Sarig Introduction to the transfer operator method Winter School on Dynamics Hausdorff Research Institute for Mathematics, Bonn, January 2020 Contents 1 Lecture 1: The transfer operator (60 min) ......................... 3 1.1 Motivation . .3 1.2 Definition, basic properties, and examples . .3 1.3 The transfer operator method . .5 2 Lecture 2: Spectral Gap (60 min) ................................ 7 2.1 Quasi–compactness and spectral gap . .7 2.2 Sufficient conditions for quasi-compactness . .9 2.3 Application to continued fractions. .9 3 Lecture 3: Analytic perturbation theory (60 min) . 13 3.1 Calculus in Banach spaces . 13 3.2 Resolvents and eigenprojections . 14 3.3 Analytic perturbations of operators with spectral gap . 15 4 Lecture 4: Application to the Central Limit Theorem (60 min) . 17 4.1 Spectral gap and the central limit theorem . 17 4.2 Background from probability theory . 17 4.3 The proof of the central limit theorem (Nagaev’s method) . 18 5 Lecture 5 (time permitting): Absence of spectral gap (60 min) . 23 5.1 Absence of spectral gap . 23 5.2 Inducing . 23 5.3 Operator renewal theory . 24 A Supplementary material ........................................ 27 A.1 Conditional expectations and Jensen’s inequality . 27 A.2 Mixing and exactness for the Gauss map . 30 A.3 Hennion’s theorem on quasi-compactness . 32 A.4 The analyticity theorem . 40 A.5 Eigenprojections, “separation of spectrum”, and Kato’s Lemma . 41 A.6 The Berry–Esseen “Smoothing Inequality” . 43 1 Lecture 1 The transfer operator 1.1 Motivation A thought experiment Drop a little bit of ink into a glass of water, and then stir it with a tea spoon.
    [Show full text]
  • Copyright C 2020 by Robert G. Littlejohn Physics 221A Fall 2020
    Copyright c 2020 by Robert G. Littlejohn Physics 221A Fall 2020 Appendix B Classical Mechanics† 1. Introduction In this Appendix we summarize some aspects of classical mechanics that will be relevant for our course in quantum mechanics. We concentrate on the Lagrangian and Hamiltonian formulation of classical mechanics. 2. Lagrangians, Dissipation, and Entropy In this Appendix we consider exclusively classical systems that can be described by a Lagrangian. This means that we neglect friction and other dissipative processes that cause an increase in entropy. Dissipation is always present in macroscopic systems, so its neglect is an approximation that is more or less good depending on circumstances. The concept of entropy applies when making a statistical description of a system, which is often necessary when the number of degrees of freedom is large. Entropy provides a measure of our ignorance of the state of the system, that is, of the values of the dynamical variables that describe the system. In some macroscopic systems it is a good approximation to concentrate on just a few degrees of freedom that we are interested in, and to neglect interactions with a large number of other degrees of freedom that we do not care about. For example, in the motion of a planet around the sun we may wish to describe the position of the center of mass of the planet in detail while ignoring its rotations as well as the internal stresses inside the solid body of the planet, the bulk motions of fluids in its oceans and atmospheres, etc. The latter are macroscopic degrees of freedom that are in turn coupled to microscopic ones, the motions of the individual atoms and molecules that make up the planet.
    [Show full text]