Transfer Operators and Horocycle Averages on Closed Manifolds Alexander Adam

Total Page:16

File Type:pdf, Size:1020Kb

Transfer Operators and Horocycle Averages on Closed Manifolds Alexander Adam Transfer operators and horocycle averages on closed manifolds Alexander Adam To cite this version: Alexander Adam. Transfer operators and horocycle averages on closed manifolds. Dynamical Systems [math.DS]. Sorbonne Université, 2018. English. NNT : 2018SORUS330. tel-02865539 HAL Id: tel-02865539 https://tel.archives-ouvertes.fr/tel-02865539 Submitted on 11 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Universit´e Ecole´ Doctorale de Sciences Math´ematiquesde Paris Centre These` de doctorat Discipline : Math´ematiques pr´esent´eepar Alexander Adam Op´erateurs de transfert et moyennes horocycliques sur les vari´et´esferm´ees dirig´eepar Viviane Baladi Soutenue le 10 d´ecembre 2018 devant le jury compos´ede : Mme Viviane Baladi Sorbonne Universit´e& CNRS directrice M. Oscar Bandtlow Queen Mary University of London examinateur M. Yves Coudene` Sorbonne Universit´e examinateur M. Giovanni Forni University of Maryland rapporteur M. Colin Guillarmou Universit´eParis-Sud & CNRS rapporteur M. Carlangelo Liverani Universita Roma 2 examinateur M. Fr´ed´eric Naud Universit´ed'Avignon examinateur Mme Barbara Shapira Universit´ede Rennes 1 examinatrice Institut de math´ematiques de Ecole´ Doctorale de Sciences Jussieu-Paris Rive gauche. UMR Math´ematiquesde Paris Centre. 7586. Universit´eSorbonne. Bo^ıtecourrier 247 Campus Pierre et Marie Curie. 4 place Jussieu Bo^ıtecourrier 290 75 252 Paris Cedex 05 4 place Jussieu 75 252 Paris Cedex 05 \To live in an asymmetric world, you should better be symmetric. However if you live in a symmetric world, asymmetry suffices." L'author Remerciements Au cours des trois derni`eresann´ees, Mme Viviane Baladi a ´et´ema directrice et ´egalement un v´eritablementor pour moi. Je suis tr`esreconnaissant envers elle pour son ´energieet sa pers´ev´erance. Elle m'a aid´e`arester concentr´etout au long de ma th`eseet ce particuli`erement pendant mes quelques moments d'´egarement. Gr^ace`aMme Viviane Baladi, je suis entr´een contact avec M. Fr´ed´ericNaud dont une id´eemath´ematiquefaisant partie de ses travaux que j'ai fait abou- tir dans ma premi`erepublication scientifique. Toujours gr^ace`aMme Viviane Baladi, j'ai pu, plusieurs fois, participer `ades conf´erences`adiff´erents endroits, ce qui m'a permis de mieux conna^ıtrela communaut´emath´ematiquedans les domaines des syst`emesdynamiques et des r´esonances. Avec certaines des personnes que j'ai rencontr´eeslors de ces conf´erences,je suis toujours en contact. Je mentionnerai ici M. Giovanni Forni, M. Colin Guillar- mou et M. Carlangelo Liverani. La rencontre avec ces personnes avec qui j'ai eu plusieurs longues discussions a contribu´ee- entre autres - `aclarifier mes id´ees. Mes d´eplacements n'auraient certainement pas ´et´epossibles sans le financement des organisateurs concern´esou de l'IMJ. Je remercie Le Centre Henri Lebesgue et le CIRM Marseille Luminy pour leur accueil chaleureux et la fondation Knut et Alice Wallenberg pour les invitations `al'universit´ede Lund. Il n'est pas facile de trouver un logement `aParis. Je suis donc tr`esreconnaissant envers la "Maison d'Italie" (Cit´einternationale) qui a mis `ama disposition un logement tr`esraisonnable pendant mes trois ans de th`ese. Je me sens ´egalement tr`esreconnaissant `aShu Shen, Malo J´ez´equel,Colin Guil- larmou et Giovanni Forni pour avoir signal´eplusieurs incoh´erenceset remarques. Pour avoir fait preuve de patience et m'avoir apport´eson soutien, je suis ´egalement redevable envers mon ´epouse Virginie et la rest de ma famille : je pense `avous ! L'auteur a ´et´esoutenu partiellement par la subvention ERC SOS (ERC AdG 787304). Op´erateurs de transfert et moyennes horocycliques sur les vari´et´esferm´ees R´esum´e Cette th`esede doctorat approfondit l'´etudede la dynamique hyperbolique sur les vari´et´esferm´eeset connexes M et des op´erateursde transfert associ´es. Nous ´etudionsdeux probl`emes: le premier probl`emeconcerne les perturbati- ons analytiques r´eellesdes diff´eomorphismesd'Anosov lin´eairessur le tore : une r´esonancenon triviale appara^ıt-t-elle pour une perturbation g´en´eriquesd'un diff´eomorphismed'Anosov lin´eairesur le tore ? Le second probl`emeconcerne une hypoth`esesur la moyenne temporelle des flots horocycliques induits par un flot d'Anosov : la moyenne temporelle des flots horocycliques en courbure n´egative variable converge-t-elle vers la moyenne er- godique en vitesse polynomiale ? Les op´erateurs de transfert associ´es agissent de fa¸conborn´eesur certains espaces de Banach anisotropes par la composition du syst`emedynamique inverse suivie d'une multiplication avec des fonctions de poids sp´ecifiques.Dans notre analyse des probl`emesmentionn´esci-dessus, ces op´erateurs de transfert repr´esentent le principal int´er^et.Nous devons ´etudierleur spectre bas pour progresser sur nos deux probl`emes. Par le spectre bas, nous entendons la partie du spectre qui se situe entre le spectre p´eriph´eriqueet le spectre essentiel de ces op´erateursde transfert. L'approche fonctionnelle de ces op´erateursde transfert se concentre sur les es- paces de Banach anisotropes. Nous expliquons l'id´eeprincipale derri`erecette approche dans le cas des diff´eomorphismes d'Anosov : des exemples simples de diff´eomorphismesd'Anosov F sont donn´espar les diff´eomorphismeslin´eaires d'Anosov sur le tore bidimensionnel. Nous savons que les diff´eomorphismes d'Anosov transitifs et analytiques ont une unique mesure SRB µSRB (qui est in- variante par le diff´eomorphisme).Pour les automorphismes lin´eairessur le tore, la mesure SRB est la mesure de Lebesgue µLeb. Notons toutefois que m^eme de petites perturbations analytiques de A ne pr´eservent pas syst´ematiquement 1 µLeb. Puisque µSRB est une mesure de Borel, on a µSRB P C pMq . Nous souhai- tons maintenant ´ecrire µSRB comme l'unique vecteur propre associ´e`ala valeur propre 1 pour un certain op´erateurde transfert L qui appara^ıtcomme l'adjoint 7 de l'op´erateurde composition KF . Cependant les mesures support´eessur les 1 orbites p´eriodiques de F sont ´egalement contenues dans C pMq . Afin de trou- ver les bonnes propri´et´esspectrales de l'op´erateur L, celui-ci doit ^etred´efinisur 1 un espace de Banach anisotrope B et non sur C pMq . La norme de B prend en compte le comportement dilatant et contractant de l'application F . En particu- lier, la norme anisotrope de B traite les ´el´ements de B comme des fonctions dans les directions dilatantes et comme des distributions dans les directions contrac- tantes de F . Les valeurs propres discr`etesr´eciproques de L sont aussi appel´eesles r´esonances de F . Si F A, alors il y a seulement les r´esonancestriviales t0; 1u. Jusque l`a il n'´etaitpas su qu'il s'agissait d'un comportement attendu si A est perturb´ede mani`ereg´en´erique. On entend ici par perturbation g´en´erique toute application d'un ensemble ouvert et dense dans une boule de diff´eomorphismesanalytiques r´eelscontenant A. Dans de l'´etudedu premier probl`eme,nous agissons avec L sur un espace de Hilbert anisotrope. Nous r´epondons `ala question dans le premier probl`emepar l’affirmative. Le second probl`emeque nous examinons fait intervenir les flots d'Anosov. Ces flots ont ´et´einstaur´espar Anosov pour ´etudierle flot g´eod´esiquesur le fibr´e tangent unitaire de vari´et´esferm´ees`acourbure sectionnelle n´egative variable. De plus, nous avons besoin les flots d'Anosov d'^etredes flots de contact. Des ex- emples de flots d'Anosov-contact sont donn´espar les flots g´eod´esiques.Les flots horocycliques associ´esau flot d'Anosov sont dirig´esdans la direction contractant du flot d'Anosov. Nous savons par les travaux de Marcus que pour tout flot horo- cyclique continu qui correspond `aun flot d'Anosov C2 m´elangeant, il existe une unique mesure de probabilit´ede Borel invariante par le flot horocyclique. Ka- tok et Burns ont d´emontr´eque tout flot d'Anosov-contact est m´elangeant. Par cons´equent, dans notre contexte, la moyenne temporelle de l'horocycle converge vers la moyenne ergodique unique. Mais `aquelle vitesse converge la moyenne temporelle ? Dans le contexte de la courbure n´egative constante, on sait gr^aceaux travaux de Flaminio et Forni que cette vitesse est polynomiale. La vitesse est contr^ol´ee par des valeurs propres pour certaines distributions propres du flot g´eod´esique. Un probl`emeanalogue dans lequel le flot g´eod´esiqueest remplac´epar un diff´eomorphismed'Anosov a ´et´e´etudi´eplus tard par Giulietti et Liverani. Ils ont, de plus, dans leurs travaux, suppos´eque le r´esultatde Flaminio{Forni devrait s'´etendreau flot g´eod´esiquedans le contexte de la courbure n´egative variable. 8 Dans l'´etudedu second probl`eme des op´erateursde transfert pond´er´es Lα, α ¡ 0 apparaissent. Suivant l'approche fonctionnelle, il suffit essentiellement de con- struire un espace de Banach anisotrope B tel que les op´erateurs Lα agissent sur B, et d'avoir un spectre p´eriph´eriqueconsistant en une valeur propre simple isol´ee.Cependant, la direction d'´ecoulement du flot d'Anosov n'est ni contract´ee ni dilat´eepar le flot d'Anosov, ce qui pose probl`emedans notre analyse. Nous appliquons donc `ala place la strat´egiesuivante: Sur un espace de Banach anisotrope B bien choisi, la famille d'op´erateurde transfert tLα : B Ñ B | α ¥ 0u forme un semi-groupe fortement continu et ad- met donc un g´en´erateurbien d´efini.
Recommended publications
  • The Transfer Operator Approach to ``Quantum Chaos
    Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions Front page The transfer operator approach to “quantum chaos” Classical mechanics and the Laplace-Beltrami operator on PSL (Z) H 2 \ Tobias M¨uhlenbruch Joint work with D. Mayer and F. Str¨omberg Institut f¨ur Mathematik TU Clausthal [email protected] 22 January 2009, Fernuniversit¨at in Hagen Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions Outline of the presentation 1 Modular surface 2 Spectral theory 3 Geodesics and coding 4 Transfer operator 5 Connection to spectral theory 6 Conclusions Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions PSL Z The full modular group 2( ) Let PSL2(Z) be the full modular group PSL (Z)= S, T (ST )3 =1 = SL (Z) mod 1 2 h | i 2 {± } 0 1 1 1 1 0 with S = − , T = and 1 = . 1 0 0 1 0 1 a b az+b if z C, M¨obius transformations: z = cz+d ∈ c d a if z = . c ∞ Three orbits: the upper halfplane H = x + iy; y > 0 , the 1 { } projective real line PR and the lower half plane. z , z are PSL (Z)-equivalent if M PSL (Z) with 1 2 2 ∃ ∈ 2 M z1 = z2. The full modular group PSL2(Z) is generated by 1 translation T : z z + 1 and inversion S : z − . 7→ 7→ z (Closed) fundamental domain = z H; z 1, Re(z) 1 . F ∈ | |≥ | |≤ 2 Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions PSL Z H The modular surface 2( )\ The upper half plane H = x + iy; y > 0 can be viewed as a hyperbolic plane with constant{ negative} curvature 1.
    [Show full text]
  • Arxiv:1910.08491V3 [Math.ST] 3 Nov 2020
    Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cram´er representations and applications Amaury Durand ∗† Fran¸cois Roueff ∗ September 14, 2021 Abstract The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. However, the recent literature on this topic is often based on restrictive assumptions or lacks important insights. In this paper, we follow earlier approaches which fully exploit the normal Hilbert module property of the space of Hilbert- valued random variables. This approach clarifies and completes the isomorphic relationship between the modular spectral domain to the modular time domain provided by the Gramian- Cram´er representation. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cram´er-Karhunen-Lo`eve decomposition and harmonic functional principal component analysis without relying on simplifying assumptions. 1 Introduction Functional data analysis has become an active field of research in the recent decades due to technological advances which makes it possible to store longitudinal data at very high frequency (see e.g. [22, 31]), or complex data e.g. in medical imaging [18, Chapter 9], [15], linguistics [28] or biophysics [27]. In these frameworks, the data is seen as valued in an infinite dimensional separable Hilbert space thus isomorphic to, and often taken to be, the function space L2(0, 1) of Lebesgue-square-integrable functions on [0, 1]. In this setting, a 2 functional time series refers to a bi-sequences (Xt)t∈Z of L (0, 1)-valued random variables and the assumption of finite second moment means that each random variable Xt belongs to the L2 Bochner space L2(Ω, F, L2(0, 1), P) of measurable mappings V : Ω → L2(0, 1) such that E 2 kV kL2(0,1) < ∞ , where k·kL2(0,1) here denotes the norm endowing the Hilbert space L2h(0, 1).
    [Show full text]
  • An Introduction to Fractal Uncertainty Principle
    An introduction to fractal uncertainty principle Semyon Dyatlov (MIT / UC Berkeley) The goal of this minicourse is to give a brief introduction to fractal uncertainty principle and its applications to transfer operators for Schottky groups Part 1: Schottky groups, transfer operators, and resonances Schottky groups of SL ( 2 IR ) on the action , Using ' 70 d z 3- H = fz E l Im its and on boundary H = IRV { a } by Mobius transformations : f- (Ibd ) ⇒ 8. z = aztbcztd Schottky groups provide interesting nonlinear dynamics on fractal limit sets and appear in many important applications To define a Schottky group, we fix: of r disks • 2. a collection nonintersecting IR in ¢ with centers in := . AIR Q . , Dzr Ij Dj := and 1 . • denote A { ,2r3 . Ifa Er Atr if I = , f - r if rsaE2r a , that • 8 . such , . Kr fix maps . , ' )= ti racial D; Da , E- Pc SLC 2,112) • The Schottky group free ti . is the group generated by . .fr Example of a Schottky group Here is a picture for the case of 4 disks: IC = = Cil K ( ) Dz , 8. ( Dj ) Dz , IDE - =D ID ) - Ds ( IC ID:) BCCI : , Oy , 83 ⇒ A Schottky quotients ' of Ta k i n g the quotient CH , ) action of P we a the , get by surface co - . convex compact hyperbolic µ ' - M - T l H IIF plane # Three-funneled surface in G - funnel infinite end Words and nested intervals the = 2r encodes Recall I 91 . } that , . P of the I := at r generators group , n : • Words of length " = W . an far / Vj , ajt, taj } ' = : . ⇒ = . ⑨ . - A , An OT A , Ah i • Group elements : : = E T - .
    [Show full text]
  • Reproducing Kernel Hilbert Space Compactification of Unitary Evolution
    Reproducing kernel Hilbert space compactification of unitary evolution groups Suddhasattwa Dasa, Dimitrios Giannakisa,∗, Joanna Slawinskab aCourant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA bFinnish Center for Artificial Intelligence, Department of Computer Science, University of Helsinki, Helsinki, Finland Abstract A framework for coherent pattern extraction and prediction of observables of measure-preserving, ergodic dynamical systems with both atomic and continuous spectral components is developed. This framework is based on an approximation of the generator of the system by a compact operator Wτ on a reproducing kernel Hilbert space (RKHS). A key element of this approach is that Wτ is skew-adjoint (unlike regularization approaches based on the addition of diffusion), and thus can be characterized by a unique projection- valued measure, discrete by compactness, and an associated orthonormal basis of eigenfunctions. These eigenfunctions can be ordered in terms of a Dirichlet energy on the RKHS, and provide a notion of coherent observables under the dynamics akin to the Koopman eigenfunctions associated with the atomic part of the spectrum. In addition, the regularized generator has a well-defined Borel functional calculus allowing tWτ the construction of a unitary evolution group fe gt2R on the RKHS, which approximates the unitary Koopman evolution group of the original system. We establish convergence results for the spectrum and Borel functional calculus of the regularized generator to those of the original system in the limit τ ! 0+. Convergence results are also established for a data-driven formulation, where these operators are approximated using finite-rank operators obtained from observed time series. An advantage of working in spaces of observables with an RKHS structure is that one can perform pointwise evaluation and interpolation through bounded linear operators, which is not possible in Lp spaces.
    [Show full text]
  • Asymptotic Spectral Gap and Weyl Law for Ruelle Resonances of Open Partially Expanding Maps Jean-François Arnoldi, Frédéric Faure, Tobias Weich
    Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps Jean-François Arnoldi, Frédéric Faure, Tobias Weich To cite this version: Jean-François Arnoldi, Frédéric Faure, Tobias Weich. Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2017, 37 (1), pp.1-58. 10.1017/etds.2015.34. hal-00787781v2 HAL Id: hal-00787781 https://hal.archives-ouvertes.fr/hal-00787781v2 Submitted on 4 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps Jean Francois Arnoldi∗, Frédéric Faure†, Tobias Weich‡ 01-06-2013 Abstract We consider a simple model of an open partially expanding map. Its trapped set in phase space is a fractal set. We first show that there is a well defined K discrete spectrum of Ruelle resonances which describes the asymptotisc of correlation functions for large time and which is parametrized by the Fourier component ν on the neutral direction of the dynamics. We introduce a specific hypothesis on the dynamics that we call “minimal captivity”.
    [Show full text]
  • Spectral Structure of Transfer Operators for Expanding Circle Maps
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online SPECTRAL STRUCTURE OF TRANSFER OPERATORS FOR EXPANDING CIRCLE MAPS OSCAR F. BANDTLOW, WOLFRAM JUST, AND JULIA SLIPANTSCHUK Abstract. We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators. 1. Introduction One of the major strands of modern ergodic theory is to exploit the rich links between dynamical systems theory and functional analysis, making the powerful tools of the latter available for the benefit of understanding complex dynamical be- haviour. In classical ergodic theory, composition operators occur naturally as basic objects for formulating concepts such as ergodicity or mixing [28]. These operators, known in this context as Koopman operators, are the formal adjoints of transfer op- erators, the spectral data of which provide insight into fine statistical properties of the underlying dynamical systems, such as rates of mixing (see, for example, [2, 7]). There exists a large body of literature on spectral estimates for transfer operators (and hence mixing properties) for various one- and higher-dimensional systems with different degree of expansivity or hyperbolicity (see [1] for an overview). However, to the best of our knowledge, no sufficiently rich class of dynamical systems to- gether with a machinery allowing for the explicit analytic determination of the entire spectrum is known. This is the gap the current contribution aims to fill. In the literature, the term `composition operator' is mostly used to refer to compositions with analytic functions mapping a disk into itself, a setting in which operator-theoretic properties such as boundedness, compactness, and most impor- tantly explicit spectral information are well-established (good references are [23] or the encyclopedia on the subject [9]).
    [Show full text]
  • Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
    Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces Stefan Klus1, Ingmar Schuster2, and Krikamol Muandet3 1Department of Mathematics and Computer Science, Freie Universit¨atBerlin, Germany 2Zalando Research, Zalando SE, Berlin, Germany 3Max Planck Institute for Intelligent Systems, T¨ubingen,Germany Abstract Transfer operators such as the Perron{Frobenius or Koopman operator play an im- portant role in the global analysis of complex dynamical systems. The eigenfunctions of these operators can be used to detect metastable sets, to project the dynamics onto the dominant slow processes, or to separate superimposed signals. We propose kernel transfer operators, which extend transfer operator theory to reproducing kernel Hilbert spaces and show that these operators are related to Hilbert space representations of con- ditional distributions, known as conditional mean embeddings. The proposed numerical methods to compute empirical estimates of these kernel transfer operators subsume ex- isting data-driven methods for the approximation of transfer operators such as extended dynamic mode decomposition and its variants. One main benefit of the presented kernel- based approaches is that they can be applied to any domain where a similarity measure given by a kernel is available. Furthermore, we provide elementary results on eigende- compositions of finite-rank RKHS operators. We illustrate the results with the aid of guiding examples and highlight potential applications in molecular dynamics as well as video and text data analysis. 1 Introduction Transfer operators such as the Perron{Frobenius or Koopman operator are ubiquitous in molecular dynamics, fluid dynamics, atmospheric sciences, and control theory (Schmid, 2010, Brunton et al., 2016, Klus et al., 2018a).
    [Show full text]
  • An Overview of Transfer Operator Methods in Nonautonomous Dynamics: Geometry, Spectrum, and Data
    An overview of transfer operator methods in nonautonomous dynamics: geometry, spectrum, and data Gary Froyland School of Mathematics and Statistics University of New South Wales, Sydney Workshop on Operator Theoretic Methods in Dynamic Data Analysis and Control IPAM, UCLA, 11–15 February 2019 G. Froyland, UNSW, Sydney Nonautonomous transfer operator methods Status This talk Autonomous Nonautonomous Nonautonomous (finite-time) Nonautonomous (finite-time) – advective limit G. Froyland, UNSW, Sydney Nonautonomous transfer operator methods Key tool: the transfer operator Suppose I have a dynamical system T : X → X . The transformation T tells me how to evolve points, or more generally, sets of points. One can canonically identify a subset A ⊂ X with its indicator function 1A contained in some function space B(X ) (= B). For simplicity, if T is invertible and volume preserving, then the transfer operator (or Perron-Frobenius operator), P : B→B is defined by Pf = f ◦ T −1 for all f ∈B. Why composition with T −1 and not with T ? Set Function Object A 1A −1 Evolved object T (A) P(1A)= 1A ◦ T = 1T (A) More generally, the transfer operator is designed to be the natural push forward of a density under T to another density. G. Froyland, UNSW, Sydney Nonautonomous transfer operator methods Key tool: the transfer operator Suppose I have a dynamical system T : X → X . The transformation T tells me how to evolve points, or more generally, sets of points. One can canonically identify a subset A ⊂ X with its indicator function 1A contained in some function space B(X ) (= B). For simplicity, if T is invertible and volume preserving, then the transfer operator (or Perron-Frobenius operator), P : B→B is defined by Pf = f ◦ T −1 for all f ∈B.
    [Show full text]
  • 4 Analysis of Transfer Operators
    4 Analysis of Transfer Operators In the preceding section we have presented an algorithmic approach to the identification of metastable subsets under the two conditions (C1) and (C2), which are functional analytical statements on the spectrum of the propaga- tor Pτ . In this section, we want to transform these conditions into a more probabilistic language, which will result in establishing equivalent condi- tions on the stochastic transition function. For general Markov processes it 1 is natural to consider Pτ acting on L (µ), the Banach space that includes all probability densities w.r.t. µ. Yet, for reversible Markov processes it is advantageous to restrict the analysis to L2(µ), since the propagator will then be self{adjoint. Therefore, in the first two sections we start with analyzing the conditions (C1) and (C2) in L1(µ), while in the third section, we then 2 concentrate on L (µ). For convenience we use the abbreviation P = Pτ and n p(x; C) = p(τ; x; C) for some fixed time τ > 0. As a consequence, P = Pnτ corresponds to the Markov process sampled at rate τ with stochastic tran- sition function given by pn( ; ) = p(nτ; ; ). The results presented in this section mainly follow [?]. · · · · 4.1 The Spectrum and its Parts Consider a complex Banach space E with norm and denote the spec- trum6 of a bounded linear operator P : E E byk ·σ k(P ). For an eigenvalue λ σ(P ), the multiplicity of λ is defined! as the dimension of the general- ized2 eigenspace; see e.g., [?, Chap. III.6].
    [Show full text]
  • Introduction to the Transfer Operator Method
    Omri Sarig Introduction to the transfer operator method Winter School on Dynamics Hausdorff Research Institute for Mathematics, Bonn, January 2020 Contents 1 Lecture 1: The transfer operator (60 min) ......................... 3 1.1 Motivation . .3 1.2 Definition, basic properties, and examples . .3 1.3 The transfer operator method . .5 2 Lecture 2: Spectral Gap (60 min) ................................ 7 2.1 Quasi–compactness and spectral gap . .7 2.2 Sufficient conditions for quasi-compactness . .9 2.3 Application to continued fractions. .9 3 Lecture 3: Analytic perturbation theory (60 min) . 13 3.1 Calculus in Banach spaces . 13 3.2 Resolvents and eigenprojections . 14 3.3 Analytic perturbations of operators with spectral gap . 15 4 Lecture 4: Application to the Central Limit Theorem (60 min) . 17 4.1 Spectral gap and the central limit theorem . 17 4.2 Background from probability theory . 17 4.3 The proof of the central limit theorem (Nagaev’s method) . 18 5 Lecture 5 (time permitting): Absence of spectral gap (60 min) . 23 5.1 Absence of spectral gap . 23 5.2 Inducing . 23 5.3 Operator renewal theory . 24 A Supplementary material ........................................ 27 A.1 Conditional expectations and Jensen’s inequality . 27 A.2 Mixing and exactness for the Gauss map . 30 A.3 Hennion’s theorem on quasi-compactness . 32 A.4 The analyticity theorem . 40 A.5 Eigenprojections, “separation of spectrum”, and Kato’s Lemma . 41 A.6 The Berry–Esseen “Smoothing Inequality” . 43 1 Lecture 1 The transfer operator 1.1 Motivation A thought experiment Drop a little bit of ink into a glass of water, and then stir it with a tea spoon.
    [Show full text]
  • Reproducing Kernel Hilbert Space Compactification of Unitary Evolution Groups
    Appl. Comput. Harmon. Anal. 54 (2021) 75–136 Contents lists available at ScienceDirect Applied and Computational Harmonic Analysis www.elsevier.com/locate/acha Reproducing kernel Hilbert space compactification of unitary evolution groups Suddhasattwa Das a, Dimitrios Giannakis a,∗, Joanna Slawinska b a Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA b Finnish Center for Artificial Intelligence, Department of Computer Science, University of Helsinki, Helsinki, FI-00014, Finland a r t i c l e i n f o a b s t r a c t Article history: A framework for coherent pattern extraction and prediction of observables of Received 1 April 2019 measure-preserving, ergodic dynamical systems with both atomic and continuous Received in revised form 23 spectral components is developed. This framework is based on an approximation November 2020 of the generator of the system by a compact operator W on a reproducing Accepted 26 February 2021 τ kernel Hilbert space (RKHS). The operator W is skew-adjoint, and thus can Available online 3 March 2021 τ Communicated by E. Le Pennec be represented by a projection-valued measure, discrete by compactness, with an associated orthonormal basis of eigenfunctions. These eigenfunctions are ordered in Keywords: terms of a Dirichlet energy, and provide a notion of coherent observables under the Koopman operators dynamics akin to the Koopman eigenfunctions associated with the atomic part of tWτ Perron-Frobenius operators the spectrum. In addition, Wτ generates a unitary evolution group {e }t∈R on the Ergodic dynamical systems RKHS, which approximates the unitary Koopman group of the system.
    [Show full text]
  • DYNAMICAL SYSTEMS, TRANSFER OPERATORS and FUNCTIONAL
    DYNAMICAL SYSTEMS, TRANSFER OPERATORS and FUNCTIONAL ANALYSIS Brigitte Vallee´ , Laboratoire GREYC (CNRS et Universit´ede Caen) S´eminaire CALIN, LIPN, 5 octobre 2010 A Euclidean Algorithm ⇓ Arithmetic properties of the division ⇓ Geometric properties of the branches ⇓ Spectral properties of the transfer operator ⇓ Analytical properties of the Quasi-Inverse of the transfer operator ⇓ Analytical properties of the generating function ⇓ Probabilistic analysis of the Euclidean Algorithm Dynamical analysis of a Euclidean Algorithm. Geometric properties of the branches ⇓ Spectral properties of the transfer operator ⇓ Analytical properties of the Quasi-Inverse of the transfer operator ⇓ Analytical properties of the generating function ⇓ Probabilistic analysis of the Euclidean Algorithm Dynamical analysis of a Euclidean Algorithm. A Euclidean Algorithm ⇓ Arithmetic properties of the division ⇓ ⇓ Analytical properties of the generating function ⇓ Probabilistic analysis of the Euclidean Algorithm Dynamical analysis of a Euclidean Algorithm. A Euclidean Algorithm ⇓ Arithmetic properties of the division ⇓ Geometric properties of the branches ⇓ Spectral properties of the transfer operator ⇓ Analytical properties of the Quasi-Inverse of the transfer operator Dynamical analysis of a Euclidean Algorithm. A Euclidean Algorithm ⇓ Arithmetic properties of the division ⇓ Geometric properties of the branches ⇓ Spectral properties of the transfer operator ⇓ Analytical properties of the Quasi-Inverse of the transfer operator ⇓ Analytical properties of the generating function ⇓ Probabilistic analysis of the Euclidean Algorithm u0 := v; u1 := u; u0 ≥ u1 u0 = m1u1 + u2 0 < u2 < u1 u = m u + u 0 < u < u 1 2 2 3 3 2 ... = ... + up−2 = mp−1up−1 + up 0 < up < up−1 up−1 = mpup + 0 up+1 = 0 up is the gcd of u and v, the mi’s are the digits.
    [Show full text]