Size and Power of Some Tests Under Experimental Randomization Thomas Eugene Doerfler Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Size and Power of Some Tests Under Experimental Randomization Thomas Eugene Doerfler Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1965 Size and power of some tests under experimental randomization Thomas Eugene Doerfler Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons, and the Statistics and Probability Commons Recommended Citation Doerfler, Thomas Eugene, "Size and power of some tests under experimental randomization" (1965). Retrospective Theses and Dissertations. 4081. https://lib.dr.iastate.edu/rtd/4081 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received ^^ 2956 DOERFLER, Thomas Eugene, 1937- SIZE AND POWER OF SOME TESTS UNDER EXPERIMENTAL RANDOMIZATION. Iowa State University of Science and Technology Ph.D., 1965 Mathematics University Microfilms, Inc., Ann Arbor, Michigan SIZE AND POWER OF SOME TESTS UNDER EXPERIMENTAL RANDOMIZATION by Thomas Eugene Doerfler A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of I The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject; Statistics Approved : Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Deps ment Signature was redacted for privacy. Deaivpf Graduate College Iowa State University Of Science and Technology Ames, Iowa 1965 ii TABLE OF CONTENTS Page I. INTRODUCTION 1 II. REVIEW OF LITERATURE 4 III. RANDOMIZATION THEORY IN DESIGN AND ANALYSIS FOR PAIRED DATA 30 A. Experiment Randomization 30 B. Randomization Tests 32 1. Description of underlying principles 32 2. Competitive tests considered and their sizes 35 a. The Fisher randomization test 35 b. The Wilcoxon paired test 36 c. The Sign test 38 d. The normal scores test 39 e. The F test 40 IV. COMPARISON OF TESTS 42 A. Size and Power of Competitive Tests 42 B. Generalized Power Expressions 47 1. The Sign test 47 2. The Wilcoxon paired test 48 3. The Fisher randomization test 56 V. RESULTS OF NUMERICAL STUDY 75 A. Power of Competitive Tests Under Experiment Randomization 75 B. Size of the F Test Under Experiment Randomization 122 C. Variability of Power in Individual Experiments 131 VI. SUMMARY AND CONCLUSIONS 134 VII. BIBLIOGRAPHY 138 VIII. ACKNOWLEDGMENTS 145 1 I. INTRODUCTION While the concept and use of experimental randomization introduced by R. A. Fisher in 1926 have been universally accepted by experimenters, an extensive evaluation of this technique is far from complete. The term "experiment randomization" refers to the fact that the pattern of experimental results obtained is selected at random according to a standard design. In an effort to more fully understand the consequences of randomization as used in comparative experiments,, one is motivated to investigate tests of significance. The actual evaluation of signifi­ cance, the frequency with which significance at specific levels is reached under the null hypothesis of no treatment differences, and the frequency of significance under alternative hypotheses of treatment differences, is of particular interest in a study of this nature. The present research is limited to the paired design, and the study of methods which attempt to detect whether or not a treatment has had some measurable effect on the yield of an experimental unit. Thus, with N N pairs or observed treatment differences, there are 2 possible plans for the experiment, one of which is randomly selected by the experimenter. Because it possesses various optimal properties if the underlying distri­ bution of the observations is normal, the F test is generally employed for this type of experiment. However, in recent years, other techniques have been recommended which require less restrictive assumptions and are easily applied. Because these methods require no assumptions concerning the actual parametric form of the population from which the samples are drawn, they are denoted as non-parametric methods. It is common to 2 assume that the observations are independent and that the underlying distribution is a continuous function. Consequently the non-parametric techniques are applicable to a broad class of problems. We have limited this study to four non-parametric competitors to the F test, as each of the selected tests exemplifies a different logical basis of statistical inference. Fisher's randomization test, in addition to being a valuable research tool, exposes the underlying principle of non-parametric tests in general. This test was modified by Wilcoxon (1945), who replaced the magnitudes of the observations by their ranks and, in a sense, discards information. However, this test has proved to be a highly efficient and simple non-parametric test. A further simplification is exhibited in the Sign test, in which the test criterion depends only on the algebraic sign of each observation. We also mention the normal scores test which is quite similar to Wilcoxon'a test in the regions of interest pertaining to this study. The choice of which test to use is of paramount importance to the researcher and experimenter alike, A comparative study depends on the competing test criteria and the means with which they are evaluated. Thus research workers have relied on measures such as power and efficiency as logical and meaningful rationale. All analytical and empirical research consequently is directly related to the size of the competing tests, the underlying distribution from which the samples are drawn, the size of the sample, and the alternative hypothesis considered. Most of the work in this area involves asynçtotic theory and large sample comparisons. Because of the great variety of alternatives it is an imposing task to present a comprehensive report on the performance of non-parametric tests 3 when small samples are involved. It is the primary purpose of this study to exhibit the behavior of the competing tests for small samples, for this is what the experimenter frequently encounters in practice. An essentially complete review of pertinent research done in this area is presented. Particular attention is devoted to asymptotic theory, power computations and previous comparative studies. A descrip­ tion of experiment randomization and the logic of a randomization test follows. Permutation tests, primarily Fisher's randomization iiest, the Sign test, Wilcoxon's test and the normal scores test, along with the normal theory F test are next described in some detail. The comparison of these tests by the logical criteria of size and power is explained, with reference to theoretical as well as empirical results obtained by Monte Carlo techniques. A discussion of these results concludes this work. 4 II. REVIEW OF LITERATURE Although non-parametric tests based upon the permutation of observations have been employed in statistical studies for many years, only quite recently has an attempt been made to develop a statistical theory concerning these techniques. In recent years many methods have been devised which require less elaborate assumptions than the classical techniques. Though the literature abounds with descriptive and critical treatment of non-parametric competitors to the parametric tests, we will limit this section to a review of the work that is relevant to comparative experiments. It is well-known that the validity of using normal law theory for tests of significance in the randomized experiment is based on the randomi­ zation theory of R. A. Fisher (1960), first introduced in 1926. The essence of Fisher's method of inference is as follows. It is supposed that each experimental unit has a response which may depend on the treatment it receives. If, however, the treatments being compared have no effects, the observations on any treatment are a random sample of the totality of possible observations. So under the assumption of no treat­ ment effects each of the possible random assignments of the observed values to the treatments is equally likely to occur. If, however, the treatments have effects, the observed partitioning of observations according to treatments will not be a random partitioning. By choosing a test criterion which is sensitive to the alternative hypothesis, one can calculate a set of equally weighted values of the test statistic which specifies its distribution under the null hypothesis. The 5 rejection region is determined by extreme values which become more probable when the alternative hypothesis is true. Conclusions are then based on the test statistic calculated from the observed sample. Wilcoxon (1945) modified the procedure somewhat by considering the rank and the algebraic sign rather than the actual magnitude of the observations. Closely related to this test is the normal scores test, implicit in a description of the use of tables presented by Fisher and Yates (1938). Instead of ranks, they suggested a function of the expected value of order statistics from a sample of absolute normal variables. A further simplification is provided by the Sign test studied by Cochran (1937). For its application only the signs of the sample need be re­ corded, but this feature necessarily limits its scope to a certain class of problems. Before reviewing the literature we will enumerate
Recommended publications
  • Parametric and Non-Parametric Statistics for Program Performance Analysis and Comparison Julien Worms, Sid Touati
    Parametric and Non-Parametric Statistics for Program Performance Analysis and Comparison Julien Worms, Sid Touati To cite this version: Julien Worms, Sid Touati. Parametric and Non-Parametric Statistics for Program Performance Anal- ysis and Comparison. [Research Report] RR-8875, INRIA Sophia Antipolis - I3S; Université Nice Sophia Antipolis; Université Versailles Saint Quentin en Yvelines; Laboratoire de mathématiques de Versailles. 2017, pp.70. hal-01286112v3 HAL Id: hal-01286112 https://hal.inria.fr/hal-01286112v3 Submitted on 29 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Public Domain Parametric and Non-Parametric Statistics for Program Performance Analysis and Comparison Julien WORMS, Sid TOUATI RESEARCH REPORT N° 8875 Mar 2016 Project-Teams "Probabilités et ISSN 0249-6399 ISRN INRIA/RR--8875--FR+ENG Statistique" et AOSTE Parametric and Non-Parametric Statistics for Program Performance Analysis and Comparison Julien Worms∗, Sid Touati† Project-Teams "Probabilités et Statistique" et AOSTE Research Report n° 8875 — Mar 2016 — 70 pages Abstract: This report is a continuation of our previous research effort on statistical program performance analysis and comparison [TWB10, TWB13], in presence of program performance variability. In the previous study, we gave a formal statistical methodology to analyse program speedups based on mean or median performance metrics: execution time, energy consumption, etc.
    [Show full text]
  • Non Parametric Test: Chi Square Test of Contingencies
    Weblinks http://www:stat.sc.edu/_west/applets/chisqdemo1.html http://2012books.lardbucket.org/books/beginning-statistics/s15-chi-square-tests-and-f- tests.html www.psypress.com/spss-made-simple Suggested Readings Siegel, S. & Castellan, N.J. (1988). Non Parametric Statistics for the Behavioral Sciences (2nd edn.). McGraw Hill Book Company: New York. Clark- Carter, D. (2010). Quantitative psychological research: a student’s handbook (3rd edn.). Psychology Press: New York. Myers, J.L. & Well, A.D. (1991). Research Design and Statistical analysis. New York: Harper Collins. Agresti, A. 91996). An introduction to categorical data analysis. New York: Wiley. PSYCHOLOGY PAPER No.2 : Quantitative Methods MODULE No. 15: Non parametric test: chi square test of contingencies Zimmerman, D. & Zumbo, B.D. (1993). The relative power of parametric and non- parametric statistics. In G. Karen & C. Lewis (eds.), A handbook for data analysis in behavioral sciences: Methodological issues (pp. 481- 517). Hillsdale, NJ: Lawrence Earlbaum Associates, Inc. Field, A. (2005). Discovering statistics using SPSS (2nd ed.). London: Sage. Biographic Sketch Description 1894 Karl Pearson(1857-1936) was the first person to use the term “standard deviation” in one of his lectures. contributed to statistical studies by discovering Chi square. Founded statistical laboratory in 1911 in England. http://www.swlearning.com R.A. Fisher (1890- 1962) Father of modern statistics was educated at Harrow and Cambridge where he excelled in mathematics. He later became interested in theory of errors and ultimately explored statistical problems like: designing of experiments, analysis of variance. He developed methods suitable for small samples and discovered precise distributions of many sample statistics.
    [Show full text]
  • Pitfalls and Options in Hypothesis Testing for Comparing Differences in Means
    Annals of Nuclear Cardiology Vol. 4 No. 1 83-87 REVIEW ARTICLE Statistics in Nuclear Cardiology: So, What’s the Difference? The t-Test: Pitfalls and Options in Hypothesis Testing for Comparing Differences in Means David N. Williams, PhD1), Kathryn A. Williams, MS2) and Michael Monuteaux, ScD3) Received: June 18, 2018/Revised manuscript received: July 19, 2018/Accepted: July 30, 2018 ○C The Japanese Society of Nuclear Cardiology 2018 Abstract Decisions related to differences of the measures of central tendency of population parameters are an important part of clinical research. Choice of the appropriate statistical test is critical to avoiding errors when making those decisions. All statistical tests require that one or more assumptions be met. The t-test is one of the most widely used tools but is not appropriate when assumptions such as normality are not met, especially when small samples, <40, are used. Non-parametric tests, such as the Wilcoxon rank sum and others, offer effective alternatives when there are questions about meeting assumptions. When normality is in question, the Wilcoxon non-parametric tests offer substantially higher levels of power and an reliable alternative to the t-test. Keywords: Assumptions, Difference of means, Mann-Whitney, Non-parametric, t-test, Violations, Wilcoxon Ann Nucl Cardiol 2018; 4(1): 83 -87 ome of the most important studies in clinical research and what degree those assumptions are violated should be an S decision-making are those related to differences in important step in analysis but one that is often left un-done (2). measures of central tendency of population parameters i.e.
    [Show full text]
  • Inferential Statistics Katie Rommel-Esham Education 604 Probability
    Inferential Statistics Katie Rommel-Esham Education 604 Probability • Probability is the scientific way of stating the degree of confidence we have in predicting something • Tossing coins and rolling dice are examples of probability experiments • The concepts and procedures of inferential statistics provide us with the language we need to address the probabilistic nature of the research we conduct in the field of education From Samples to Populations • Probability comes into play in educational research when we try to estimate a population mean from a sample mean • Samples are used to generate the data, and inferential statistics are used to generalize that information to the population, a process in which error is inherent • Different samples are likely to generate different means. How do we determine which is “correct?” The Role of the Normal Distribution • If you were to take samples repeatedly from the same population, it is likely that, when all the means are put together, their distribution will resemble the normal curve. • The resulting normal distribution will have its own mean and standard deviation. • This distribution is called the sampling distribution and the corresponding standard deviation is known as the standard error. Remember me? Sampling Distributions • As before, with the sampling distribution, approximately 68% of the means lie within 1 standard deviation of the distribution mean and 96% would lie within 2 standard deviations • We now know the probable range of means, although individual means might vary somewhat The Probability-Inferential Statistics Connection • Armed with this information, a researcher can be fairly certain that, 68% of the time, the population mean that is generated from any given sample will be within 1 standard deviation of the mean of the sampling distribution.
    [Show full text]
  • A Monte Carlo Method for Comparing Generalized Estimating Equations to Conventional Statistical Techniques Tor Discounting Data
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Exp Anal Manuscript Author Behav. Author Manuscript Author manuscript; available in PMC 2019 March 20. Published in final edited form as: J Exp Anal Behav. 2019 March ; 111(2): 207–224. doi:10.1002/jeab.497. A Monte Carlo Method for Comparing Generalized Estimating Equations to Conventional Statistical Techniques tor Discounting Data Jonathan E. Friedel1, William B. DeHart2, Anne M. Foreman1, and Michael E. Andrew1 1National Institute for Occupational Safety and Health 2Virginia Tech Carillion Research Institute Abstract Discounting is the process by which outcomes lose value. Much of discounting research has focused on differences in the degree of discounting across various groups. This research has relied heavily on conventional null hypothesis significance testing that is familiar to psychology in general such as t-tests and ANOVAs. As discounting research questions have become more complex by simultaneously focusing on within-subject and between-group differences conventional statistical testing is often not appropriate for the obtained data. Generalized estimating equations (GEE) are one type of mixed-effects model that are designed to handle autocorrelated data, such as within-subject repeated-measures data, and are therefore more appropriate for discounting data. To determine if GEE provides similar results as conventional statistical tests, were compared the techniques across 2,000 simulated data sets. The data sets were created using a Monte Carlo method based of an existing data set. Across the simulated data sets, the GEE and the conventional statistical tests generally provided similar patterns of results. As the GEE and more conventional statistical tests provide the same pattern of result, we suggest researchers use the GEE because it was designed to handle data that has the structure that is typical of discounting data.
    [Show full text]
  • Nonparametric Permutation Testing
    NONPARAMETRIC PERMUTATION TESTING CHAPTER 33 TONY YE WHAT IS PERMUTATION TESTING? Framework for assessing the statistical significance of EEG results. Advantages: • Does not rely on distribution assumptions • Corrections for multiple comparisons are easy to incorporate • Highly appropriate for correcting multiple comparisons in EEG data WHAT IS PARAMETRIC STATISTICAL TESTING? The test statistic is compared against a theoretical distribution of test statistics expected under the H0. • t-value • χ2-value • Correlation coefficient The probability (p-value) of obtaining a statistic under the H0 is at least as large as the observed statistic. [INSERT 33.1A] NONPARAMETRIC PERMUTATION TESTING No assumptions are made about the theoretical underlying distribution of test statistics under the H0. • Instead, the distribution is created from the data that you have! How is this done? • Shuffling condition labels over trials • Within-subject analyses • Shuffling condition labels over subjects • Group-level analyses • Recomputing the test statistic NULL-HYPOTHESIS DISTRIBUTION Evaluating your hypothesis using a t-test of alpha power between two conditions. Two types of tests: • Discrete tests • Compare conditions • Continuous tests • Correlating two continuous variables DISCRETE TESTS Compare EEG activity between Condition A & B • H0 = No difference between conditions • Random relabeling of conditions • Test Statistic (TS) = as large as the TS BEFORE the random relabeling. Steps 1. Randomly swap condition labels from many trials 2. Compute t-test across conditions 3. If TS ≠ 0, there is sampling error or outliers CONTINOUS TESTS The idea: • Testing statistical significance of a correlation coefficient What’s the difference between this and discrete tests? • TS is created by swapping data points instead of labels SIMILARITIES The data are not altered • The “mapping” of data are shuffled around.
    [Show full text]
  • Paper Presented at the Annual Meeting of the American Educational Research Association, New York, New York, February 1971
    DOCUMENT RESUME ED 048 371 TM 000 463 AUTHOR Porter, Andrew C.; 'McSweeney, Maryellen TITLE Comparison of Pank Analysis of Covariance and Nonparametric Randomized Blocks Analysis. PUB DATE Jan 71 NOTE 35p.; Paper presented at the Annual Meeting of the American Educational Research Association, New York, New York, February 1971 EDRS PRIC. EDRS Price M7-$0.65 EC-$3.29 DESCRIPTORS *Analysis cf Covariance, *Analysis of Variance, *Goodness of Fit, Hypothesis Testing, *Nonparametric Statistics, Predictor Variables, *Research Design, Sampling, Statistical Analysis ABSTRACT The relative power of three possible experimental designs under the condition that data is to be analyzed by nonparametric techniques; the comparison of the power of each nonparametric technique to its parametric analogue; and the comparison of relative powers using nonparametric and parametric techniques are discussed. The three nonparametric techniques concerned are the Kruskal-Wallis test on data where experimental units have been randomly assigned to levels of the independent variable, Friedman's rank analysis of variance (ANOVA) on data in a randomized blocks design, and a nonparametric analysis of covariance (ANCOVA). The parametric counterparts are respectively; one way analysis of variance (ANOVA) ,two-way ANOVt, and parametric ANCOVA. Sine: the nonparametric tests are based on large sample approximations, the goodness of fit for small samples is also of concern. Statements of asymptotic relative efficiency and imprecision are reviewed as suggestive of small sample powers of the designs and statistics investigated. Results of a Monte Carlo investigation are provided to further illustrate small sample power and to provide data on goodness of fit.(Author/CK) U.S. DEPARTMENT OF HEALTH.
    [Show full text]
  • Scales and Statistics: Parametric and Nonparametric1 Norman H
    Psychological Bulletin 1961, Vol. 58, No. 4, 305-316 SCALES AND STATISTICS: PARAMETRIC AND NONPARAMETRIC1 NORMAN H. ANDERSON University of California, Los Angeles The recent rise of interest in the use since the former do not apply to of nonparametric tests stems from strictly categorical data (but see two main sources. One is the concern Cochran, 1954). Second, parametric about the use of parametric tests tests will mean tests of significance when the underlying assumptions are which assume equinormality, i.e., not met. The other is the problem of normality and some form of homo- whether or not the measurement scale geneity of variance. For convenience, is suitable for application of paramet- parametric test, F test, and analysis ric procedures. On both counts of variance will be used synony- parametric tests are generally more in mously. Although this usage is not danger than nonparametric tests. strictly correct, it should be noted Because of this, and because of a that the t test and regression analysis natural enthusiasm for a new tech- may be considered as special applica- nique, there has been a sometimes tions of F. Nonparametric tests will uncritical acceptance of nonparamet- refer to significance tests which make ric procedures. By now a certain considerably weaker distributional degree of agreement concerning the assumptions as exemplified by rank more practical aspects involved in the order tests such as the Wilcoxon T, choice of tests appears to have been the Kruskal-Wallis H, and by the reached. However, the measurement various median-type tests. Third, the theoretical issue has been less clearly main focus of the article is on tests of resolved.
    [Show full text]
  • Guiding Principles for Monte Carlo Analysis (Pdf)
    EPA/630/R-97/001 March 1997 Guiding Principles for Monte Carlo Analysis Technical Panel Office of Prevention, Pesticides, and Toxic Substances Michael Firestone (Chair) Penelope Fenner-Crisp Office of Policy, Planning, and Evaluation Timothy Barry Office of Solid Waste and Emergency Response David Bennett Steven Chang Office of Research and Development Michael Callahan Regional Offices AnneMarie Burke (Region I) Jayne Michaud (Region I) Marian Olsen (Region II) Patricia Cirone (Region X) Science Advisory Board Staff Donald Barnes Risk Assessment Forum Staff William P. Wood Steven M. Knott Risk Assessment Forum U.S. Environmental Protection Agency Washington, DC 20460 DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii TABLE OF CONTENTS Preface . iv Introduction ...............................................................1 Fundamental Goals and Challenges ..............................................3 When a Monte Carlo Analysis Might Add Value to a Quantitative Risk Assessment . 5 Key Terms and Their Definitions ...............................................6 Preliminary Issues and Considerations ............................................9 Defining the Assessment Questions ........................................9 Selection and Development of the Conceptual and Mathematical Models ...........10 Selection and Evaluation of Available Data .................................10
    [Show full text]
  • Parametric Vs. Non-Parametric Statistics of Low Resolution Electromagnetic Tomography (LORETA)
    CLINICAL EEG and NEUROSCIENCE ©2005 VOL. 36 NO. 1 Parametric vs. Non-Parametric Statistics of Low Resolution Electromagnetic Tomography (LORETA) R. W. Thatcher, D. North and C. Biver Key Words positives of the 2,394 gray matter pixels for any cross-val- EEG Inverse Solutions idated normal subject. LORETA Parametric Statistics In conclusion, adequate approximation to Gaussian Non-parametric Statistics and high cross-validation can be achieved by the Key Institute’s LORETA programs by using a log10 transform ABSTRACT and parametric statistics, and parametric normative com- This study compared the relative statistical sensitivity parisons had lower false positive rates than the non-para- of non-parametric and parametric statistics of 3-dimen- metric tests. sional current sources as estimated by the EEG inverse INTRODUCTION solution Low Resolution Electromagnetic Tomography Both non-parametric1,2 and parametric3-10 statistics have (LORETA). One would expect approximately 5% false pos- been used in studies of Low Resolution Electromagnetic itives (classification of a normal as abnormal) at the P < Tomography or LORETA,11,12 however, the relative sensitiv- .025 level of probability (two tailed test) and approximately ity of parametric vs. non-parametric statistics has not been 1% false positives at the P < .005 level. systematically evaluated. Non-parametric statistics have EEG digital samples (2 second intervals sampled 128 the advantage of being distribution independent as well as Hz, 1 to 2 minutes eyes closed) from 43 normal adult sub- insensitive to extreme values or outliers. The disadvantage jects were imported into the Key Institute’s LORETA pro- of non-parametric statistics is the complexity, lower power gram and then used the Key Institute’s cross-spectrum and time required for computation.
    [Show full text]
  • An Interesting Reading "History of Statistics on Timeline"
    History of Statistics on Timeline V.K. Gupta, B.N. Mandal and Rajender Parsad ICAR-Indian Agricultural Statistics Research Institute Libray Avenue, Pusa, New Delhi – 110012, INDIA ____________________________________________________________________________________________________________________ SUMMARY The purpose of this article is to give the historical developments in the theory and applications of Statistics starting from pre-historic times till the beginning of the 20th century when the foundations of modern statistics were laid. Some selected contributions of prominent Indian statisticians have also been listed. The development of some selected statistical journals on the time line is also given. No claim is being made on the coverage being exhaustive. Keywords: Statistics in the ancient times, Modern statistics, Important selected journals. ____________________________________________________________________________________________________________________ Corresponding author: B.N. Mandal Email address: [email protected] 1. HISTORY OF STATISTICS ON TIME LINE Note: BCE ~ Before Common Era (or BC ~ Before Christ); CE ~ Common Era (or AD ~ Anno Domini) Time Contributor Contribution Dwaparyuga ‒ Mahabharata; Vana Prarva; Nala and king Bhangasuri were moving in a chariot through a forest. Bhangasuri told Kalayuga Nala – Damyanti Akhyan Nala that if he can count how many fallen leaves and fruits are there, he (Bhangasuri) can tell the number of fruits and leaves on two strongest branches of Vibhitak tree. One above one hundred are the number of leaves and one fruit informed Nala after counting the fallen leaves and fruit. Bhangasuri avers 2095 fruits and five ten million leaves on the two strongest branches of the tree (actually it is 5 koti leaves and 1 koti is 10 million). Nala counts all night and is duly amazed by morning.
    [Show full text]
  • Unit 1 Parametric and Non- Parametric Statistics
    UNIT 1 PARAMETRIC AND NON- PARAMETRIC STATISTICS Structure 1.0 Introduction 1.1 Objectives 1.2 Definition of Parametric and Non-parametric Statistics 1.3 Assumptions of Parametric and Non-parametric Statistics 1.3.1 Assumptions of Parametric Statistics 1.3.2 Assumptions of Non-parametric Statistics 1.4 Advantages of Non-parametric Statistics 1.5 Disadvantages of Non-parametric Statistical Tests 1.6 Parametric Statistical Tests for Different Samples 1.7 Parametric Statistical Measures for Calculating the Difference Between Means 1.7.1 Significance of Difference Between the Means of Two Independent Large and Small Samples 1.7.2 Significance of the Difference Between the Means of Two Dependent Samples 1.7.3 Significance of the Difference Between the Means of Three or More Samples 1.8 Parametric Statistics Measures Related to Pearson’s ‘r’ 1.8.1 Non-parametric Tests Used for Inference 1.9 Some Non-parametric Tests for Related Samples 1.10 Let Us Sum Up 1.11 Unit End Questions 1.12 Glossary 1.13 Suggested Readings 1.0 INTRODUCTION In this unit you will be able to know the various aspects of parametric and non- parametric statistics. A parametric statistical test specifies certain conditions such as the data should be normally distributed etc. The non-parametric statistics does not require the conditions of parametric stats. In fact non-parametric tests are known as distribution free tests. In this unit we will study the nature of quantitative data and various descriptive statistical measures which are used in the analysis of such data. These include measures of central tendency, variability, relative position and relationships of normal probability curve etc.
    [Show full text]