Identification of a Recurrent Microdeletion at 17Q23.1Q23.2

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Recurrent Microdeletion at 17Q23.1Q23.2 REPORT Identification of a Recurrent Microdeletion at 17q23.1q23.2 Flanked by Segmental Duplications Associated with Heart Defects and Limb Abnormalities Blake C. Ballif,1,* Aaron Theisen,1 Jill A. Rosenfeld,1 Ryan N. Traylor,1 Julie Gastier-Foster,2,3,4 Devon Lamb Thrush,2,4 Caroline Astbury,2,4 Dennis Bartholomew,4,5 Kim L. McBride,4,6 Robert E. Pyatt,2,3 Kate Shane,4,5 Wendy E. Smith,7 Valerie Banks,7 William B. Gallentine,8 Pamela Brock,9 M. Katharine Rudd,10 Margaret P. Adam,10 Julia A. Keene,10 John A. Phillips III,11 Jean P. Pfotenhauer,12 Gordon C. Gowans,9 Pawel Stankiewicz,13,14 Bassem A. Bejjani,1 and Lisa G. Shaffer1 Segmental duplications, which comprise ~5%–10% of the human genome, are known to mediate medically relevant deletions, duplications, and inversions through nonallelic homologous recombination (NAHR) and have been suggested to be hot spots in chromosome evolution and human genomic instability. We report seven individuals with microdeletions at 17q23.1q23.2, identified by microarray-based comparative genomic hybridization (aCGH). Six of the seven deletions are ~2.2 Mb in size and flanked by large segmental duplications of >98% sequence identity and in the same orientation. One of the deletions is ~2.8 Mb in size and is flanked on the distal side by a segmental duplication, whereas the proximal breakpoint falls between segmental duplications. These character- istics suggest that NAHR mediated six out of seven of these rearrangements. These individuals have common features, including mild to moderate developmental delay (particularly speech delay), microcephaly, postnatal growth retardation, heart defects, and hand, foot, and limb abnormalities. Although all individuals had at least mild dysmorphic facial features, there was no characteristic constellation of features that would elicit clinical suspicion of a specific disorder. The identification of common clinical features suggests that micro- deletions at 17q23.1q23.2 constitute a novel syndrome. Furthermore, the inclusion in the minimal deletion region of TBX2 and TBX4, transcription factors belonging to a family of genes implicated in a variety of developmental pathways including those of heart and limb, suggests that these genes may play an important role in the phenotype of this emerging syndrome. Segmental duplications comprise ~5%–10% of the human (reviewed in 4). Recently, a recurrent microdeletion at genome.1 Misalignment of segmental duplications during 17q21.3 mediated by segmental duplications was identi- meiosis can mediate genomic instability by nonallelic fied by screening individuals with idiopathic mental homologous recombination (NAHR). Depending on the retardation and congenital anomalies with a microarray orientation of the segmental duplications, NAHR can targeting potential segmental duplication-rich rearrange- generate microdeletions, microduplications, and inver- ment ‘‘hot spots’’ in the genome,5–7 suggesting that other sions of the intervening genomic sequence.2–7 Chromo- such rearrangements may yet be identified. somal rearrangements associated with segmental duplica- Recent evidence suggests another segmental duplication tions include microdeletions at 3q29 (MIM 609425) ‘‘hub’’ on chromosome 17 at 17q23. Breakpoint analysis of and their reciprocal microduplications (MIM 611936);8 a paracentric inversion that occurred in the human/chim- Williams syndrome (MIM 194050) and deletions at panzee/gorilla ancestor revealed that the distal breakpoint 7q11.23; Angelman (MIM 105830) and Prader-Willi syn- maps to the region syntenic to human 17q23, which dromes (MIM 176270) and maternally and paternally suggests that the presence of this duplicon mediated the derived deletions, respectively, of 15q11-q13; microdele- inversion in the Homo sapiens/Pan troglodytes/Gorilla gorilla tions at 16p11.2p12.2 and their reciprocal microduplica- ancestor.10 Furthermore, at least two insertions and dele- tions;9 Smith-Magenis syndrome (MIM 182290) and tions and one translocation have occurred within the deletions at 17p11.2; duplication at 17p12 in Charcot- past six million years since the divergence of chimpanzees Marie-Tooth disease type 1A (MIM 604563); and the recip- and humans, indicating that these regions have continued rocal deletion at 17p12 resulting in hereditary neuropathy to be subject to more-recent local rearrangements. Further with liability to pressure palsies (HNPP [MIM 162500]) data have demonstrated the structural complexity of the 1Signature Genomic Laboratories, Spokane, WA 99207, USA; 2Department of Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43209, USA; 3Department of Pathology, The Ohio State University, Columbus, OH 43209, USA; 4Department of Pediatrics, The Ohio State University, Columbus, OH 43209, USA; 5Section of Genetics, Nationwide Children’s Hospital, Columbus, OH 43209, USA; 6Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43209, USA; 7Department of Pediatrics, Maine Pediatric Specialty Group, Portland, ME 04102, USA; 8Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; 9Weisskopf Child Evaluation Center, University of Louisville, Louisville, KY 40202, USA; 10Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; 11Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; 12Division of Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; 13Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA; 14Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland *Correspondence: [email protected] DOI 10.1016/j.ajhg.2010.01.038. ª2010 by The American Society of Human Genetics. All rights reserved. 454 The American Journal of Human Genetics 86, 454–461, March 12, 2010 55 Mb 56 Mb 57 Mb 58 Mb Figure 1. Summary of Microarray Anal- ysis of Individuals with Copy Number 17q22 17q23.1 17q23.2 Imbalances at 17q23.1q23.2 AB AB At the top of the figure is a partial idiogram showing chromosome bands 17q22- 17q23.2 with genomic coordinates corre- Seg Dups sponding to the hg18 build of the human genome. Orange boxes represent seg- Patient 1 mental duplications (seg dups), with paired segmental duplications indicated by blue boxes. The location and orientation of the 18 kb inverted duplication and the Patient 2 15 kb direct duplication contained within the paired segmental duplications are indi- cated by arrows marked A and B, respec- Patient 3 tively. The complex segmental duplication structure of this region has been simplified for illustrative purposes. Diagrams show the deletions in seven individuals with mi- Patient 4 crodeletions at 17q23.1q23.2. Six of the seven deletions were refined with a high- density, 244K oligonucleotide microarray Patient 5 (patients 1–4, 6, and 7). A 105K oligonucle- otide microarray was used for patient 5. Vertical dashed lines indicate the 2.2 and 2.8 Mb deletion sizes in the individuals. Patient 6 Blue boxes represent all known genes annotated in OMIM in the deletion region. OMIM genes TBX2 and TBX4 are shown as Patient 7 yellow boxes. (BAC)-based microarray analysis was INTS2 TLK2 YPEL2 CLTC CLTC TMEM49 TBX2 NACA2 RPS6KB1 USP32 PPM1D PPM1D TEX14 originally performed on DNA from patients 1 and 2 with a >4600 clone custom microarray as previously CA4 TBX4 TBX4 14 BRIP1 MRC2 MED13 BCAS3 DHX40 TRIM37 TRIM37 PTRH2 PTRH2 TUBD1 TUBD1 described. Oligonucleotide-based APPBP2 RAD51C microarray analysis was originally performed on DNA from patients 3–5 ~2.2 Mb with a custom 105K-feature whole- genome microarray (Agilent Technolo- gies), as previously described.14 The ~2.8 Mb deletion in patient 6 was identified with a custom 44K oligonucleotide- region, which has been shown to be polymorphic in the based microarray (Agilent Technologies), as previously human population and associated with a multiple sclerosis described.13,15 The deletion in patient 7 was originally iden- susceptibility locus on 17q22-q24.11,12 tified with a custom-designed 105K-feature whole-genome Here we report the clinical and molecular characteriza- oligonucleotide microarray (Agilent Technologies), as previ- tion of seven individuals with microdeletions at 17q23. ously described.16 In addition, all patients for whom DNA 1q23.2. Patients 1–3 in this study were ascertained by Sig- was available (1–4, 6, and 7) were reanalyzed at higher nature Genomic Laboratories. Patients 4 and 5 were resolution with an off-the-shelf 244K-feature whole- ascertained by Nationwide Children’s Hospital. Patient genome microarray (Agilent Technologies), as previously 6 was ascertained by Emory University School of Medicine. described.14 One individual, patient 2, had a 2.8 Mb deletion Patient 7 was ascertained by Baylor College of Medicine. (chromosome 17: 54.8–57.6 Mb); the remaining six individ- Informed consent was obtained from patients 1, 4, 6, and uals had 2.2 Mb deletions (chromosome 17: 55.4–57.6 Mb). 7 to publish photographs with consent forms approved All seven deletions were confirmed and visualized by by the Institutional Review Board of respective institutions. fluorescence in situ hybridization (FISH) with BAC clones, All seven individuals with microdeletions at 17q23 were as previously described (Figure 2).17 Parental FISH testing initially identified by microarray-based comparative in five of the seven cases confirmed an apparently de genomic hybridization (aCGH) with
Recommended publications
  • Molekulare Pathologie Und Embryologie Von Hoxd13- Assoziierten Fehlbildungen Der Extremitäten
    Molekulare Pathologie und Embryologie von Hoxd13- assoziierten Fehlbildungen der Extremitäten Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von Pia Bianca Kuss aus Krefeld März 2009 Die vorliegende Arbeit wurde im Zeitraum November 2004 bis März 2009 am Max-Planck-Institut für Molekulare Genetik unter der Leitung von Prof. Dr. Mundlos angefertigt. 1. Gutachter: Prof. Dr. Stefan Mundlos Max-Planck-Institut für molekulare Genetik Ihnestr. 73, 14195 Berlin Tel. 030 8413 1449 E-Mail: [email protected] 2. Gutachterin: Prof. Dr. Petra Knaus Institut für Biochemie Freie Universität Berlin Thielallee 63, 14195 Berlin Tel. 030 838 52935 E-Mail: [email protected] Disputation am : 03. Juni 2009 Hoffnung ist nicht die Überzeugung dass etwas gut ausgeht, sondern die Gewissheit, dass etwas Sinn hat, egal wie es ausgeht. V. Havel Selbstständigkeitserklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbst angefertigt und keine anderen, als die hier angegebenen Hilfsmittel verwendet habe. Ich versichere, dass ich diese Arbeit weder in dieser noch in einer anderen Form bei einer anderen Prüfungsbehörde eingereicht habe. Berlin, den 20. März 2009 --------------------------------------- Pia Kuss Danke! Entgegen der akademischen Regeln gilt mein herzlichster Dank in allererster Linie meinem Vater und meinem Bruder Philipp. Ohne meine Familie wäre ich nicht der Mensch der ich bin, und schon gar nicht an dem Punkt, an dem ich nun bin. Danke für Eure Unterstützung, Euer Vertrauen und Eure Zuneigung...und dafür, dass ich meinen Weg weiter gehen konnte. Ich durfte erleben und lernen, dass Zusammenhalten das Wichtigste im Leben ist.
    [Show full text]
  • Differential Requirements for Tousled-Like Kinases 1 and 2 in Mammalian Development
    Cell Death and Differentiation (2017) 24, 1872–1885 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1350-9047/17 www.nature.com/cdd Differential requirements for Tousled-like kinases 1 and 2 in mammalian development Sandra Segura-Bayona1,8, Philip A Knobel1,8, Helena González-Burón1,8, Sameh A Youssef2,3, Aida Peña-Blanco1, Étienne Coyaud4,5, Teresa López-Rovira1, Katrin Rein1, Lluís Palenzuela1, Julien Colombelli1, Stephen Forrow1, Brian Raught4,5, Anja Groth6, Alain de Bruin2,7 and Travis H Stracker*,1 The regulation of chromatin structure is critical for a wide range of essential cellular processes. The Tousled-like kinases, TLK1 and TLK2, regulate ASF1, a histone H3/H4 chaperone, and likely other substrates, and their activity has been implicated in transcription, DNA replication, DNA repair, RNA interference, cell cycle progression, viral latency, chromosome segregation and mitosis. However, little is known about the functions of TLK activity in vivo or the relative functions of the highly similar TLK1 and TLK2 in any cell type. To begin to address this, we have generated Tlk1- and Tlk2-deficient mice. We found that while TLK1 was dispensable for murine viability, TLK2 loss led to late embryonic lethality because of placental failure. TLK2 was required for normal trophoblast differentiation and the phosphorylation of ASF1 was reduced in placentas lacking TLK2. Conditional bypass of the placental phenotype allowed the generation of apparently healthy Tlk2-deficient mice, while only the depletion of both TLK1 and TLK2 led to extensive genomic instability, indicating that both activities contribute to genome maintenance. Our data identifies a specific role for TLK2 in placental function during mammalian development and suggests that TLK1 and TLK2 have largely redundant roles in genome maintenance.
    [Show full text]
  • A Chromosome Level Genome of Astyanax Mexicanus Surface Fish for Comparing Population
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 A chromosome level genome of Astyanax mexicanus surface fish for comparing population- 3 specific genetic differences contributing to trait evolution. 4 5 Authors 6 Wesley C. Warren1, Tyler E. Boggs2, Richard Borowsky3, Brian M. Carlson4, Estephany 7 Ferrufino5, Joshua B. Gross2, LaDeana Hillier6, Zhilian Hu7, Alex C. Keene8, Alexander Kenzior9, 8 Johanna E. Kowalko5, Chad Tomlinson10, Milinn Kremitzki10, Madeleine E. Lemieux11, Tina 9 Graves-Lindsay10, Suzanne E. McGaugh12, Jeff T. Miller12, Mathilda Mommersteeg7, Rachel L. 10 Moran12, Robert Peuß9, Edward Rice1, Misty R. Riddle13, Itzel Sifuentes-Romero5, Bethany A. 11 Stanhope5,8, Clifford J. Tabin13, Sunishka Thakur5, Yamamoto Yoshiyuki14, Nicolas Rohner9,15 12 13 Authors for correspondence: Wesley C. Warren ([email protected]), Nicolas Rohner 14 ([email protected]) 15 16 Affiliation 17 1Department of Animal Sciences, Department of Surgery, Institute for Data Science and 18 Informatics, University of Missouri, Bond Life Sciences Center, Columbia, MO 19 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 20 3 Department of Biology, New York University, New York, NY 21 4 Department of Biology, The College of Wooster, Wooster, OH 22 5 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 23 6 Department of Genome Sciences, University of Washington, Seattle, WA 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020.
    [Show full text]
  • The P53mh Algorithm and Its Application in Detecting P53-Responsive Genes
    The p53MH algorithm and its application in detecting p53-responsive genes J. Hoh*†‡, S. Jin§†, T. Parrado*, J. Edington*, A. J. Levine§, and J. Ott* *Laboratories of Statistical Genetics and §Cancer Biology of The Rockefeller University, 1230 York Avenue, New York, NY 10021 Contributed by A. J. Levine, May 6, 2002 A computer algorithm, p53MH, was developed, which identifies overall binding likelihood is needed for a given gene of arbitrary putative p53 transcription factor DNA-binding sites on a genome- size. Three features have been implemented in an algorithm to wide scale with high power and versatility. With the sequences meet the above requirements: binding propensity plots, weighted from the human and mouse genomes, putative p53 DNA-binding scores, and statistical significance for most likely binding sites. elements were identified in a scan of 2,583 human genes and 1,713 This computer algorithm has been used to identify putative mouse orthologs based on the experimental data of el-Deiry et al. binding elements on a genomewide scale. The algorithm, [el-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W. & p53MH, uses an optimal scoring system as an indication of the Vogelstein, B. (1992) Nat. Genet. 1, 45–49] and Funk et al. [Funk, percent similarity to the consensus. It can simultaneously screen W. D., Pak, D. T., Karas, R. H., Wright, W. E. & Shay, J. W. (1992) Mol. thousands of genes for degenerate consensus sequences in the Cell. Biol. 12, 2866–2871] (http:͞͞linkage.rockefeller.edu͞p53). The course of only a few minutes. With this, based on the available p53 DNA-binding motif consists of a 10-bp palindrome and most annotated human sequence databases, a White Page-like direc- commonly a second related palindrome linked by a spacer region.
    [Show full text]
  • Functional Genomics Studies of Human Brain Development and Implications for Autism Spectrum Disorder
    Functional Genomics Studies of Human Brain Development and Implications for Autism Spectrum Disorder Mark Nicholas Ziats Robinson College University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy November 2013 For Mom, Dad, Ann, and Catherine 2 Declaration This dissertation is the result of my own work and contains nothing that is the outcome of work done in collaboration, except as specifically described in the Appendix. The length of this thesis does not exceed the 60,000 word limit and it has been typeset using the specifications set by the Biology Degree Committee. This dissertation is not similar to any other that I submitted for a degree, diploma, or other qualification at any other University. Furthermore, I state that no part of this dissertation has been, or is concurrently being, submitted for any degree, diploma, or other qualification. Mark N. Ziats November 2013 3 Summary Human neurodevelopment requires the coordinated expression of thousands of genes, exquisitely regulated in both spatial and temporal dimensions, to achieve the proper specialization and inter-connectivity of brain regions. Consequently, the dysregulation of complex gene networks in the developing brain is believed to underlie many neurodevelopmental disorders, such as autism spectrum disorders (ASD). Autism has a significant genetic etiology, but there are hundreds of genes implicated, and their functions are heterogeneous and complex. Therefore, an understanding of shared molecular and cellular pathways underlying the development ASD has remained elusive, hampering attempts to develop common diagnostic biomarkers or treatments for this disorder. I hypothesized that analyzing functional genomics relationships among ASD candidate genes during normal human brain development would provide insight into common cellular and molecular pathways that are affected in autistic individuals, and may help elucidate how hundreds of diverse genes can all be linked to a single clinical phenotype.
    [Show full text]
  • Molecular Basis of Tousled-Like Kinase 2 Activation
    ARTICLE DOI: 10.1038/s41467-018-04941-y OPEN Molecular basis of Tousled-Like Kinase 2 activation Gulnahar B. Mortuza1, Dario Hermida1, Anna-Kathrine Pedersen2, Sandra Segura-Bayona 3, Blanca López-Méndez4, Pilar Redondo 5, Patrick Rüther 2, Irina Pozdnyakova4, Ana M. Garrote5, Inés G. Muñoz5, Marina Villamor-Payà3, Cristina Jauset3, Jesper V. Olsen 2, Travis H. Stracker3 & Guillermo Montoya 1 Tousled-like kinases (TLKs) are required for genome stability and normal development in numerous organisms and have been implicated in breast cancer and intellectual disability. In 1234567890():,; humans, the similar TLK1 and TLK2 interact with each other and TLK activity enhances ASF1 histone binding and is inhibited by the DNA damage response, although the molecular mechanisms of TLK regulation remain unclear. Here we describe the crystal structure of the TLK2 kinase domain. We show that the coiled-coil domains mediate dimerization and are essential for activation through ordered autophosphorylation that promotes higher order oligomers that locally increase TLK2 activity. We show that TLK2 mutations involved in intellectual disability impair kinase activity, and the docking of several small-molecule inhi- bitors of TLK activity suggest that the crystal structure will be useful for guiding the rationale design of new inhibition strategies. Together our results provide insights into the structure and molecular regulation of the TLKs. 1 Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark. 2 Mass Spectrometry for Quantitative Proteomics, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
    [Show full text]
  • Erα-Related Chromothripsis Enhances Concordant Gene Transcription On
    Lin et al. BMC Medical Genomics (2020) 13:69 https://doi.org/10.1186/s12920-020-0729-7 RESEARCH ARTICLE Open Access ERα-related chromothripsis enhances concordant gene transcription on chromosome 17q11.1-q24.1 in luminal breast cancer Chun-Lin Lin1†, Xi Tan1†, Meizhen Chen1†, Meena Kusi1, Chia-Nung Hung1, Chih-Wei Chou1, Ya-Ting Hsu1, Chiou-Miin Wang1, Nameer Kirma1, Chun-Liang Chen1, Ching-Hung Lin2,3, Kate I. Lathrop4, Richard Elledge4, Virginia G. Kaklamani4, Kohzoh Mitsuya1* and Tim H.-M. Huang1* Abstract Background: Chromothripsis is an event of genomic instability leading to complex chromosomal alterations in cancer. Frequent long-range chromatin interactions between transcription factors (TFs) and targets may promote extensive translocations and copy-number alterations in proximal contact regions through inappropriate DNA stitching. Although studies have proposed models to explain the initiation of chromothripsis, few discussed how TFs influence this process for tumor progression. Methods: This study focused on genomic alterations in amplification associated regions within chromosome 17. Inter−/intra-chromosomal rearrangements were analyzed using whole genome sequencing data of breast tumors in the Cancer Genome Atlas (TCGA) cohort. Common ERα binding sites were defined based on MCF-7, T47D, and MDA-MB-134 breast cancer cell lines using univariate K-means clustering methods. Nanopore sequencing technology was applied to validate frequent rearrangements detected between ATC loci on 17q23 and an ERα hub on 20q13. The efficacy of pharmacological inhibition of a potentially druggable target gene on 17q23 was evaluated using breast cancer cell lines and patient-derived circulating breast tumor cells. (Continued on next page) * Correspondence: [email protected]; [email protected] †Chun-Lin Lin, Xi Tan and Meizhen Chen contributed equally to this work.
    [Show full text]
  • Screening of Kinase Inhibitors Targeting BRAF for Regulating Autophagy Based on Kinase Pathways
    MOLECULAR MEDICINE REPORTS 9: 83-90, 2014 Screening of kinase inhibitors targeting BRAF for regulating autophagy based on kinase pathways YINGMEI ZHANG1, DONGBO XUE2, XIAOCHUN WANG2, MING LU3, BO GAO2 and XIN QIAO3 1Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001; 2Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China; 3Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90064, USA Received September 19, 2013; Accepted October 28, 2013 DOI: 10.3892/mmr.2013.1781 Abstract. The aim of this study was to identify agents that is essential for autophagy to provide energy for cells. A previous regulate autophagy. A total of 544 differentially expressed study indicated that autophagy is associated with the effects genes were screened from the intersection set of GSE2435 and of antitumor agents on tumor cells. Subsequently, tumor cells GSE31040, which was obtained from the Gene Expression overcome nutritional deficiency and hypoxia by autophagy and Omnibus database and 19 differentially expressed kinases are therefore protected from entering the apoptotic pathway (2). were selected according to a 'protein kinase database'. Gene One of the important factors for the poor prognosis of ontology-biological process (GO-BP) enrichment analysis tumors is their tolerance to radiotherapy and chemotherapy. revealed that the 19 kinases were mainly associated with
    [Show full text]
  • Functional Precision Medicine Identifies Novel Druggable Targets and Therapeutic Options in Head and Neck Cancer
    Published OnlineFirst March 29, 2018; DOI: 10.1158/1078-0432.CCR-17-1339 Precision Medicine and Imaging Clinical Cancer Research Functional Precision Medicine Identifies Novel Druggable Targets and Therapeutic Options in Head and Neck Cancer Chang Xu1,2, Olga Nikolova3, Ryan S. Basom4, Ryan M. Mitchell1, Reid Shaw5, Russell D. Moser6, Heuijoon Park2, Kay E. Gurley6, Michael C. Kao2, Carlos L. Green2, Franz X. Schaub5, Robert L. Diaz5, Hallie A. Swan5, In S. Jang7, Justin Guinney7, Vijayakrishna K. Gadi2,8, Adam A. Margolin3, Carla Grandori5, Christopher J. Kemp6, and Eduardo Mendez 1,2,8,† Abstract Purpose: Head and neck squamous cell carcinoma additional HNSCC cell cultures derived from patients (HNSCC) is the sixth most common cancer worldwide, enrolled in a clinical trial. with high mortality and a lack of targeted therapies. To Results: Many of the identified copy number aberrations and identify and prioritize druggable targets, we performed somatic mutations in the primary tumor were typical of HPV(À) genome analysis together with genome-scale siRNA and HNSCC, but none pointed to obvious therapeutic choices. In oncology drug profiling using low-passage tumor cells de- contrast, siRNA profiling identified 391 candidate target genes, 35 rived from a patient with treatment-resistant HPV-negative of which were preferentially lethal to cancer cells, most of which HNSCC. were not genomically altered. Chemotherapies and targeted Experimental Design: A tumor cell culture was established agents with strong tumor-specific activities corroborated the and subjected to whole-exome sequencing, RNA sequencing, siRNA profiling results and included drugs that targeted the comparative genome hybridization, and high-throughput mitotic spindle, the proteasome, and G2–M kinases WEE1 and phenotyping with a siRNA library covering the druggable CHK1.
    [Show full text]
  • Identification of Human Asf1 Chromatin Assembly Factors As Substrates of Tousled-Like Kinases Herman H.W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 1068 Brief Communication Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases Herman H.W. Sillje´ and Erich A. Nigg First described in Arabidopsis thaliana [1], Tousled- hybrid screens were performed using human Tlk1 and like kinases (Tlks) are highly conserved in both Tlk2 as baits. These screens yielded two closely related plants and animals. In plants, Tousled kinase is proteins interacting strongly with both Tlk1 and Tlk2 essential for proper flower and leaf development, (Figure 1a, data not shown). Database searches revealed but no direct functional link to any other plant gene that both proteins were closely related to the Saccharomyces product has yet been established [1, 2]. Likewise, cerevisiae Asf1 (anti-silencing function 1) protein; hence, the role of Tlks in animals is unknown. In human we named the two human proteins Asf1a and Asf1b. Yeast cells, two structurally similar Tlks, Tlk1 and Tlk2, Asf1p was originally identified by virtue of its ability to were recently shown to be cell cycle-regulated derepress silencing upon overexpression [5, 6]. A Drosoph- kinases with maximal activities during S phase [3]. ila homolog of Asf1p was subsequently shown to bind to Here, we report the identification of two human acetylated histones H3 and H4 and to cooperate with homologs of the Drosophila chromatin assembly CAF-1 (chromatin-assembly factor 1) in the assembly of factor Asf1 (anti-silencing function 1) [4] as nucleosomes onto newly replicated DNA[4].
    [Show full text]
  • A Resource for Exploring the Understudied Human Kinome for Research and Therapeutic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022277; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A resource for exploring the understudied human kinome for research and therapeutic opportunities Nienke Moret1,2,*, Changchang Liu1,2,*, Benjamin M. Gyori2, John A. Bachman,2, Albert Steppi2, Clemens Hug2, Rahil Taujale3, Liang-Chin Huang3, Matthew E. Berginski1,4,5, Shawn M. Gomez1,4,5, Natarajan Kannan,1,3 and Peter K. Sorger1,2,† *These authors contributed equally † Corresponding author 1The NIH Understudied Kinome Consortium 2Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts 02115, USA 3 Institute of Bioinformatics, University of Georgia, Athens, GA, 30602 USA 4 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 5 Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA † Peter Sorger Warren Alpert 432 200 Longwood Avenue Harvard Medical School, Boston MA 02115 [email protected] cc: [email protected] 617-432-6901 ORCID Numbers Peter K. Sorger 0000-0002-3364-1838 Nienke Moret 0000-0001-6038-6863 Changchang Liu 0000-0003-4594-4577 Benjamin M. Gyori 0000-0001-9439-5346 John A. Bachman 0000-0001-6095-2466 Albert Steppi 0000-0001-5871-6245 Shawn M.
    [Show full text]
  • Ncomms12991.Pdf
    ARTICLE Received 1 Jun 2016 | Accepted 24 Aug 2016 | Published 3 Oct 2016 DOI: 10.1038/ncomms12991 OPEN Comprehensive functional analysis of the tousled-like kinase 2 frequently amplified in aggressive luminal breast cancers Jin-Ah Kim1,2,3, Ying Tan1,2,3, Xian Wang1,2,3,4,5, Xixi Cao1,2,3, Jamunarani Veeraraghavan1,2,3, Yulong Liang6, Dean P. Edwards2,7,8, Shixia Huang2,8, Xuewen Pan9, Kaiyi Li6, Rachel Schiff1,2,3,8 & Xiao-Song Wang1,2,3,4,5,8 More aggressive and therapy-resistant oestrogen receptor (ER)-positive breast cancers remain a great clinical challenge. Here our integrative genomic analysis identifies tousled-like kinase 2 (TLK2) as a candidate kinase target frequently amplified in B10.5% of ER-positive breast tumours. The resulting overexpression of TLK2 is more significant in aggressive and advanced tumours, and correlates with worse clinical outcome regardless of endocrine therapy. Ectopic expression of TLK2 leads to enhanced aggressiveness in breast cancer cells, which may involve the EGFR/SRC/FAK signalling. Conversely, TLK2 inhibition selectively inhibits the growth of TLK2-high breast cancer cells, downregulates ERa, BCL2 and SKP2, impairs G1/S cell cycle progression, induces apoptosis and significantly improves progres- sion-free survival in vivo. We identify two potential TLK2 inhibitors that could serve as backbones for future drug development. Together, amplification of the cell cycle kinase TLK2 presents an attractive genomic target for aggressive ER-positive breast cancers. 1 Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA. 2 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.
    [Show full text]