Ohsr Acts As an Organic Peroxide-Sensing Transcriptional

Total Page:16

File Type:pdf, Size:1020Kb

Ohsr Acts As an Organic Peroxide-Sensing Transcriptional Si et al. Microb Cell Fact (2018) 17:200 https://doi.org/10.1186/s12934-018-1048-y Microbial Cell Factories RESEARCH Open Access OhsR acts as an organic peroxide‑sensing transcriptional activator using an S‑mycothiolation mechanism in Corynebacterium glutamicum Meiru Si1*† , Tao Su1†, Can Chen2*†, Jinfeng Liu1, Zhijin Gong1, Chengchuan Che1, GuiZhi Li1 and Ge Yang1 Abstract Background: Corynebacterium glutamicum is a well-known producer of various L-amino acids in industry. During the fermenting process, C. glutamicum unavoidably encounters oxidative stress due to a specifc reactive oxygen species (ROS) produced by consistent adverse conditions. To combat the ROS, C. glutamicum has developed many common disulfde bond-based regulatory devices to control a specifc set of antioxidant genes. However, nothing is known about the mixed disulfde between the protein thiol groups and the mycothiol (MSH) (S-mycothiolation)-based sen- sor. In addition, no OhrR (organic hydroperoxide resistance regulator) homologs and none of the organic hydroper- oxide reductase (Ohr) sensors have been described in the alkyl hydroperoxide reductase CF-missing C. glutamicum, while organic hydroperoxides (OHPs)-specifc Ohr was a core detoxifcation system. Results: In this study, we showed that the C. glutamicum OhsR acted as an OHPs sensor that activated ohr expres- sion. OhsR conferred resistance to cumene hydroperoxide (CHP) and t-butyl hydroperoxide but not H­ 2O2, hypochlor- ous acid, and diamide; this outcome was substantiated by the fact that the ohsR-defcient mutant was sensitive to OHPs but not inorganic peroxides. The DNA binding activity of OhsR was specifcally activated by CHP. Mutational analysis of the two cysteines (Cys125 and Cys261) showed that Cys125 was primarily responsible for the activation of DNA binding. The oxidation of Cys125 produced a sulfenic acid (C125-SOH) that subsequently reacted with MSH to generate S-mycothiolation that was required to activate the ohr expression. Therefore, OhsR regulated the ohr expres- sion using an S-mycothiolation mechanism in vivo. Conclusion: This is the frst report demonstrating that the regulatory OhsR specifcally sensed OHPs stress and responded to it by activating a specifc ohr gene under its control using an S-mycothiolated mechanism. Keywords: MarR, Organic peroxide stress, Transcription regulation, C. glutamicum, S-mycothiolation *Correspondence: [email protected]; [email protected] †Meiru Si, Tao Su and Can Chen contributed equally to this work 1 College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China 2 College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, China © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Si et al. Microb Cell Fact (2018) 17:200 Page 2 of 15 Background S-thiolation-based regulation model (S-glutathionylation, During normal cellular functions or under unfavora- S-mycothiolation and S-bacillithiolation) in bacteria has ble external environmental stimuli, bacteria unavoid- so far only been shown for a few selected sensors, such as ably produce signifcant levels of reactive oxygen species the Escherichia coli OxyR (the thiol-based redox sensor (ROS), including hydrogen peroxide (H 2O2), superox- for peroxides) and B. subtilis OhrR (organic hydroperox- ·− ide radical (O2 ), and organic peroxides (OHPs) [1]. ide resistance regulator) [16, 17]. In addition, researchers Te accumulation of excessive concentrations of ROS found that each of the many regulators sensed a specifc is toxic to biological systems, leading to DNA damage, oxidant and responded to it by activating or depressing lipid peroxidation, protein oxidation, and eventually a specifc set of genes under its control. For example, causing various diseases, such as cancer, vascular and in bacteria, OxyR and OhrR respond to peroxide and neurodegenerative disorders, and aging [2]. Among the organic hydroperoxide stress, respectively, while SoxRS external environmental stimuli, OHPs cause the most (a sensor of superoxide and nitric-oxide stress) specif- serious damage to the cells due to their ability to gener- cally responds to superoxide stress [4, 18, 19]. However, ate reactive organic radicals through the reaction with the exact molecular mechanism in diferent stimulus- membranes, free fatty acids, or other macromolecules segregating regulators or specifc stimulus-sensing regu- [3]. Terefore, OHPs detoxifcation is critical for bacte- lators remains to be elucidated to a large degree. rial survival. Bacteria have evolved diverse defense strat- Corynebacterium glutamicum, a well-known various egies against OHPs toxicity, including enzymes and low l-amino acid producer in industry and a model organism molecular weight antioxidants [4–11]. Te OHPs detoxi- for systems biology, unavoidably generates or encounters fcation enzymes alkyl hydroperoxide reductase subu- a series of unfavorable circumstances during the cul- nit CF (AhpCF) and organic hydroperoxide resistance ture process [20]. However, C. glutamicum robustly sur- (Ohr) are the two core detoxifcation systems in bacte- vives the various adverse stresses of the culture process ria [6, 7]. Tey can reduce OHPs into their correspond- using diverse defense strategies, including thiol-based ing alcohols. In addition to enzymes, another unique regulator-control of a variety of antioxidants and MSH feature of the antioxidant system is the presence of low [11, 21–24]. However, surprising observations in previ- molecular weight thiols, such as tripeptide glutathione ous reports showed that although MSH-defcient C. glu- (GSH; γ-l-glutamyl-l-cysteinylglycine), 1-d-myo-inosityl tamicum mutants were highly sensitive to OHPs, MSH 2-(N-acetyl-l-cysteinyl) amido-2-deoxy-d-glucopyra- did not directly react with peroxides to protect the cells noside (mycothiol or MSH) and bacillithiol (BSH) [6, 7, [11, 25, 26]. More recently, the ohr expression in a C. glu- 11, 12]. Te low molecular weight thiols have a role in tamicum strain lacking AhpC was found to be specifcally OHPs detoxifcation in vivo, confrmed by the increased induced by the OHPs and not regulated by the reactive sensitivity to cumene hydroperoxide (CHP), menadione electrophilic species (RES)-sensing zinc-associated anti (MD), and tert-butyl hydroperoxide (t-BHP) in MSH- sigma factors SigH, and ohr mutants were hypersensitive defcient Mycobacterium smegmatis, M. tuberculosis and to the OHPs and were not sensitive to other ROS-gener- Corynebacterium glutamicum mutant strains [8, 9, 11]. ating agents [21]. In addition, in vitro biochemical studies Several studies have demonstrated that the diverse showed that the thiol-dependent, Cys-based peroxidase defense systems against oxidant toxicity are coordinated Ohr could detoxify OHPs more efectively than H2O2 by thiol-based redox transcription sensors that sense [21]. Tese recent discoveries raised questions about the exclusive ROS, modulate the appropriate regulon tran- existence of a specifc Ohr-regulating and MSH-depend- scription, and fnally confer resistance to oxidative stress ent response OHPs regulator. Although many H2O2-, and restore the redox balance [13–15]. Direct sensing quinone-, diamide-, or NaOCl-responding disulfde and the rapid responses of thiol-based transcription fac- bond-based redox regulators, such as OxyR, RosR (reg- tors are considered to be an efcient way to enhance the ulator of oxidative stress response), QorR (quinone oxi- survival of the organism under oxidation stress. Tiol- doreductase regulator), and SigH (the stress-responsive based redox regulators control the antioxidant gene extracytoplasmic function-sigma (ECF-σ) factor), have expression by versatile posttranslational thiol-modifca- been investigated extensively in C. glutamicum, the study tions mechanisms, including the disulfdes-switch model of transcriptional regulators specifcally responding to (sulfenic acid, disulfde bond, and S-thiolation), Cys- organic oxidation and controlling ohr expression in C. phosphorylation and Cys-alkylation. Although many of glutamicum remains enigmatic, and very little is known the common disulfde bond model-based regulators in about transcriptional regulators that use an S-mycothi- bacteria have been well described, and S-thiolations in olated regulation model [27–30]. eukaryotes have emerged as the major redox-regulatory In this study, we demonstrated that the regulator OhsR mechanism of redox sensing transcription factors, the from C. glutamicum specifcally sensed OHPs stress Si et al. Microb Cell Fact (2018) 17:200 Page 3 of 15 using a new thiol oxidation-based mechanism. Te mL for C. glutamicum; chloramphenicol, 20 µg/mL for E. reduced OhsR did not bind to the Ohr promoters. Te coli and 10 µg/mL for C. glutamicum. oxidative modifcation of Cys125 produced an intermedi- ate Cys-SOH and reacted further with MSH to the mixed Plasmid construction disulfdes formation. S-mycothiolation caused the struc- To obtain an expression plasmid, the OOhsR-F/OOhsR-
Recommended publications
  • Norbornene Probes for the Detection of Cysteine Sulfenic Acid in Cells Lisa J
    Letters Cite This: ACS Chem. Biol. 2019, 14, 594−598 pubs.acs.org/acschemicalbiology Norbornene Probes for the Detection of Cysteine Sulfenic Acid in Cells Lisa J. Alcock,†,‡ Bruno L. Oliveira,§ Michael J. Deery,∥ Tara L. Pukala,⊥ Michael V. Perkins,† Goncalo̧ J. L. Bernardes,*,§,# and Justin M. Chalker*,†,‡ † Flinders University, College of Science and Engineering, Sturt Road, Bedford Park, South Australia 5042, Australia ‡ Flinders University, Institute for NanoScale Science and Technology, Sturt Road, Bedford Park, South Australia 5042, Australia § Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom ∥ Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom ⊥ The University of Adelaide, School of Physical Sciences, Adelaide, South Australia 5005, Australia # Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal *S Supporting Information ABSTRACT: Norbornene derivatives were validated as probes for cysteine sulfenic acid on proteins and in live cells. Trapping sulfenic acids with norbornene probes is highly selective and revealed a different reactivity profile than the traditional dimedone reagent. The norbornene probe also revealed a superior chemoselectivity when compared to a commonly used dimedone probe. Together, these results advance the study of cysteine oxidation in biological systems.
    [Show full text]
  • Indiana State University ISU Laboratory Safety Guideline
    ISU Laboratory Safety Guideline Working with Organic Peroxides and Storage Guidelines Date: December 2012 Indiana State University Organic peroxide is a compound containing the -O-O- structure and is considered a structural derivative of hydrogen peroxide. Organic peroxides are one of the most hazardous materials handled in the laboratory. These peroxides are low powered explosives that are sensitive to shock, sparks or other accidental ignition due to the weak –O-O bond. Organic compounds such as ethers can react with oxygen to form unstable peroxides. Peroxide formation can also occur under normal storage conditions when compounds become concentrated by evaporation or when mixed with other compounds. Types of Compounds known to form peroxides : Ethers containing primary and secondary alkyl groups (never distill an ether before it has been shown to be free of peroxide) Compounds containing benzylic hydrogens Compounds containing allylic hydrogens (C=C-CH) Compounds containing a tertiary C-H group (e.g., decalin and 2,5-dimethlyhexane) Compounds containing conjugated, polyunsaturated alkenes and alkynes (e.g., 1,3-butadiene, vinyl acetylene) Compounds containing secondary or tertiary C-H groups adjacent to an amide (e.g., 1-methyl-2- pyrrolidinone Prudent Practices in the Laboratory: Handling and Management of Chemical Hazards, Updated Version General Procedures for working with Peroxide-forming chemicals: • Be aware of the use of peroxide-forming chemicals when designing or conducting a new experiment. • If possible, purchase material containing an inhibitor such as butylated hydroxytoluene (BHT). • Date the container when received, opened and tested. • Consult Prudent Practices or other resources for storage shelf-life and testing procedures.
    [Show full text]
  • Peroxide-Forming Chemicals
    Peroxide-Forming Chemicals 4 Ways to stop explosions, injuries, and added expenses: 1) Track shelf life A) label when tested and when to retest B) date when received 2) Handle with proper personal protective equipment A) gloves B) googles/safety glasses C) flame-resistant lab coat D) training E) Ask [the Dept. of Chemistry and Dept. of Environmental Health & Safety] for help 3) Store properly A) flammable storage cabinet if applicable B) avoid i) heat (keep in a cool place) ii) impact iii) friction iv) light (keep in a dark place) 4) Buy the right amount A) based on what will be used B) reduce the disposal of any un-used material (Dubiel). The Department of Chemistry wants you to learn from our experiences. Amides, Dioxane, Ethers, secondary alcohols, and Tetrahydrofuran (as well as other cyclic ethers) must be checked for peroxides. The University of Pittsburgh Department of Environmental Health and Safety (EH&S) recommends that all peroxide-forming chemicals should be tested every six months for peroxide content, and any chemicals that test positive should either be purified before use to remove the peroxide or discarded as chemical waste and replaced with fresh material. (http://www.ehs.pitt.edu/assets/docs/peroxide-forming.pdf). Ken Migliorese, a previous staff member, emailed the Department of Chemistry to remind us of the importance of doing peroxide testing on a regular basis. The need to test for peroxides was made clear to us by a series of unfortunate explosions which occurred in the undergraduate organic teaching labs in 2008. We had multiple defective layers of protection that caused failures of safety measures and three catastrophic errors (Reason).
    [Show full text]
  • Peroxide Forming Chemicals
    What are organic peroxides? Organic peroxides are a class of compounds that have unusual stability problems that make them among the most hazardous substances found in the laboratory. The lack of stability is due to the presence of an oxidation and reduction center within the same molecule. R-O-O-R R = organic side chains O-O = Peroxo bridge As a class, organic peroxides are considered to be powerful explosives and are sensitive to heat, friction, impact, light, as well as to strong oxidizing and reducing agents. Peroxide formers react with oxygen even at low concentrations to form peroxy compounds. Autoxidation of organic material proceeds by a free-radical chain mechanism and commonly affects organic solvents. R-H R- R-O-O R-O-O-R (In the presence of oxygen) The instability of the molecule (R-O-O-R) can cause auto-decomposition simply by bumping or jarring the container, addition of heat, light, or opening the cap. The risk associated with the peroxide increases if the peroxide crystallizes or becomes concentrated by evaporation or distillation. Peroxide crystals may form on the container plug or the threads of the cap and detonate as a result of twisting the lid. Classes of Peroxide Formers Aldehydes Ethers - especially cyclic ethers and those containing primary and secondary alcohol groups Compounds containing benzylic hydrogen atoms (particularly if the hydrogens are on tertiary carbon atoms) Compounds containing the allylic structure, including most alkenes. Vinyl and vinylidene compounds. Preventing Formation of Organic Peroxides No single method of inhibition of peroxide formation is suitable for all peroxide formers.
    [Show full text]
  • Hazardous Material Inventory Statement
    City of Brooklyn Park FIRE DEPARTMENT 5200 - 85th Avenue North Brooklyn Park MN 55443 Phone: (763)493-8020 Fax: (763) 493-8391 Hazardous Materials Inventory Statement Users Guide A separate inventory statement shall be provided for each building. An amended inventory statement shall be provided within 30 days of the storage of any hazardous materials or plastics that changes or adds a hazard class or which is sufficient in quantity to cause an increase in the quantity which exceeds 5 percent for any hazard class. The hazardous materials inventory statement shall list by hazard class categories. Each grouping shall provide the following information for each hazardous material listed for that group including a total quantity for each group of hazard class. 1. Hazard class. (See attached Hazardous Materials Categories Listing) 2. Common or trade name. 3. Chemical Abstract Service Number (CAS number) found in 29 Code of Federal Regulations (C.F.R.). 4. Whether the material is pure or a mixture, and whether the material is a solid, liquid or gas 5. Maximum aggregate quantity stored at any one time. 6. Maximum aggregate quantity In-Use (Open to atmosphere) at any one time. 7. Maximum aggregate quantity In-Use (Closed to atmosphere) at any one time. 8. Storage conditions related to the storage type, high-pile, encapsulated, non-encapsulated. Attached is a listing of categories that all materials need to be organized to. Definitions of these categories are also attached for your use. At the end of this packet are blank forms for completing this project. For questions regarding Hazardous Materials Inventory Statement contact the Fire Department at 763-493-8020.
    [Show full text]
  • Technical Notes
    1624 Bioconjugate Chem. 2005, 16, 1624−1628 TECHNICAL NOTES Synthesis of Chemical Probes to Map Sulfenic Acid Modifications on Proteins Leslie B. Poole,†* Bu-Bing Zeng,‡,| Sarah A. Knaggs,‡ Mamudu Yakubu,§ and S. Bruce King‡,* Departments of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, North Carolina 27109, and Department of Chemistry, Elizabeth City State University, Elizabeth City, North Carolina 27909 . Received August 23, 2005 Cysteine sulfenic acids in proteins can be identified by their ability to form adducts with dimedone, but this reagent imparts no spectral or affinity tag for subsequent analyses of such tagged proteins. Given its similar reactivity toward cysteine sulfenic acids, 1,3-cyclohexadione was synthetically modified to an alcohol derivative and linked to fluorophores based on isatoic acid and 7-methoxycou- marin. The resulting compounds retain full reactivity and specificity toward cysteine sulfenic acids in proteins, allowing for incorporation of the fluorescent label into the protein and “tagging” it based on its sulfenic acid redox state. Control experiments using dimedone further show the specificity of the reaction of 1,3-diones with protein sulfenic acids in aqueous media. These new compounds provide the basis for an improved method for the detection of protein sulfenic acids. INTRODUCTION Scheme 1 Interest in the identification of cysteine sulfenic acids in proteins by biochemists has grown substantially over the past decade as their biological roles in redox regula- tion and catalysis within an array of cellular proteins have become better defined (1, 2). Despite their impor- tance, only a limited set of tools to identify these species exist, and most of these are only applicable to in vitro studies of pure, isolated proteins (3, 4).
    [Show full text]
  • THIOL OXIDATION a Slippery Slope the Oxidation of Thiols — Molecules RSH Oxidation May Proceed Too Predominates
    RESEARCH HIGHLIGHTS Nature Reviews Chemistry | Published online 25 Jan 2017; doi:10.1038/s41570-016-0013 THIOL OXIDATION A slippery slope The oxidation of thiols — molecules RSH oxidation may proceed too predominates. Here, the maximum of the form RSH — can afford quickly for intermediates like RSOH rate constants indicate the order − − − These are many products. From least to most to be spotted and may also afford of reactivity: RSO > RS >> RSO2 . common oxidized, these include disulfides intractable mixtures. Addressing When the reactions are carried out (RSSR), as well as sulfenic (RSOH), the first problem, Chauvin and Pratt in methanol-d , the obtained kinetic reactions, 1 sulfinic (RSO2H) and sulfonic slowed the reactions down by using isotope effect values (kH/kD) are all but have (RSO3H) acids. Such chemistry “very sterically bulky thiols, whose in the range 1.1–1.2, indicating that historically is pervasive in nature, in which corresponding sulfenic acids were no acidic proton is transferred in the been very disulfide bonds between cysteine known to be isolable but were yet rate-determining step. Rather, the residues stabilize protein structures, to be thoroughly explored in terms oxidations involve a specific base- difficult to and where thiols and thiolates often of reactivity”. The second problem catalysed mechanism wherein an study undergo oxidation by H2O2 or O2 in was tackled by modifying the model acid–base equilibrium precedes the order to protect important biological system, 9-mercaptotriptycene, by rate-determining nucleophilic attack − − − structures from damage. Among including a fluorine substituent to of RS , RSO or RSO2 on H2O2. the oxidation products, sulfenic serve as a spectroscopic handle.
    [Show full text]
  • Cysteine Sulfenic Acid As an Intermediate in Disulfide Bond Formation and Nonenzymatic Protein Folding† Douglas S
    7748 Biochemistry 2010, 49, 7748–7755 DOI: 10.1021/bi1008694 Cysteine sulfenic Acid as an Intermediate in Disulfide Bond Formation and Nonenzymatic Protein Folding† Douglas S. Rehder and Chad R. Borges* Molecular Biomarkers, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287 Received May 28, 2010; Revised Manuscript Received July 22, 2010 ABSTRACT: As a posttranslational protein modification, cysteine sulfenic acid (Cys-SOH) is well established as an oxidative stress-induced mediator of enzyme function and redox signaling. Data presented herein show that protein Cys-SOH forms spontaneously in air-exposed aqueous solutions of unfolded (disulfide-reduced) protein in the absence of added oxidizing reagents, mediating the oxidative disulfide bond formation process key to in vitro, nonenzymatic protein folding. Molecular oxygen (O2) and trace metals [e.g., copper(II)] are shown to be important reagents in the oxidative refolding process. Cys-SOH is also shown to play a role in spontaneous disulfide-based dimerization of peptide molecules containing free cysteine residues. In total, the data presented expose a chemically ubiquitous role for Cys-SOH in solutions of free cysteine-containing protein exposed to air. In the early 1960s, Anfinsen and colleagues conducted seminal ous oxidants such as hydrogen peroxide are required to build up studies in protein disulfide bond formation and folding, showing significant quantities of Cys-SOH within fully folded proteins. that unfolded (disulfide-reduced) proteins will spontaneously In general, Cys-SOH is a transient intermediate that until the and completely refold, regenerating full protein activity, over a past decade has been difficult to study. It has been understood period of approximately a day in the absence of denaturants that Cys-SOH likely renders the sulfur atom of cysteine electro- (1-6).
    [Show full text]
  • Organic Peroxide and OH Formation in Aerosol and Cloud Water
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 15, 17367–17396, 2015 www.atmos-chem-phys-discuss.net/15/17367/2015/ doi:10.5194/acpd-15-17367-2015 ACPD © Author(s) 2015. CC Attribution 3.0 License. 15, 17367–17396, 2015 This discussion paper is/has been under review for the journal Atmospheric Chemistry Organic peroxide and and Physics (ACP). Please refer to the corresponding final paper in ACP if available. OH formation in aerosol and cloud Organic peroxide and OH formation in water aerosol and cloud water: laboratory Y. B. Lim and B. J. Turpin evidence for this aqueous chemistry Title Page Y. B. Lim and B. J. Turpin Abstract Introduction Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA Conclusions References Received: 29 May 2015 – Accepted: 01 June 2015 – Published: 25 June 2015 Tables Figures Correspondence to: Y. B. Lim ([email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 17367 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ACPD Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well 15, 17367–17396, 2015 accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors 5 for SOAaq and products include organic acids, organic sulfates, and high molecular Organic peroxide and weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH rad- OH formation in icals are considered to be the major oxidant sources for aqueous organic chemistry.
    [Show full text]
  • Copper–Sulfenate Complex from Oxidation of a Cavity Mutant of Pseudomonas Aeruginosa Azurin
    Copper–sulfenate complex from oxidation of a cavity mutant of Pseudomonas aeruginosa azurin Nathan A. Sierackia,1, Shiliang Tiana,1, Ryan G. Hadtb,1, Jun-Long Zhangc, Julia S. Woertinkb, Mark J. Nilgesa, Furong Suna, Edward I. Solomonb,2, and Yi Lua,2 aDepartment of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; bDepartment of Chemistry, Stanford University, Stanford, CA 94305; and cBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved November 27, 2013 (received for review September 3, 2013) Metal–sulfenate centers are known to play important roles in bi- and water. In both enzymes, the sulfenate and sulfinate groups are ology and yet only limited examples are known due to their in- unambiguously required for activity (7, 16). It is commonly postu- stability and high reactivity. Herein we report a copper–sulfenate lated that such oxidized forms of cysteine in a metal site encourage complex characterized in a protein environment, formed at the ac- and stabilize the more oxidized form of redox-active metals, sup- tive site of a cavity mutant of an electron transfer protein, type 1 pressing their potential toxicity in enzymes that do not require the blue copper azurin. Reaction of hydrogen peroxide with Cu(I)– metal center to participate in electron transfer (17, 18). In a more M121G azurin resulted in a species with strong visible absorptions recent example, an iron-coordinated sulfenate was observed when at 350 and 452 nm and a relatively low electron paramagnetic res- a thiolate-containing substrate analog in isopenicillin N-synthase onance gz value of 2.169 in comparison with other normal type 2 was unexpectedly oxidized to a coordinated sulfenato group in copper centers.
    [Show full text]
  • Peroxides and Peroxide- Forming Compounds
    FEATURE Peroxides and peroxide- forming compounds By Donald E. Clark Bretherick5 included a discussion of nated. However, concentrated hydro- organic peroxide5 in a chapter on gen peroxide (Ͼ30%), in contact with norganic and organic peroxides, highly reactive and unstable com- ordinary combustible materials (e.g., because of their exceptional reac- pounds and used “oxygen balance” to fabric, oil, wood, or some resins) Itivity and oxidative potential are predict the stability of individual com- poses significant fire or explosion haz- widely used in research laboratories. pounds and to assess the hazard po- ards. Peroxides of alkali metals are not This review is intended to serve as a tential of an oxidative reaction. Jack- particularly shock sensitive, but can 6 guide to the hazards and safety issues son et al. addressed the use of decompose slowly in the presence of associated with the laboratory use, peroxidizable chemicals in the re- moisture and may react violently with handling, and storage of inorganic and search laboratory and published rec- a variety of substances, including wa- organic peroxy-compounds and per- ommendations for maximum storage ter. Thus, the standard iodide test for oxide-forming compounds. time for common peroxide-forming peroxides must not be used with these The relatively weak oxygen-oxygen laboratory solvents. Several solvents, water-reactive compounds.1 linkage (bond-dissociation energy of (e.g., diethyl ether) commonly used in Inorganic peroxides are used as ox- 20 to 50 kcal moleϪ1) is the character- the laboratory can form explosive re- idizing agents for digestion of organic istic structure of organic and inor- action products through a relatively samples and in the synthesis of or- ganic peroxide molecules, and is the slow oxidation process in the pres- ganic peroxides.
    [Show full text]
  • United States
    Patented Sept. 7, 1937 2,092,322 UNITED STATES PATENT of FICE 2,092,322 PROCESS FOR THE PRODUCTION OF OR GANC PEROXDES Franz Rudolf Moser, Amsterdam, Netherlands, assignor to Shell Development Company, San Francisco, Calif., a corporation of Delaware No Drawing. Application March 18, 1935, Serial No. 11,667. In the Netherlands September 14, 1934 12 Claims. (C. 260-16) This invention relates to processes of manu the latter "wetted' whereby its explosiveness is facturing organic peroxides and deals, particu greatly reduced. larly, with a novel, simplified method for eco My invention may be practiced with any suit nomically producing peroxides from ketones, able organic compound which forms peroxides 5 aldehydes, and the like. It is also concerned with by reaction with hydrogen peroxide. Suitable the production of new compositions of matter organic compounds which may be used as start comprising organic peroxides suitably 'wetted' ing material are, for example: aliphatic ketones, to reduce their explosiveness and make them of which acetone, methyl ethyl ketone, diethyl capable of safe handling, transportation and ketone, methyl isopropyl ketone, methyl second storage. ary butyl ketone, methyl tertiary butyl ketone 10 O The preparation of organic peroxides by the are typical: aromatic ketones such as aceto reaction of hydrogen peroxide upon ketones, phenone, benzo-phenone, benzyl-ethyl ketone, aldehydes, dialkyl sulfates, acid anhydrides, acid benzylnaphthyl ketone, and homologues and chlorides and the like is well known. Particu analogues thereof; aliphatic aldehydes, such as 5 larly with ketones and aldehydes, the reaction has formaldehyde, acetaldehyde, propionaldehyde, 15 been carried out in the presence of strong acids, isobutylaldehyde, methyl ethyl acetaldehyde, such as hydrochloric and sulfuric acids, while trimethyl acetaldehyde, and the like; aromatic maintaining a low temperature.
    [Show full text]