Proper Sum Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Proper Sum Graphs BearWorks MSU Graduate Theses Spring 2021 Proper Sum Graphs Austin Nicholas Beard Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Algebra Commons Recommended Citation Beard, Austin Nicholas, "Proper Sum Graphs" (2021). MSU Graduate Theses. 3613. https://bearworks.missouristate.edu/theses/3613 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. PROPER SUM GRAPHS A Master's Thesis Presented to The Graduate College of Missouri State University In Partial Fulfillment Of the Requirements for the Degree Master of Science, Mathematics By Austin Nicholas Beard May 2021 PROPER SUM GRAPHS Mathematics Missouri State University, May 2021 Master of Science Austin Nicholas Beard ABSTRACT The Proper Sum Graph of a commutative ring with identity has the prime ideals as ver- tices, with two ideals adjacent if their sum is a proper ideal. This thesis expands upon the research of Dhorajia. We will cover the groundwork to understanding the basics of these graphs, and gradually narrow our efforts into the minimal prime ideals of the ring. KEYWORDS: proper, sum, graph, ideal, maximal, minimal, comaximal ii PROPER SUM GRAPHS By Austin Nicholas Beard A Master's Thesis Submitted to the Graduate College Of Missouri State University In Partial Fulfillment of the Requirements Master of Science, Mathematics May 2021 Approved: Cameron Wickham, Ph.D., Thesis Committee Chair Les Reid, Ph.D., Committee Member Steven Senger, Ph.D., Committee Member Julie Masterson, Ph.D., Dean of the Graduate College In the interest of academic freedom and the principle of free speech, approval of this the- sis indicates the format is acceptable and meets the academic criteria for the discipline as determined by the faculty that constitute the thesis committee. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. iii ACKNOWLEDGEMENTS I would like to thank all of my professors from my time at Missouri State Univer- sity. In particular, I would like to thank Dr. Wickham, Dr. Reid, Dr. Stanojevic, Dr. Sun, and Dr. Senger. Without these individuals, I would not be half the mathematician or per- son I am today. I would also like to thank Dr. DuBois and Ms. Rost for inspiring an early love of math. Additionally, I would like to thank Dr. Snow for his guidance in all other areas. Lastly, I would like to thank the Lady Bears, my friends, and family for all their support and love during my years of study. I dedicate this thesis to my parents. iv TABLE OF CONTENTS 1. Introduction . Page 1 2. Graph Theory Background . Page 2 3. Ring Theory Background . Page 5 4. Proper Sum Graphs . Page 9 5. Conclusion . Page 19 v LIST OF FIGURES 1 Graph J ...................................... 2 2 Graph J' ...................................... 2 3 Graph of S = K1;6 ................................ 3 4 Proper Sum Graph of Z ............................. 9 C[x;y] 5 Graph of R = xy ................................ 13 6 Graph of Z6[y]................................... 13 vi INTRODUCTION Over the past 30 years, the study of graphs based on algebraic structures has been a growing area of research. It began with Beck creating the zero divisor graph of a ring R, denoted Γ(R). This is the graph whose vertices are the nonzero zero divisors of R and edges exist between vertices if their product is 0 in R. Inspired by the work of Mulay [6], Wickham and Spiroff developed the graph of equivalence classes of zero divisors of a ring R, which is created from the classes of zero divisors based on the annihilator ideals, rather than the individual zero divisors [8]. D.F. Anderson and Badawi also introduced the to- tal graph of R, denoted T (Γ(R)), as the graph with all elements of R as vertices, and for distinct x; y 2 R; the vertices x and y are adjacent if and only if x + y 2 Z(R) [1]. This can be combined with some work from Sharma and Bhatwadekar in 1995 [1]. This paper established another construction for a graph of a commutative ring R known as the a co- maximal graph. For this graph, vertices are still elements of the ring, but there is an edge between two vertices x and y in R if xR + yR = R. This idea would be followed up by Dhorajia in [3]. In this paper he defined the S-proper sum graph as a graph of commu- tative ring with identity that has the prime ideals as vertices, with two ideals adjacent if their sum is a proper ideal. We explore this graph further in this thesis. We begin with some background results. Then we improve upon some of the results in [3]. 1 GRAPH THEORY BACKGROUND The following are some graph theory basics and definitions, followed by a more fo- cused discussion on diameter, star graphs, and subgraphs. For more information on any object discussed, please refer to Diestel. A graph G = (V; E) is a pair of sets such that E ⊆ [V ]2. That is to say, the el- ements of our edge set, E, are 2-element subsets of our vertex set, V . A vertex is con- sidered to be incident to an edge if v 2 e, then we have an edge e at the vertex v. Now consider an isomorphism between graphs. Let G = (V; E) and G0 = (V 0;E0). Then we consider these two graphs to be isomorphic, written G ∼= G0 if there exists a bijection φ : V ! V 0 with xy 2 E () φ(x)φ(y) 2 E0 for all x; y 2 V . Consider Figure 1 and Figure 2. Figure 1: Graph J Figure 2: Graph J' It is readily apparent that J = (V = fA; B; C; D; Eg;E = fAB; BC; CD; DE; EA; DAg). Hence, we can say that A is incident to AB; EA; and DA. We can also tell that J 0 = (V = fA; B; C; Dg;E = fAB; BC; CD; DAg). We can also tell that no isomorphism exists be- tween J and J 0 as there are more vertices in J than in J 0. A path is the nonempty graph P = (V; E) where V = fx0; x1; : : : ; xkg and E = fx0x1; x1x2; : : : ; xk−1xkg, where each xi are distinct. The number of edges of a path is its 2 length. The distance in G of two vertices x; y, notated as dG(x; y), is the length of a short- est path from x to y in G, if no such path exists, then d(x; y) = 1. The diameter of G is the greatest distance between any two vertices in G, notated as diamG. Example 1. Consider again the graphs J and J'. In Figure 1, a path exists from E to B of length 4, EA ∗ AD ∗ DC ∗ CB. However, the distance between E and B is not 4, as a shorter path exists; namely EA ∗ AB, which has a length of 2. After completing this process with every other pair of vertices, we can find that the diameter of J is 2. It can be shown that the distance between any two points in J 0 is at most 2, so its diameter will also be 2. A r-partite (with r ≥ 2) graph is a graph G = (V; E) such that V admits a par- tition into r classes such that every edge has its ends in different classes. That is to say, vertices in the same class must not be adjacent. If r = 2 we call the graph bipartite. The complete r-partite graph is denoted by Kn1;:::nr . Graphs of the form K1;n are called star graphs. The vertex in the singleton partition class of K1;n is the center of the star, and all star graphs are bipartite. Consider again graph J 0. This graph is bipartite, as it can be partitioned into 2 classes, with the first being A; C and the second being B; D. How- ever, graph J is not bipartite. This can be seen in the triangle formed by vertices A; D; and E. As all three points share edges, they are all adjacent to each other. As such, the graph cannot be bipartite. Now consider Figure 3, which is a new graph that we will name S = K1;6. Figure 3: Graph of S = K1;6 This is an example of a star graph. Hence A is the center of the star. It is easy to 3 see this graph is bipartite, where A is in a class by itself, and all the other vertices are in a single class. It is important to note that while our example is finite, that is not always the case. It is possible to have the star graph K1;1. Consider G = (V; E) and G0 = (V 0;E0). If V 0 ⊆ V and E0 ⊆ E then G0 is a subgraph of G, this is written as G0 ⊆ G.
Recommended publications
  • Dimension Theory and Systems of Parameters
    Dimension theory and systems of parameters Krull's principal ideal theorem Our next objective is to study dimension theory in Noetherian rings. There was initially amazement that the results that follow hold in an arbitrary Noetherian ring. Theorem (Krull's principal ideal theorem). Let R be a Noetherian ring, x 2 R, and P a minimal prime of xR. Then the height of P ≤ 1. Before giving the proof, we want to state a consequence that appears much more general. The following result is also frequently referred to as Krull's principal ideal theorem, even though no principal ideals are present. But the heart of the proof is the case n = 1, which is the principal ideal theorem. This result is sometimes called Krull's height theorem. It follows by induction from the principal ideal theorem, although the induction is not quite straightforward, and the converse also needs a result on prime avoidance. Theorem (Krull's principal ideal theorem, strong version, alias Krull's height theorem). Let R be a Noetherian ring and P a minimal prime ideal of an ideal generated by n elements. Then the height of P is at most n. Conversely, if P has height n then it is a minimal prime of an ideal generated by n elements. That is, the height of a prime P is the same as the least number of generators of an ideal I ⊆ P of which P is a minimal prime. In particular, the height of every prime ideal P is at most the number of generators of P , and is therefore finite.
    [Show full text]
  • Generators of Reductions of Ideals in a Local Noetherian Ring with Finite
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9939(XX)0000-0 GENERATORS OF REDUCTIONS OF IDEALS IN A LOCAL NOETHERIAN RING WITH FINITE RESIDUE FIELD LOUIZA FOULI AND BRUCE OLBERDING (Communicated by Irena Peeva) ABSTRACT. Let (R,m) be a local Noetherian ring with residue field k. While much is known about the generating sets of reductions of ideals of R if k is infinite, the case in which k is finite is less well understood. We investigate the existence (or lack thereof) of proper reductions of an ideal of R and the number of generators needed for a reduction in the case k is a finite field. When R is one-dimensional, we give a formula for the smallest integer n for which every ideal has an n-generated reduction. It follows that in a one- dimensional local Noetherian ring every ideal has a principal reduction if and only if the number of maximal ideals in the normalization of the reduced quotient of R is at most k . | | In higher dimensions, we show that for any positive integer, there exists an ideal of R that does not have an n-generated reduction and that if n dimR this ideal can be chosen to be ≥ m-primary. In the case where R is a two-dimensional regular local ring, we construct an example of an integrally closed m-primary ideal that does not have a 2-generated reduction and thus answer in the negative a question raised by Heinzer and Shannon. 1.
    [Show full text]
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • Elements of Minimal Prime Ideals in General Rings
    Elements of minimal prime ideals in general rings W.D. Burgess, A. Lashgari and A. Mojiri Dedicated to S.K. Jain on his seventieth birthday Abstract. Let R be any ring; a 2 R is called a weak zero-divisor if there are r; s 2 R with ras = 0 and rs 6= 0. It is shown that, in any ring R, the elements of a minimal prime ideal are weak zero-divisors. Examples show that a minimal prime ideal may have elements which are neither left nor right zero-divisors. However, every R has a minimal prime ideal consisting of left zero-divisors and one of right zero-divisors. The union of the minimal prime ideals is studied in 2-primal rings and the union of the minimal strongly prime ideals (in the sense of Rowen) in NI-rings. Mathematics Subject Classification (2000). Primary: 16D25; Secondary: 16N40, 16U99. Keywords. minimal prime ideal, zero-divisors, 2-primal ring, NI-ring. Introduction. E. Armendariz asked, during a conference lecture, if, in any ring, the elements of a minimal prime ideal were zero-divisors of some sort. In what follows this question will be answered in the positive with an appropriate interpretation of \zero-divisor". Two very basic statements about minimal prime ideals hold in a commutative ring R: (I) If P is a minimal prime ideal then the elements of P are zero-divisors, and (II) the union of the minimal prime ideals is M = fa 2 R j 9 r 2 R with ar 2 N∗(R) but r2 = N∗(R)g, where N∗(R) is the prime radical.
    [Show full text]
  • Integral Closures of Ideals and Rings Irena Swanson
    Integral closures of ideals and rings Irena Swanson ICTP, Trieste School on Local Rings and Local Study of Algebraic Varieties 31 May–4 June 2010 I assume some background from Atiyah–MacDonald [2] (especially the parts on Noetherian rings, primary decomposition of ideals, ring spectra, Hilbert’s Basis Theorem, completions). In the first lecture I will present the basics of integral closure with very few proofs; the proofs can be found either in Atiyah–MacDonald [2] or in Huneke–Swanson [13]. Much of the rest of the material can be found in Huneke–Swanson [13], but the lectures contain also more recent material. Table of contents: Section 1: Integral closure of rings and ideals 1 Section 2: Integral closure of rings 8 Section 3: Valuation rings, Krull rings, and Rees valuations 13 Section 4: Rees algebras and integral closure 19 Section 5: Computation of integral closure 24 Bibliography 28 1 Integral closure of rings and ideals (How it arises, monomial ideals and algebras) Integral closure of a ring in an overring is a generalization of the notion of the algebraic closure of a field in an overfield: Definition 1.1 Let R be a ring and S an R-algebra containing R. An element x S is ∈ said to be integral over R if there exists an integer n and elements r1,...,rn in R such that n n 1 x + r1x − + + rn 1x + rn =0. ··· − This equation is called an equation of integral dependence of x over R (of degree n). The set of all elements of S that are integral over R is called the integral closure of R in S.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • TEST IDEALS in LOCAL RINGS Frp = (Irp)*
    transactions of the american mathematical society Volume 347, Number 9, September 1995 TEST IDEALS IN LOCAL RINGS KAREN E. SMITH Abstract. It is shown that certain aspects of the theory of tight closure are well behaved under localization. Let / be the parameter test ideal for R , a complete local Cohen-Macaulay ring of positive prime characteristic. For any multiplicative system U c R, it is shown that JU~XR is the parameter test ideal for U~lR. This is proved by proving more general localization results for the here-introduced classes of "F-ideals" of R and "F-submodules of the canonical module" of R , which are annihilators of R modules with an action of Frobenius. It also follows that the parameter test ideal cannot be contained in any parameter ideal of R . Tight closure has produced surprising new results (for instance, that the ab- solute integral closure of a complete local domain R of prime characteristic is a Cohen-Macaulay algebra for R ) as well as tremendously simple proofs for otherwise difficult theorems (such as the fact that the ring of invariants of a linearly reductive group acting on a regular ring is Cohen-Macaulay). The def- inition of tight closure is recalled in Section 1, but we refer the reader to the papers of Höchster and Huneke listed in the bibliography for more about its applications. While primarily a prime characteristic notion, tight closure of- fers insight into arbitrary commutative rings containing Q by fairly standard "reduction to characteristic p " techniques. Despite its successes, the tight closure operation, which in its principal setting is a closure operation performed on ideals in a commutative Noetherian ring of prime characteristic, remains poorly understood.
    [Show full text]
  • On R E D U C E D Rings a N D N U M B E R T H E O R Y 1
    Annales Mathematicae Sile»ianae 12 (1998), 23-29 Prace Naukowa Uniwersytetu Śląskiego nr 1751, Katowice ON REDUCED RINGS AND NUMBER THEORY JAN KREMPA Abstract. In this note we exhibit a connection between theory of associative rings and number theory by an example of necessary and sufficient conditions under which the integral group ring of a finite group is reduced. 1. Reduced rings In this note we will use rather standard notation and terminology for rings, groups and numbers, similar to those in quoted books. In particular, if R is a ring (associative with 1^0), then U(R) denotes the group of invertible elements (units) of the ring R, H(R) - the standard quaternion algebra over R, and RG - the group ring of a group G with coefficients in R. Recall that a ring R is reduced if it has no nontrivial nilpotent elements. Such rings have many interesting properties. Some of them are consequences of the following celebrated result of Andrunakievic and Rjabukhin (see [Row, Kr96]). THEOREM 1.1. For a ring R the following conditions are equivalent: (1) R is reduced. (2) R is semiprime and R/P is a domain for any minimal prime ideal P of R. (3) R is a subdirect product of domains. Received on July 8, 1998. 1991 Mathematics Subject Classification. 11A15, 11E25, 16S34. Key words and phrases: Reduced ring, level of a field, prime numbers. Partially supported by the State Committee for Scientific Research (KBN) of Poland. 24 Jan Krempa Another reason to consider reduced rings, in particular reduced group rings, is connected with investigation of groups of units (see [Sehg, Kr95a]).
    [Show full text]
  • MTH 619 MINIMAL PRIMES and IRREDUCIBLE COMPONENTS Let R Be a Commutative Ring and P I, I ∈ I. the Claim Made in Class Was Prop
    MTH 619 Fall 2018 MINIMAL PRIMES AND IRREDUCIBLE COMPONENTS Let R be a commutative ring and pi, i 2 I. The claim made in class was Proposition 1. The sets V (pi) are exactly the irreducible components of Spec(R). We'll need some preparation. First, we have Lemma 2. Let I E R be a radical ideal. If V (I) is irreducible then I is prime. Proof. We prove the contrapositive: assuming I is not irreducible (i.e. it is reducible), we argue that I cannot be prime. Suppose I is not prime. Then, we can find a; b 62 I such that ab 2 I. This means that every prime that contains I also contains ab, and hence contains a or b. We thus have a decomposition V (I) = (V (I) \ V ((a))) [ (V (I) \ V ((b))) of V (I) as a union of closed subsets. It remains to argue that these are both proper subsets in order to conclude that V (I) is not irreducible. By symmetry, it suffices to show that V (I) \ V ((a)) 6= V (I). Note that V (I) \ V ((a)) = V (I + (a)); and the equality V (I) = V (I + (a)) would entail I ⊇ I + (a) because I is radical. But this means that a 2 I, contradicting our choice of a; b 62 I. This finishes the proof of the lemma. Proof of Proposition 1. We have already seen that sets of the form V (p) for prime ideals p are irreducible. It remains to show that if p is a minimal prime ideal then the irreducible set V (p) is maximal (among irreducible subsets of Spec(R)).
    [Show full text]
  • Minimal Ideals and Some Applications Rodney Coleman, Laurent Zwald
    Minimal ideals and some applications Rodney Coleman, Laurent Zwald To cite this version: Rodney Coleman, Laurent Zwald. Minimal ideals and some applications. 2020. hal-03040754 HAL Id: hal-03040754 https://hal.archives-ouvertes.fr/hal-03040754 Preprint submitted on 4 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Minimal ideals and some applications Rodney Coleman, Laurent Zwald December 4, 2020 Abstract In these notes we introduce minimal prime ideals and some of their applications. We prove Krull's principal ideal and height theorems and introduce and study the notion of a system of parameters of a local ring. In addition, we give a detailed proof of the formula for the dimension of a polynomial ring over a noetherian ring. Let R be a commutative ring and I a proper ideal in R. A prime ideal P is said to be a minimal prime ideal over I if it is minimal (with respect to inclusion) among all prime ideals containing I. A prime ideal is said to be minimal if it is minimal over the zero ideal (0). Minimal prime ideals are those of height 0.
    [Show full text]
  • 18.726 Algebraic Geometry Spring 2009
    MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) More properties of schemes (updated 9 Mar 09) I’ve now spent a fair bit of time discussing properties of morphisms of schemes. How­ ever, there are a few properties of individual schemes themselves that merit some discussion (especially for those of you interested in arithmetic applications); here are some of them. 1 Reduced schemes I already mentioned the notion of a reduced scheme. An affine scheme X = Spec(A) is reduced if A is a reduced ring (i.e., A has no nonzero nilpotent elements). This occurs if and only if each stalk Ap is reduced. We say X is reduced if it is covered by reduced affine schemes. Lemma. Let X be a scheme. The following are equivalent. (a) X is reduced. (b) For every open affine subsheme U = Spec(R) of X, R is reduced. (c) For each x 2 X, OX;x is reduced. Proof. A previous exercise. Recall that any closed subset Z of a scheme X supports a unique reduced closed sub- scheme, defined by the ideal sheaf I which on an open affine U = Spec(A) is defined by the intersection of the prime ideals p 2 Z \ U. See Hartshorne, Example 3.2.6. 2 Connected schemes A nonempty scheme is connected if its underlying topological space is connected, i.e., cannot be written as a disjoint union of two open sets.
    [Show full text]
  • Armendariz Rings and Reduced Rings
    Journal of Algebra 223, 477᎐488Ž. 2000 doi:10.1006rjabr.1999.8017, available online at http:rrwww.idealibrary.com on Armendariz Rings and Reduced Rings Nam Kyun Kim* Department of Mathematics, Kyung Hee Uni¨ersity, Seoul 130-701, Korea View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector and Yang Lee² Department of Mathematics Education, Pusan National Uni¨ersity, Pusan 609-735, Korea Communicated by Susan Montgomery Received February 18, 1999 Key Words: Armendariz ring; reduced ring; classical quotient ring. 1. INTRODUCTION Throughout this paper, all rings are associative with identity. Given a ring R, the polynomial ring over R is denoted by Rxwx. This paper concerns the relationships between Armendariz rings and reduced rings, being motivated by the results inwx 1, 2, 7 . The study of Armendariz rings, which is related to polynomial rings, was initiated by Armendarizwx 2 and Rege and Chhawchhariawx 7 . A ring R is called Armendariz if whenever s q q иии q m s q q иии q n polynomials fxŽ. a01ax axm , gxŽ. b01bx bxn g wx s s Rx satisfy fxgxŽ.Ž.0, then abij 0 for each i, j. Ž The converse is obviously true.. A ring is called reduced if it has no nonzero nilpotent elements. Reduced rings are Armendariz bywx 2, Lemma 1 and subrings of Armendariz rings are also Armendariz obviously. We emphasize the con- nections among Armendariz rings, reduced rings, and classical quotient rings. Moreover several examples and counterexamples are included for answers to questions that occur naturally in the process of this paper.
    [Show full text]