Biogeochemistry of Wet Ecosystems: from Root Zone to Landscape

Total Page:16

File Type:pdf, Size:1020Kb

Biogeochemistry of Wet Ecosystems: from Root Zone to Landscape BIOGEOCHEMISTRY OF WET ECOSYSTEMS: FROM ROOT ZONE TO LANDSCAPE A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By La Toya Tricia Kissoon In Partial Fulfillment for the Degree of DOCTOR OF PHILOSOPHY Major Program: Environmental and Conservation Sciences April 2012 Fargo, North Dakota North Dakota State University Graduate School Title BIOGEOCHEMISTRY OF WET ECOSYSTEMS: FROM ROOT ZONE TO LANDSCAPE By LA TOYA TRICIA KISSOON The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Marinus Otte Co-Chair Donna Jacob Co-Chair Achintya Bezbaruah Larry Cihacek Mark Hanson Approved: 05/23/2012 Craig Stockwell Date Department Chair ABSTRACT The biogeochemistry of wetland ecosystems varies, causing them to act as sources, sinks, filters or transformers of nutrients and pollutants. Wetland plants play important roles in the cycling of elements in wet ecosystems. The structural and physiological adaptations that allow these plants to colonize wetland habitats as emergent or submerged species contribute to biogeochemical processes in wetland substrates. Rhizosphere (root zone) oxidation, iron and manganese oxide precipitation, acidification of the rhizosphere, root exudation, and microbial activity influence the mobility of elements in wetland substrates. Both emergent and submerged wetland plants can alter conditions in the rhizosphere that influence the mobility of elements. These plants are also capable of removing elements such as Cd, Cu, Fe, Mn, N, P and Zn from solution and accumulating them in their tissues. Root zone studies were carried out in the greenhouse using the wetland plants Typha angustifolia (cattail) and Rumex crispus (curly dock) and in the field using Triglochin maritima (seaside arrowgrass) to determine differences in element concentrations in the root and bulk zone under different soil moisture conditions. Studies involving shallow lakes of Minnesota were carried out to determine relationships among (1) landscape variables (e.g. lake watershed size, percent agriculture, percent woodland), water and sediment characteristics (turbidity, chlorophyll-a, organic content, particle size), (3) element concentrations in waters and sediments, and (3) plant abundance and community composition. The studies reported here showed that different factors influenced the distribution of multiple elements in the root zone of emergent wetland plants and in waters and sediments of shallow lakes. First, the root zone studies indicated that pH, redox and moisture content of wetland soils influenced the distribution of elements in the rhizosphere and subsequent uptake of these elements by wetland plants. Second, the shallow lake study showed that land cover uses (agriculture and woodland), lake watershed size, and sediment physical characteristics (organic content and particle size) influenced the distribution of elements in waters and sediments of shallow lakes. Concentrations of these elements, land cover uses, open water area, turbidity, chlorophyll-a concentrations and sediment physical characteristics influenced abundance and distribution of submerged and floating plants. iii ACKNOWLEDGMENTS I would like to thank my advisors Drs. Donna Jacob and Marinus Otte for their tremendous support and for believing in my abilities. Thanks to my committee members Drs. Achintya Bezbaruah, Larry Cihacek and Mark Hanson for their advice and for proofreading my dissertation. I am especially grateful for Dr. Hanson’s help with multivariate statistical analysis. This project was supported by ND ESPCoR and NSF (grant #EPS-0814442), Minnesota Department of Natural Resources, Red Lake Department of Natural Resources, The Wetland Foundation, Sigma Xi Grants-in-Aid of Research and grants from the National Center for Research Resources (5P20RR016471-12) and the National Institute of General Medical Sciences (8 P20 GM103442-12) from the National Institutes of Health. Thanks to Drs. Wei Lin and Craig Stockwell, the Environmental and Conservation Sciences Program and the Department of Biological Sciences for their support. I am very thankful to all those who assisted directly with various aspects of my project: Drs. Sharmila Sunwar, Dimuthu Wijeyaratne, and Sanjaya Gyawali; Wet Ecosystem Research Group (WERG) graduate students: Aida Asgary, Alex Stalboerger, and Alex Yellick; WERG undergraduate volunteers: Emily Fischbach, Ryan Sullivan, Ankit Dhingra, Brandi Roshau, Brett Lyslo, Eden Friedrich, Justin Tabaka, Kevin Christensen, Maurice Dullea, Patrick Culhane, Alex Hoele, Christina Swenson, and Hannah Passolt; MN DNR interns: Winston Allen, Brandon Palesh, Joshua Norenberg, and Stefan Bischof; Red Lake DNR interns: Vince Smith and Josh Suckow; and friends: Francelet Charles, Nerlene Olivier, Sylvie Schweyen, Kelly Riske and Nafeeza Baksh. Thanks to the Wetland Science class of 2009 for helping with sample collection at the Kellys Slough. Thanks to all the DNR personnel for their help with my shallow lakes project: Mark Hanson, Brian Herwig, Shane Bowe, Kayla Bowe, and Kyle Zimmerman. Thanks to Larry Swenson in the Soil Testing Laboratory for letting me use his laboratory for loss-on-ignition analysis. Thanks to Shannon Viestenz from the NDSU Department of Mechanical Engineering for his advice and for letting me use his facility for constructing sampling equipment. Thanks to John Charles for his loving support, encouragement and creative input. Thanks to Carrie Werkmister-Karki and Jaynee Harwood for their friendship, support and advice. I am very grateful to my Mother and other family members for their support and encouragement over the years, for giving me the opportunity and freedom to pursue my dreams even though it was thousands of miles from home. iv TABLE OF CONTENTS ABSTRACT ................................................................................................................................................... iii ACKNOWLEDGMENTS ............................................................................................................................... iv LIST OF TABLES ......................................................................................................................................... ix LIST OF FIGURES ....................................................................................................................................... xii CHAPTER 1. GENERAL INTRODUCTION ................................................................................................. 1 1.1. Background ................................................................................................................................. 1 1.2. Rhizosphere processes ............................................................................................................... 1 1.2.1. The rhizosphere defined ..................................................................................................... 1 1.2.2. Rhizosphere biogeochemistry ............................................................................................. 2 1.3. Biogeochemical effects of emergent wetland plants ................................................................... 3 1.3.1. Adaptations to soil flooding and waterlogging..................................................................... 4 1.3.2. Iron oxide formation ............................................................................................................ 5 1.3.3. Influence on element concentrations in the soil or sediment .............................................. 6 1.3.4. Element accumulation by emergent plants ......................................................................... 7 1.4. Submerged plants: relationships with biogeochemistry ............................................................ 11 1.4.1. Influence on element concentrations in the sediment and water ...................................... 11 1.4.2. Indicators of biogeochemical conditions ........................................................................... 14 1.4.3. Role in lake turbidity .......................................................................................................... 16 1.5. Conceptual model – a synthesis ............................................................................................... 17 1.6. Objectives of this research ........................................................................................................ 20 1.7. Dissertation outline .................................................................................................................... 21 SECTION 1 – ROOT ZONE STUDIES ....................................................................................................... 23 CHAPTER 2. MULTI-ELEMENT ACCUMULATION NEAR RUMEX CRISPUS ROOTS UNDER WETLAND AND DRYLAND CONDITIONS ........................................................................................... 24 2.1. Abstract ..................................................................................................................................... 24 2.2. Introduction ............................................................................................................................... 24 2.3. Materials and methods .............................................................................................................. 25
Recommended publications
  • Engelmann's Quillwort (Isoetes Engelmannii) in Ontario
    Engelmann’s Quillwort (Isoetes Engelmannii) in Ontario Ontario Recovery Strategy Series Recovery strategy prepared under the Endangered Species Act, 2007 February 2010 Ministry of Natural Resources About the Ontario Recovery Strategy Series This series presents the collection of recovery strategies that are prepared or adopted as advice to the Province of Ontario on the recommended approach to recover species at risk. The Province ensures the preparation of recovery strategies to meet its commitments to recover species at risk under the Endangered Species Act, 2007 (ESA, 2007) and the Accord for the Protection of Species at Risk in Canada. What is recovery? What’s next? Recovery of species at risk is the process by which the Nine months after the completion of a recovery strategy decline of an endangered, threatened, or extirpated a government response statement will be published species is arrested or reversed, and threats are which summarizes the actions that the Government of removed or reduced to improve the likelihood of a Ontario intends to take in response to the strategy. The species’ persistence in the wild. implementation of recovery strategies depends on the continued cooperation and actions of government agencies, individuals, communities, land users, and What is a recovery strategy? conservationists. Under the ESA, 2007, a recovery strategy provides the best available scientific knowledge onwhat is required For more information to achieve recovery of a species. A recovery strategy outlines the habitat needs and the threats to the To learn more about species at risk recovery in Ontario, survival and recovery of the species. It also makes please visit the Ministry of Natural Resources Species at recommendations on the objectives for protection and Risk webpage at: www.ontario.ca/speciesatrisk recovery, the approaches to achieve those objectives, and the area that should be considered in the development of a habitat regulation.
    [Show full text]
  • Devils Lake Aquatic Plant Management Plan
    Aquatic Plant Management Plan Devils Lake Association Burnett County, WI August 24, 2015 Sponsored By Devils Lake Association and Burnett County Land and Water Conservation Department Aquatic Plant Advisory Committee Members: Frank Albarado Gene Close John Fink Eric Kramer Debbie LaGeese Tom Wallace Advisory Committee Dave Ferris Burnett County Conservationist Pamela Toshner WI DNR Lakes & Rivers Management Kathy Bartilson Water Quality Biologist/Statewide Aquatic Plant Management Coordinator WI DNR Prepared by: Burnett County Land & Water Conservation Department Plan Writing & Facilitation Brad Morris MSE, AIS Coordinator GIS Specialist/Map Design Evan Lunda Proofing and editing Ann Lane, Administrative Assistant i Table of Contents Introduction……………………………………………………………………..............................1 Public Input for Plan Development......................................................................................1 Lake Information......................…………………………………………………………...............2 Water Quality.......................................................................................................................4 Watershed .........................................................................................................................5 Aquatic Habitats..............................................................................................................................7 Functions and Values of Native Aquatic Plants.................................................................7 Rare and Endangered
    [Show full text]
  • FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
    ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1.
    [Show full text]
  • Comprehensive Management Plan
    Eagle River Chain of Lakes Vilas-Oneida Counties, Wisconsin Comprehensive Management Plan December 2019 Sponsored by: Eagle River Chain of Lakes Association WDNR Grant Program AEPP-388-13; AEPP-433-14; AEPP477-16; AEPP-500-17 Onterra, LLC 815 Prosper Road De Pere, WI 54115 920.338.8860 www.onterra-eco.com Eagle River Chain of Lakes Vilas & Oneida Counties, Wisconsin Comprehensive Management Plan December 2019 Created by: Brenton Butterfield, Tim Hoyman, Eddie Heath, Todd Hanke, and Josephine Barlament Onterra, LLC De Pere, WI Funded by: Eagle River Chain of Lakes Association Wisconsin Dept. of Natural Resources Lakes Grant Program (AEPP-388-13; AEPP-433-14, AEPP-477-16, & AEPP-500-17) Acknowledgements This management planning effort was truly a team-based project and could not have been completed without the input of the following individuals: Eagle River Chain of Lakes Planning Committee The Planning Committee was comprised of riparian property owners from the following lakes: Cranberry Lake Eagle Lake Lynx Lake Catfish Lake Scattering Rice Lake Duck Lake Voyageur Lake Otter Lake Yellow Birch Lake Watersmeet Lake Eagle River Chain of Lakes Comprehensive Management Plan 1 TABLE OF CONTENTS 1.0 Introduction ............................................................................................................................................ 4 2.0 Stakeholder Participation ....................................................................................................................... 6 3.0 Results & Discussion ..........................................................................................................................
    [Show full text]
  • STREAKED ARROWGRASS Triglochin Striatum
    TREAKED RROWGRASS H10 © photos G. Sainty & DPI Hamilton S A SALTdeck Series Triglochin striatum HERB 2cm 2mm Sustainable STREAKED ARROWGRASS Grazing on SALTdeck Series Triglochin striatum Saline Land © AWI & CRC Salinity 2006 Family: Juncaginaceae. H10 Description: Erect perennial often less than 30 cm tall, but occasionally to 50 cm. Leaves in tufts on an extensive rhizome. Flowerhead an erect spike to 15 cm long. Flowers green. Fruit round to egg-shaped, 1.5–3 mm long, on a short stalk, spirally arranged on a spike (see photo). Flowers spring to autumn. Key features: Absence of tubers (other species of Triglochin usually with tubers), presence of a sheath and a membranous ligule, and narrow leaves that are cylindrical or flat and strap-like. Value: Palatable to sheep, moderate feed energy value, but recovers slowly from grazing. Remains green during summer where it has access to groundwater. May form large patches but usually part of the salt tolerant mix of plants in saline land. Rhizomatous habit and dense cover reduces the potential for erosion. Salinity and waterlogging tolerance: High tolerance to salt and waterlogging. Notes: Native to all States, North and South America and southern Africa. Useful indicator of salinity. Grows widely along the coast and in Victoria is widespread inland. Thrives in coastal saltmarsh and common in the low marsh inundated zone. Flowers in summer, and produces much seed from which it is easy to propagate. A good pioneer plant. References: Flora of South Australia, Jessop and Toelken (eds), Part 4, 4th edition, 1986. Flora of Victoria, Walsh and Entwisle H (eds), Vol.
    [Show full text]
  • Eutaxia Microphylla Common Eutaxia Dillwynia Hispida Red Parrot-Pea Peas FABACEAE: FABOIDEAE Peas FABACEAE: FABOIDEAE LEGUMINOSAE LEGUMINOSAE
    TABLE OF CONTENTS Foreword iv printng informaton Acknowledgements vi Introducton 2 Using the Book 3 Scope 4 Focus Area Reserve Locatons 5 Ground Dwellers 7 Creepers And Twiners 129 Small Shrubs 143 Medium Shrubs 179 Large Shrubs 218 Trees 238 Water Lovers 257 Grasses 273 Appendix A 290 Appendix B 293 Resources 300 Glossary 301 Index 303 ii iii Ground Dwellers Ground dwellers usually have a non-woody stem with most of the plant at ground level They sometmes have a die back period over summer or are annuals They are usually less than 1 metre high, provide habitat and play an important role in preventng soil erosion Goodenia blackiana, Kennedia prostrata, Glossodia major, Scaevola albida, Arthropodium strictum, Gonocarpus tetragynus Caesia calliantha 4 5 Bulbine bulbosa Bulbine-lily Tricoryne elator Yellow Rush-lily Asphodel Family ASPHODELACEAE Day Lily Family HEMEROCALLIDACEAE LILIACEAE LILIACEAE bul-BINE (bul-BEE-nee) bul-bohs-uh Meaning: Bulbine – bulb, bulbosa – bulbous triek-uhr-IEN-ee ee-LAHT-ee-or Meaning: Tricoryne – three, club shaped, elator – taller General descripton A small perennial lily with smooth bright-green leaves and General descripton Ofen inconspicuous, this erect branched plant has fne, yellow fowers wiry stems and bears small clusters of yellow star-like fowers at the tps Some Specifc features Plants regenerate annually from a tuber to form a tall longish leaves present at the base of the plant and up the stem stem from a base of feshy bright-green Specifc features Six petaled fowers are usually more than 1 cm across,
    [Show full text]
  • Native Plant List, Pdf Format
    Appendix A: City of Bellingham Native Plant List December 2020 The City of Bellingham Native Plant List (Figure 1) includes plant species that are native to Bellingham watersheds (Figure 2). The native plant list applies to all habitat types, including riparian, upland, and wetland areas. The list was developed using specimen records from the Consortium of Pacific Northwest Herbaria and Bellingham plant checklists curated by Don Knoke, a volunteer at the University of Washington Herbarium. To improve plant establishment and protect the genetic resources of our local plant populations, the City recommends using native plants that were grown from seeds or cuttings collected from the Puget Trough Ecoregion (Figure 3). Obtaining native plants grown from material collected from the Puget Trough Ecoregion will help ensure the plants are adapted to the unique environmental conditions of Bellingham watersheds and are genetically similar to our local plant populations. A more thorough discussion of the rational and selection process is provided in the City of Bellingham Public Works Department Native Plant Materials Selection Guidelines, December 2020. Figure 1. City of Bellingham Native Plant List Ferns Common Name Scientific Name Family Bracken fern Pteridium aquilinum var. pubescens Dennstaedtiaceae Bristle-like quillwort Isoetes tenella Isoetaceae Common horsetail Equisetum arvense Equisetaceae Deer fern Struthiopteris spicant (Blechnum spicant) Blechnaceae Dream fern Aspidotis densa Pteridaceae Giant horsetail Equisetum telmateia ssp. braunii
    [Show full text]
  • Minnesota Biodiversity Atlas Plant List
    Savanna Portage State Park Plant List Herbarium Scientific Name Minnesota DNR Common Name Status Abies balsamea balsam fir Acer rubrum red maple Acer saccharum sugar maple Acer spicatum mountain maple Actaea rubra red baneberry Adiantum pedatum maidenhair fern Agrimonia striata roadside agrimony Alisma subcordatum heart-leaved water plantain Allium tricoccum wild leek Alnus incana rugosa speckled alder Amphicarpaea bracteata hog peanut Anaphalis margaritacea pearly everlasting Anemone americana round-lobed hepatica Anemone canadensis canada anemone Anemone cylindrica long-headed thimbleweed Anemone quinquefolia quinquefolia wood anemone Anemone virginiana tall thimbleweed Antennaria howellii petaloidea Howell's pussytoes Anthoxanthum hirtum sweet grass Aquilegia canadensis columbine Aralia nudicaulis wild sarsaparilla Aralia racemosa American spikenard Arethusa bulbosa dragon's mouth Arisaema triphyllum Jack-in-the-pulpit Aronia melanocarpa black chokeberry Asarum canadense wild ginger Asclepias exaltata poke milkweed Asclepias incarnata swamp milkweed Asclepias syriaca common milkweed Athyrium filix-femina lady fern Athyrium filix-femina angustum lady fern Barbarea vulgaris yellow rocket Betula alleghaniensis yellow birch Betula papyrifera paper birch Betula pumila bog birch Bidens beckii water marigold Bidens cernua nodding bur marigold Bidens discoidea discoid beggarticks SC Bidens frondosa leafy beggarticks Botrychium dissectum dissected grapefern Botrychium lanceolatum narrow triangle moonwort T © 2013 MinnesotaSeasons.com. All rights
    [Show full text]
  • Weed Name Bayer Code Family Genus Species Acacia ACASS Leguminosae Acacia Sp
    Weed Name Bayer Code Family Genus Species acacia ACASS Leguminosae Acacia sp. acacia, ACARI Leguminosae Acacia rigidula Benth. blackbrush acacia, catclaw ACAGR Leguminosae Acacia greggii A. Gray acacia, twisted ACATT Leguminosae Acacia tortuosa (L.) Willd. adonis, ADOAN Ranunculaceae Adonis annua L. emend. pheasanteye Huds. adonis, spring ADOVE Ranunculaceae Adonis vernalis L. ageratum, AGECO Compositae Ageratum conyzoides L. tropic agrimony, AGIST Rosaceae Agrimonia striata Michx. roadside air potato DIUBU Dioscoreaceae Dioscorea bulbifera L. alder ALNSS Betulaceae Alnus sp. alder, ALUGL Betulaceae Alnus glutinosa (L.) European Gaertn. alder, red ALURB Betulaceae Alnus rubra Bong. alder, speckled ALURG Betulaceae Alnus rugosa (Du Roi) Spreng. alexandergrass BRAPL Gramineae Brachiaria plantaginea (Link) A.S.Hitchc. alexandergrass, BRASU Gramineae Brachiaria subquadripara smallflowered (Trin.) A.S.Hitchc. alfalfa MEDSA Leguminosae Medicago sativa L. (volunteer) alfombrilla DRYAR Caryophyllaceae Drymaria arenarioides H.B.K. alkaliweed CSVTR Convolvulaceae Cressa truxillensis H.B.K. alligatorweed ALRPH Amaranthaceae Alternanthera philoxeroides (Mart.) Griseb. alyssum AYSSS Cruciferae Alyssum sp. alyssum, dwarf AYSDE Cruciferae Alyssum desertorum Stapf alyssum, field AYSMI Cruciferae Alyssum minus (L.) Rothm. alyssum, hoary BEFIN Cruciferae Berteroa incana (L.) DC. alyssum, sweet LOUMA Cruciferae Lobularia maritima (L.) Desv. alyssum, AYSAL Cruciferae Alyssum alyssoides (L.) L. yellow amaranth AMASS Amaranthaceae Amaranthus sp. amaranth, AMAFA Amaranthaceae Amaranthus palmeri S.Wats. Palmer amaranth, AMATO Amaranthaceae Amaranthus bigelovii Uline & Torrey Bray amaranth, AMAAU Amaranthaceae Amaranthus australis (Gray) giant J.D.Sauer amaranth, livid AMALI Amaranthaceae Amaranthus lividus L. amaranth, AMAPO Amaranthaceae Amaranthus powellii S.Wats. Powell amaranth, AMAAR Amaranthaceae Amaranthus arenicola sandhills I.M.Johnst. amaranth, AMAVI Amaranthaceae Amaranthus viridus L. slender amaranth, AMADU Amaranthaceae Amaranthus dubius Mart.
    [Show full text]
  • The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012).
    [Show full text]
  • Internal Eutrophication: How It Works and What to Do About It – a Review
    Chemistry and Ecology Vol. 22, No. 2, April 2006, 93–111 Internal eutrophication: How it works and what to do about it – a review A. J. P. SMOLDERS*, L. P. M. LAMERS, E. C. H. E. T. LUCASSEN, G. VAN DER VELDE and J. G. M. ROELOFS Department of Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands (Received 18 November 2005; in final form 16 January 2006) In the 1980s and 1990s, it became increasingly clear that changes in external nutrient loads alone could not entirely explain the severe eutrophication of surface waters in the Netherlands. Nowadays, ‘internal eutrophication’ has become a widely accepted term in Dutch water management practice to describe the eutrophication of an ecosystem without additional external input of nutrients (N, P, K). This review surveys the principal mechanisms involved in this process. It also discusses possible remedies to combat internal eutrophication. Keywords: Alkalinity; Anaerobic decomposition; Biomanipulation; Internal eutrophication; Nitrate; Phosphate; Sulphate 1. Introduction In the Netherlands, the term internal eutrophication (‘interne eutrofiëring’ in Dutch) has become popular through publications by Roelofs and co-workers since the late 1980s [1–8]. Most of these publications were written in Dutch and described the eutrophication of surface waters in Dutch peaty lowlands as a result of changes in water quality without additional external supply of nutrients (N, P, K). Their ideas were based on the observation that water quality had deteriorated considerably, even in nature reserves, although in many cases no significant increase had occurred in the external nutrient loads [1, 3, 5].
    [Show full text]
  • Lake Superior Biodiversity Conservation Assessment: Final Draft, June 2013
    Lake Superior Biodiversity Conservation Assessment: Final Draft, June 2013. A Biodiversity Conservation Assessment for Lake Superior Volume 1: Lakewide Assessment Prepared by the Superior Work Group of the Lake Superior Lakewide Action and Management Plan Final Draft: June 2013 Updated: March 2015 Lake Superior Biodiversity Conservation Assessment: Final Draft, June 2013. Cover photo credits Clockwise From upper left – Rainbow Falls Provincial Park Photo Credit: Bill Caulfeild-Browne; Fall Satellite Image of Lake Superior Image Credit: NOAA; Sunset over Lake Superior shoreline in Lake Superior Provincial Park Photo credit: Ethan Meleg; Raspberry Island Lighthouse, Apostle Islands National Lakeshore Photo Credit: National Parks Service; Sea Kayaks on Lake Superior Shore at Agawa Rock Pictograph Site, Lake Superior Provincial Park, Ontario Photo Credit: Ethan Meleg; Commercial harvest of Cisco from Lake Superior, date unknown Photo Credit: North Shore Commercial Fishing Museum Recommended citation Lake Superior Lakewide Action and Management Plan (LAMP) - Superior Work Group. 2013. Lake Superior Biodiversity Conservation Assessment. 130 pp. (Updated March 2015). Disclaimer This report reflects the best efforts of the preparers (Dan Kraus and Megan Ihrig) to accurately represent and interpret the available expertise and information on Lake Superior and the views and opinions of the project participants. Every effort to ensure the accuracy of the information contained in this study has been taken. We welcome suggestions for improvements. Volume 2: Regional Summaries Please note that this report includes two volumes. Volume 2 contains regional summaries and maps that are referred to in this document. It is recognized that many regions contain additional information and mapping on biodiversity and threats that could not be fully reflected in this report.
    [Show full text]