Investigating the Clinical Validity of CUB and Zona-Pellucida-Like Domain-Containing Protein 1 (CUZD1) in Malignant and Non- Malignant Human Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Clinical Validity of CUB and Zona-Pellucida-Like Domain-Containing Protein 1 (CUZD1) in Malignant and Non- Malignant Human Diseases Investigating the Clinical Validity of CUB and Zona Pellucida- like Domain-Containing Protein 1 (CUZD1) in Malignant and Non-Malignant Human Diseases by Sofia Farkona A thesis submitted in conformity with the requirements for the degree of Doctorate of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Sofia Farkona 2018 Investigating the Clinical Validity of CUB and Zona-Pellucida-like Domain-Containing Protein 1 (CUZD1) in Malignant and Non- Malignant Human Diseases Sofia Farkona Doctor of Philosophy Laboratory Medicine and Pathobiology University of Toronto 2018 Abstract CUB and zona pellucida-like domain-containing protein 1 (CUZD1) has been previously shown to be specifically expressed in normal pancreas and was proposed as a candidate biomarker for pancreatic related disorders. Due to the lack of specific reagents and techniques, its levels in tissues and biological fluids have not been extensively examined. We generated mouse monoclonal antibodies against recombinant CUZD1 and used them for the development of an enzyme-linked immunosorbent assay (ELISA). Analysis of various human extracts showed that CUZD1 is measured in high levels in pancreas and at much lower (but detectable) levels in several other tissues. Analysis of biological fluids showed that CUZD1 is detected exclusively in pancreatic juice. CUZD1 has been previously linked to diseases (such as pancreatitis, ovarian cancer and IBD) but it is currently unknown if the expression levels of this antigen are elevated in any of the aforementioned or other disorders. Analysis of a large number of serum samples from patients with various malignant and benign disorders showed that CUZD1 levels were elevated in patients with ovarian cysts but not ovarian cancer. ii CUZD1 is a pancreas-specific protein but it is unclear if its expression is elevated in malignant conditions of the pancreas. IHC staining of pancreatic ductal adenocarcinoma (PDAC) and acinar cell carcinoma (ACC) tissue sections revealed that CUZD1 protein was highly expressed in ACC but not in PDAC. CUZD1 is one of the targets of pancreatic autoantibodies (PABs) which have been emerged as possible biomarkers for Inflammatory Bowel Disease (IBD). Data assessing the diagnostic significance of CUZD1 autoantibodies in patients with IBD are scarce, mainly due to the lack of high throughput techniques for their detection. We developed an ELISA targeting CUZD1 autoantibodies and used it to analyze 200 serum samples from IBD patients and 129 patients assessed for various autoimmune diseases (vADs). CUZD1 autoantibodies were detected in 16% of CrD patients in 9% of UC patients and in less than 5% of patients being tested for vADs. In conclusion, this thesis encompasses the development and validation of analytical techniques targeting CUZD1 antigen and CUZD1 autoantibodies. These tools can facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. iii Acknowledgments First and foremost, I would like to thank my supervisors Dr. Eleftherios Diamandis and Dr. Ivan Blasutig for their continuous support and guidance throughout my PhD. I cannot thank you both enough for giving me the opportunity and freedom to pursue my scientific interests and for the patience and mentorship throughout my PhD. I am most thankful to colleagues who contributed to this work and to all members of ACDC laboratory for supporting me and making my time here enjoyable. I will never forget the time we shared together. I would also like to extend my gratitude and thanks to the members of my PhD advisory committee, Dr. Yousef and Dr. Schmitt Ulms for volunteering their time and for providing invaluable advice and feedback that led to completion of this exciting work. Additionally, I am thankfully to our collaborators Dr. Bogdanos, Dr. Ruckert and Dr. Serra who shared my enthusiasm and who graciously provided me with samples and resources. I would also like to thank the examiners of this thesis Dr. Charames, Dr. Chandran and Dr. Kavsak for reading it and giving useful feedback during the final exam. I should thank the members of the Department of Laboratory Medicine and Pathobiology, including Dr. Harry Elsholtz, Sue Sarju and Rama Ponda for administrative help in helping scheduling the defense. I would like to acknowledge the funding I received from the LMP department. Last but not least, none of this work would have been possible without the love and support of my family. Thank you to my brother, Peter, and more importantly my parents, Markos and Eutychia, for always believing me and encouraging me to follow my dreams. I know that I would not be where I am today if it wasn’t for you. I am eternally grateful, and this thesis is dedicated to you. iv Table of Contents Acknowledgments.......................................................................................................................... iv Table of Contents .............................................................................................................................v List of Abbreviations ..................................................................................................................... ix List of Tables ............................................................................................................................... xiv List of Figures ................................................................................................................................xv Chapter 1 | Introduction ................................................................................................................1 1.1 Pancreas ...............................................................................................................................2 1.1.1 General information .................................................................................................2 1.1.2 History of the pancreas ............................................................................................2 1.1.3 Structure of the pancreas ..........................................................................................2 1.1.4 Development ............................................................................................................4 1.1.5 Development and Molecules....................................................................................5 1.1.6 Physiology of the pancreas ......................................................................................8 1.1.7 Islet-acinar axis/interaction ....................................................................................14 1.1.8 Common diseases...................................................................................................16 1.2 Inflammatory Bowel Disease .............................................................................................22 1.2.1 General information (classification, symptoms and prevalence) ...........................22 1.2.2 Causes ....................................................................................................................23 1.2.3 Diagnosis................................................................................................................24 1.3 CUZD1 ...............................................................................................................................27 v 1.3.1 Genomic location and structure .............................................................................27 1.3.2 CUZD1 endogenous expression ............................................................................31 1.3.3 Cellular localization of CUZD1 .............................................................................34 1.3.4 Proteins similar to CUZD1 ....................................................................................36 1.3.5 Function of CUZD1 (based on experiments) .........................................................38 1.3.6 CUZD1 autoantibodies in patients with IBD .........................................................40 1.4 Rationale and Objectives ...................................................................................................42 1.4.1 Rationale ................................................................................................................42 1.4.2 Hypothesis..............................................................................................................42 1.4.3 Objectives ..............................................................................................................42 2 Chapter 2 | Novel immunoassays for detection of CUZD1 autoantibodies in serum of patients with inflammatory bowel diseases...............................................................................44 2.1 Introduction ........................................................................................................................45 2.2 Materials and Methods .......................................................................................................47 2.2.1 Patients ...................................................................................................................47 2.2.2 Production of recombinant CUZD1 .......................................................................47 2.2.3 Selected Reaction Monitoring (SRM) ...................................................................50 2.2.4 Chromatographic and MS conditions ....................................................................51 2.2.5 Data analysis
Recommended publications
  • The Role of Nuclear Lamin B1 in Cell Proliferation and Senescence
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press The role of nuclear lamin B1 in cell proliferation and senescence Takeshi Shimi,1 Veronika Butin-Israeli,1 Stephen A. Adam,1 Robert B. Hamanaka,2 Anne E. Goldman,1 Catherine A. Lucas,1 Dale K. Shumaker,1 Steven T. Kosak,1 Navdeep S. Chandel,2 and Robert D. Goldman1,3 1Department of Cell and Molecular Biology, 2Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA Nuclear lamin B1 (LB1) is a major structural component of the nucleus that appears to be involved in the regulation of many nuclear functions. The results of this study demonstrate that LB1 expression in WI-38 cells decreases during cellular senescence. Premature senescence induced by oncogenic Ras also decreases LB1 expression through a retinoblastoma protein (pRb)-dependent mechanism. Silencing the expression of LB1 slows cell proliferation and induces premature senescence in WI-38 cells. The effects of LB1 silencing on proliferation require the activation of p53, but not pRb. However, the induction of premature senescence requires both p53 and pRb. The proliferation defects induced by silencing LB1 are accompanied by a p53-dependent reduction in mitochondrial reactive oxygen species (ROS), which can be rescued by growth under hypoxic conditions. In contrast to the effects of LB1 silencing, overexpression of LB1 increases the proliferation rate and delays the onset of senescence of WI-38 cells. This overexpression eventually leads to cell cycle arrest at the G1/S boundary.
    [Show full text]
  • Two Locus Inheritance of Non-Syndromic Midline Craniosynostosis Via Rare SMAD6 and 4 Common BMP2 Alleles 5 6 Andrew T
    1 2 3 Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and 4 common BMP2 alleles 5 6 Andrew T. Timberlake1-3, Jungmin Choi1,2, Samir Zaidi1,2, Qiongshi Lu4, Carol Nelson- 7 Williams1,2, Eric D. Brooks3, Kaya Bilguvar1,5, Irina Tikhonova5, Shrikant Mane1,5, Jenny F. 8 Yang3, Rajendra Sawh-Martinez3, Sarah Persing3, Elizabeth G. Zellner3, Erin Loring1,2,5, Carolyn 9 Chuang3, Amy Galm6, Peter W. Hashim3, Derek M. Steinbacher3, Michael L. DiLuna7, Charles 10 C. Duncan7, Kevin A. Pelphrey8, Hongyu Zhao4, John A. Persing3, Richard P. Lifton1,2,5,9 11 12 1Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 13 2Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA 14 3Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA 15 4Department of Biostatistics, Yale University School of Medicine, New Haven, CT, USA 16 5Yale Center for Genome Analysis, New Haven, CT, USA 17 6Craniosynostosis and Positional Plagiocephaly Support, New York, NY, USA 18 7Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA 19 8Child Study Center, Yale University School of Medicine, New Haven, CT, USA 20 9The Rockefeller University, New York, NY, USA 21 22 ABSTRACT 23 Premature fusion of the cranial sutures (craniosynostosis), affecting 1 in 2,000 24 newborns, is treated surgically in infancy to prevent adverse neurologic outcomes. To 25 identify mutations contributing to common non-syndromic midline (sagittal and metopic) 26 craniosynostosis, we performed exome sequencing of 132 parent-offspring trios and 59 27 additional probands.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,727 Baden Et Al
    USOO5981727A United States Patent (19) 11 Patent Number: 5,981,727 Baden et al. (45) Date of Patent: Nov. 9, 1999 54 PLANT GROUP 2 PROMOTERS AND USES OTHER PUBLICATIONS THEREOF Oommen et al (1994) The Plant Cell 6: 1789–1803. 75 Inventors: Catherine S. Baden, Martinez, Pamela Lewin, (1985) In: Genes II, Wiley and Sons, NY, pp. Dunsmuir, Piedmont; Kathleen Y. Lee, 182-183. Oakland, all of Calif. Van Haaven et al (1991) Plant Mol Biol 17: 615-630. 73 Assignee: DNA Plant Technology Corporation, Pear et al (1989) Plant Mol Biol 13: 639-651. Oakland, Calif. Primary Examiner Elizabeth F. McElwain 21 Appl. No.: 08/761,549 Attorney, Agent, or Firm Townsend and Townsend and 22 Filed: Dec. 6, 1996 Crew Related U.S. Application Data 57 ABSTRACT This invention relates to compositions and methods useful in 63 Continuation of application No. 08/289,458, Aug. 12, 1994, the production of transgenic plants. In particular, the inven Pat. No. 5,608,144. tion relates to Group 2 (Gp2) plant promoter Sequences and 51 Int. Cl. ............................ C12N 15700;s CO7H 21/04 to expressionp cassettes containingg Gp2Op.4 planlplant ppromoter 52 U.S. Cl. ...................... 536/23.6; 536/24.1; 435/1723 Sequences. The invention also relates to vectors and trans 58 Field of Search ........................... 800/205; 435/69.1, genic plants containing Gp2 plant promoter Sequences that 435/172.3, 419, 536/24.1, 23.6 are operably linked to heterologous DNA sequences. In addition, the invention relates to methods of producing 56) References Cited transgenic plants by using vectors containing Gp2 promoter Sequences.
    [Show full text]
  • Genetic Variant in 3' Untranslated Region of the Mouse Pycard Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Title: 4 Genetic Variant in 3’ Untranslated Region of the Mouse Pycard Gene Regulates Inflammasome 5 Activity 6 Running Title: 7 3’UTR SNP in Pycard regulates inflammasome activity 8 Authors: 9 Brian Ritchey1*, Qimin Hai1*, Juying Han1, John Barnard2, Jonathan D. Smith1,3 10 1Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 11 Cleveland, OH 44195 12 2Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 13 44195 14 3Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western 15 Reserve University, Cleveland, OH 44195 16 *, These authors contributed equally to this study. 17 Address correspondence to Jonathan D. Smith: email [email protected]; ORCID ID 0000-0002-0415-386X; 18 mailing address: Cleveland Clinic, Box NC-10, 9500 Euclid Avenue, Cleveland, OH 44195, USA. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 Quantitative trait locus mapping for interleukin-1 release after inflammasome priming and activation 22 was performed on bone marrow-derived macrophages (BMDM) from an AKRxDBA/2 strain intercross.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Microrna-Mediated Networks Underlie Immune Response Regulation in Papillary Thyroid 51
    OPEN MicroRNA-mediated networks underlie SUBJECT AREAS: immune response regulation in papillary GENE REGULATORY NETWORKS thyroid carcinoma CANCER GENOMICS Chen-Tsung Huang1, Yen-Jen Oyang1, Hsuan-Cheng Huang4 & Hsueh-Fen Juan1,2,3 Received 1 2 15 July 2014 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Department of Life Science, National Taiwan University, Taipei, Taiwan, 3Institute of Molecular and Cellular Biology, National Taiwan University, Accepted Taipei, Taiwan, 4Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, 9 September 2014 Taipei, Taiwan. Published 29 September 2014 Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with low death rate but increased incidence and recurrence in recent years. MicroRNAs (miRNAs) are small non-coding RNAs with diverse regulatory capacities in eukaryotes and have been frequently implied in human cancer. Despite current Correspondence and progress, however, a panoramic overview concerning miRNA regulatory networks in PTC is still lacking. requests for materials Here, we analyzed the expression datasets of PTC from The Cancer Genome Atlas (TCGA) Data Portal and demonstrate for the first time that immune responses are significantly enriched and under specific should be addressed to regulation in the direct miRNA2target network among distinctive PTC variants to different extents. H.C.H. (hsuancheng@ Additionally, considering the unconventional properties of miRNAs, we explore the protein-coding ym.edu.tw) or H.F.J. competing endogenous RNA (ceRNA) and the modulatory networks in PTC and unexpectedly disclose ([email protected]) concerted regulation of immune responses from these networks. Interestingly, miRNAs from these conventional and unconventional networks share general similarities and differences but tend to be disparate as regulatory activities increase, coordinately tuning the immune responses that in part account for PTC tumor biology.
    [Show full text]
  • A De Novo Missense Mutation of FGFR2 Causes Facial Dysplasia Syndrome in Holstein Cattle Jørgen S
    Agerholm et al. BMC Genetics (2017) 18:74 DOI 10.1186/s12863-017-0541-3 RESEARCH ARTICLE Open Access A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle Jørgen S. Agerholm1*, Fintan J. McEvoy1, Steffen Heegaard2,3, Carole Charlier4, Vidhya Jagannathan5 and Cord Drögemüller5 Abstract Background: Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Results: Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene.
    [Show full text]
  • Transcriptional Recapitulation and Subversion Of
    Open Access Research2007KaiseretVolume al. 8, Issue 7, Article R131 Transcriptional recapitulation and subversion of embryonic colon comment development by mouse colon tumor models and human colon cancer Sergio Kaiser¤*, Young-Kyu Park¤†, Jeffrey L Franklin†, Richard B Halberg‡, Ming Yu§, Walter J Jessen*, Johannes Freudenberg*, Xiaodi Chen‡, Kevin Haigis¶, Anil G Jegga*, Sue Kong*, Bhuvaneswari Sakthivel*, Huan Xu*, Timothy Reichling¥, Mohammad Azhar#, Gregory P Boivin**, reviews Reade B Roberts§, Anika C Bissahoyo§, Fausto Gonzales††, Greg C Bloom††, Steven Eschrich††, Scott L Carter‡‡, Jeremy E Aronow*, John Kleimeyer*, Michael Kleimeyer*, Vivek Ramaswamy*, Stephen H Settle†, Braden Boone†, Shawn Levy†, Jonathan M Graff§§, Thomas Doetschman#, Joanna Groden¥, William F Dove‡, David W Threadgill§, Timothy J Yeatman††, reports Robert J Coffey Jr† and Bruce J Aronow* Addresses: *Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. †Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University and Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA. ‡McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA. §Department of Genetics and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. ¶Molecular Pathology Unit and Center for Cancer Research, Massachusetts deposited research General Hospital, Charlestown, MA 02129, USA. ¥Division of Human Cancer Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA. #Institute for Collaborative BioResearch, University of Arizona, Tucson, AZ 85721-0036, USA. **University of Cincinnati, Department of Pathology and Laboratory Medicine, Cincinnati, OH 45267, USA. ††H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. ‡‡Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • Annotation and Biological Information
    Microarray annotation and biological information Benedikt Brors Dept. Intelligent Bioinformatics Systems German Cancer Research Center [email protected] Why do we need microarray clone annotation? Often, the result of microarray data analysis is a list of genes. • The list has to be summarized with respect to its biological • meaning. For this, information about the genes and the related proteins has to be gathered. If the list is small (let’s say, 1–30), this is easily done by reading • database information and/or the available literature. Sometimes, lists are longer (100s or even 1000s of genes). • Automatic parsing and extracting of information is needed. To get complete information, you will need the help of • an experienced computational biologist (aka ‘bioinformatician’). However, there is a lot that you can do on your own. Primary databases Some information about genes and the encoded proteins • is available already from sequence databases, e.g. database accession number, nucleotide and protein sequences, database cross references, and a sequence name that may or may not give a hint to the function. To find a sequence in another database, use sequence comparison tools like BLAST. There are large repositories for sequence data, the most • prominent being EMBL, GenBank and DDBJ (these 3 are redundant). Because they are so large, nobody cares about the quality of the data. Everybody having internet access can deposit sequence information there. Errors introduced long time ago will stay there forever. GenBank information from NCBI Curated databases In contrast, some databases are curated. That means that • biologists will get the information first and compare them with literature before it goes into the database.
    [Show full text]
  • Production of Recombinant Retroviruses Encoding Human Flt3 Ligand and IL-6 and Establishment of Genetically Modified OP9 Mouse Stromal Cells
    Journal of Bacteriology and Virology 2007. Vol. 37, No. 1 p.31 – 38 Production of Recombinant Retroviruses Encoding Human Flt3 Ligand and IL-6 and Establishment of Genetically Modified OP9 Mouse Stromal Cells Ho-Bum Kang1,2, Young-Eun Kim1, Hyo-Jin Kang1, Ae-Ran Lee1, Dai-Eun Seok2 and Younghee Lee1* 1Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Korea and 2Department of Pharmacy, College of Pharmacy, Chungnam National University, Yusong, Daejon, 305-764, Korea Received : December 2, 2006 Accepted : January 24, 2007 Flt3 Ligand (FL) and IL-6 are multifunctional cytokines implicated in normal hematopoiesis and ex vivo expansion of hematopoietic stem cells. Retroviral vectors are useful for stable expression of genes in many cells. Here, we aimed to produce retroviral vectors directing expression of human FL and IL-6 genes. Recombinant retroviral vectors containing human genes for FL and IL-6 were constructed using a retroviral vector pLXSN. Recombinant retroviruses were produced from GP2-293 cells with the aid of pseudo-envelope protein gene VSV-G, and efficiently transduced to a mouse stromal cell line OP9. Genetically modified OP9 cells clearly showed expression of human FL or IL-6 gene at the mRNA level determined by RT-PCR. Based on the results from ELISA, human FL and IL-6 were detected in the cell culture medium of OP9/FL and OP9/IL-6 cells, respectively. As the recombinant human FL and IL-6 proteins are successfully produced and secreted to the culture medium, this system can be useful in future application such as ex vivo expansion of hematopoietic stem cells and differentiation of embryonic stem cells.
    [Show full text]
  • Mutations of the UMOD Gene Are Responsible for Medullary Cystic Kidney Disease 2 and Familial Juvenile Hyperuricaemic Nephropath
    882 J Med Genet: first published as 10.1136/jmg.39.12.882 on 1 December 2002. Downloaded from ORIGINAL ARTICLE Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy T C Hart, M C Gorry, P S Hart, A S Woodard, Z Shihabi, J Sandhu, B Shirts, L Xu, H Zhu, M M Barmada, A J Bleyer ............................................................................................................................. J Med Genet 2002;39:882–892 Introduction: Medullary cystic kidney disease 2 (MCKD2) and familial juvenile hyperuricaemic neph- ropathy (FJHN) are both autosomal dominant renal diseases characterised by juvenile onset of hyper- uricaemia, gout, and progressive renal failure. Clinical features of both conditions vary in presence and severity. Often definitive diagnosis is possible only after significant pathology has occurred. Genetic linkage studies have localised genes for both conditions to overlapping regions of See end of article for chromosome 16p11-p13. These clinical and genetic findings suggest that these conditions may be authors’ affiliations ....................... allelic. Aim: To identify the gene and associated mutation(s) responsible for FJHN and MCKD2. Correspondence to: Methods: Two large, multigenerational families segregating FJHN were studied by genetic linkage Dr T C Hart, Center for Craniofacial and Dental and haplotype analyses to sublocalise the chromosome 16p FJHN gene locus. To permit refinement of Genetics, University of the candidate interval and localisation of candidate genes, an integrated physical and genetic map of Pittsburgh, School of Dental the candidate region was developed. DNA sequencing of candidate genes was performed to detect Medicine, 614 Salk Hall, mutations in subjects affected with FJHN (three unrelated families) and MCKD2 (one family).
    [Show full text]
  • Heterogeneity Between Primary Colon Carcinoma and Paired Lymphatic and Hepatic Metastases
    MOLECULAR MEDICINE REPORTS 6: 1057-1068, 2012 Heterogeneity between primary colon carcinoma and paired lymphatic and hepatic metastases HUANRONG LAN1, KETAO JIN2,3, BOJIAN XIE4, NA HAN5, BINBIN CUI2, FEILIN CAO2 and LISONG TENG3 Departments of 1Gynecology and Obstetrics, and 2Surgical Oncology, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang; 3Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang; 4Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang; 5Cancer Chemotherapy Center, Zhejiang Cancer Hospital, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, P.R. China Received January 26, 2012; Accepted May 8, 2012 DOI: 10.3892/mmr.2012.1051 Abstract. Heterogeneity is one of the recognized characteris- Introduction tics of human tumors, and occurs on multiple levels in a wide range of tumors. A number of studies have focused on the Intratumor heterogeneity is one of the recognized charac- heterogeneity found in primary tumors and related metastases teristics of human tumors, which occurs on multiple levels, with the consideration that the evaluation of metastatic rather including genetic, protein and macroscopic, in a wide range than primary sites could be of clinical relevance. Numerous of tumors, including breast, colorectal cancer (CRC), non- studies have demonstrated particularly high rates of hetero- small cell lung cancer (NSCLC), prostate, ovarian, pancreatic, geneity between primary colorectal tumors and their paired gastric, brain and renal clear cell carcinoma (1). Over the past lymphatic and hepatic metastases. It has also been proposed decade, a number of studies have focused on the heterogeneity that the heterogeneity between primary colon carcinomas and found in primary tumors and related metastases with the their paired lymphatic and hepatic metastases may result in consideration that the evaluation of metastatic rather than different responses to anticancer therapies.
    [Show full text]