THE INTEGRAL on QUANTUM SUPERGROUPS of TYPE ^S* Introduction. a Quantum Supergroup of Type .4R|S Is a Hopf Superalgebra, Which
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1812.11658V1 [Hep-Th] 31 Dec 2018 Genitors of Black Holes And, Via the Brane-World, As Entire Universes in Their Own Right
IMPERIAL-TP-2018-MJD-03 Thirty years of Erice on the brane1 M. J. Duff Institute for Quantum Science and Engineering and Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, 77840, USA & Theoretical Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom & Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, United Kingdom Abstract After initially meeting with fierce resistance, branes, p-dimensional extended objects which go beyond particles (p=0) and strings (p=1), now occupy centre stage in theo- retical physics as microscopic components of M-theory, as the seeds of the AdS/CFT correspondence, as a branch of particle phenomenology, as the higher-dimensional pro- arXiv:1812.11658v1 [hep-th] 31 Dec 2018 genitors of black holes and, via the brane-world, as entire universes in their own right. Notwithstanding this early opposition, Nino Zichichi invited me to to talk about su- permembranes and eleven dimensions at the 1987 School on Subnuclear Physics and has continued to keep Erice on the brane ever since. Here I provide a distillation of my Erice brane lectures and some personal recollections. 1Based on lectures at the International Schools of Subnuclear Physics 1987-2017 and the International Symposium 60 Years of Subnuclear Physics at Bologna, University of Bologna, November 2018. Contents 1 Introduction 5 1.1 Geneva and Erice: a tale of two cities . 5 1.2 Co-authors . 9 1.3 Nomenclature . 9 2 1987 Not the Standard Superstring Review 10 2.1 Vacuum degeneracy and the multiverse . 10 2.2 Supermembranes . -
Arxiv:Hep-Th/9905112V1 17 May 1999 C E a -Al [email protected]
SU-ITP-99/22 KUL-TF-99/16 PSU-TH-208 hep-th/9905112 May 17, 1999 Supertwistors as Quarks of SU(2, 2|4) Piet Claus†a, Murat Gunaydin∗b, Renata Kallosh∗∗c, J. Rahmfeld∗∗d and Yonatan Zunger∗∗e † Instituut voor theoretische fysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium ∗ Physics Department, Penn State University, University Park, PA, 1682, USA ∗∗ Physics Department, Stanford University, Stanford, CA 94305-4060, USA Abstract 5 The GS superstring on AdS5 × S has a nonlinearly realized, spontaneously arXiv:hep-th/9905112v1 17 May 1999 broken SU(2, 2|4) symmetry. Here we introduce a two-dimensional model in which the unbroken SU(2, 2|4) symmetry is linearly realized. The basic vari- ables are supertwistors, which transform in the fundamental representation of this supergroup. The quantization of this supertwistor model leads to the complete oscillator construction of the unitary irreducible representations of the centrally extended SU(2, 2|4). They include the states of d = 4 SYM theory, massless and KK states of AdS5 supergravity, and the descendants on AdS5 of the standard mas- sive string states, which form intermediate and long massive supermultiplets. We present examples of long massive supermultiplets and discuss possible states of solitonic and (p,q) strings. a e-mail: [email protected]. b e-mail: [email protected]. c e-mail: [email protected]. d e-mail: [email protected]. e e-mail: [email protected]. 1 Introduction Supertwistors have not yet been fully incorporated into the study of the AdS/CFT correspondence [1]. -
On Supermatrix Operator Semigroups 1. Introduction
Quasigroups and Related Systems 7 (2000), 71 − 88 On supermatrix operator semigroups Steven Duplij Abstract One-parameter semigroups of antitriangle idempotent su- permatrices and corresponding superoperator semigroups are introduced and investigated. It is shown that t-linear idempo- tent superoperators and exponential superoperators are mutu- ally dual in some sense, and the rst give additional to expo- nential dierent solution to the initial Cauchy problem. The corresponding functional equation and analog of resolvent are found for them. Dierential and functional equations for idem- potent (super)operators are derived for their general t power- type dependence. 1. Introduction Operator semigroups [1] play an important role in mathematical physics [2, 3, 4] viewed as a general theory of evolution systems [5, 6, 7]. Its development covers many new elds [8, 9, 10, 11], but one of vital for modern theoretical physics directions supersymmetry and related mathematical structures was not considered before in application to operator semigroup theory. The main dierence between previous considerations is the fact that among building blocks (e.g. elements of corresponding matrices) there exist noninvertible objects (divisors 2000 Mathematics Subject Classication: 25A50, 81Q60, 81T60 Keywords: Cauchy problem, idempotence, semigroup, supermatrix, superspace 72 S. Duplij of zero and nilpotents) which by themselves can form another semi- group. Therefore, we have to take that into account and investigate it properly, which can be called a semigroup × semigroup method. Here we study continuous supermatrix representations of idempo- tent operator semigroups rstly introduced in [12, 13] for bands. Usu- ally matrix semigroups are dened over a eld K [14] (on some non- supersymmetric generalizations of K-representations see [15, 16]). -
Arxiv:2105.02776V2 [Hep-Th] 19 May 2021
DESY 21-060 Intersecting Defects and Supergroup Gauge Theory Taro Kimuraa and Fabrizio Nierib aInstitut de Math´ematiquesde Bourgogne Universit´eBourgogne Franche-Comt´e,21078 Dijon, France. bDESY Theory Group Notkestraße 85, 22607 Hamburg, Germany. E-mail: [email protected], [email protected] Abstract: We consider 5d supersymmetric gauge theories with unitary groups in the Ω- background and study codim-2/4 BPS defects supported on orthogonal planes intersecting at the origin along a circle. The intersecting defects arise upon implementing the most generic Higgsing (geometric transition) to the parent higher dimensional theory, and they are described by pairs of 3d supersymmetric gauge theories with unitary groups interacting through 1d matter at the intersection. We explore the relations between instanton and gen- eralized vortex calculus, pointing out a duality between intersecting defects subject to the Ω-background and a deformation of supergroup gauge theories, the exact supergroup point being achieved in the self-dual or unrefined limit. Embedding our setup into refined topo- logical strings and in the simplest case when the parent 5d theory is Abelian, we are able to identify the supergroup theory dual to the intersecting defects as the supergroup version of refined Chern-Simons theory via open/closed duality. We also discuss the BPS/CFT side of the correspondence, finding an interesting large rank duality with super-instanton counting. arXiv:2105.02776v3 [hep-th] 21 Sep 2021 Keywords: Supersymmetric gauge theory, defects, -
Jhep03(2009)040
Published by IOP Publishing for SISSA Received: January 20, 2009 Accepted: February 10, 2009 Published: March 5, 2009 Non-perturbative effects on a fractional D3-brane JHEP03(2009)040 Gabriele Ferrettia and Christoffer Peterssona,b aDepartment of Fundamental Physics, Chalmers University of Technology, 412 96 G¨oteborg, Sweden bPH-TH Division, CERN, CH-1211 Geneva, Switzerland E-mail: [email protected], [email protected] Abstract: In this note we study the = 1 abelian gauge theory on the world volume of a N single fractional D3-brane. In the limit where gravitational interactions are not completely decoupled we find that a superpotential and a fermionic bilinear condensate are generated by a D-brane instanton effect. A related situation arises for an isolated cycle invariant under an orientifold projection, even in the absence of any gauge theory brane. Moreover, in presence of supersymmetry breaking background fluxes, such instanton configurations induce new couplings in the 4-dimensional effective action, including non-perturbative con- tributions to the cosmological constant and non-supersymmetric mass terms. Keywords: D-branes, Nonperturbative Effects ArXiv ePrint: 0901.1182 c SISSA 2009 doi:10.1088/1126-6708/2009/03/040 Contents 1 Introduction 1 2 D-instanton effects in N = 1 world volume theories 2 2.1 Fractional D3-branes at an orbifold singularity 3 2.2 Non-perturbative effects in pure U(1) gauge theory 7 2.3 Computation of the superpotential and the condensates 9 JHEP03(2009)040 2.4 The pure Sp(0) case 11 3 Instanton effects in flux backgrounds 12 1 Introduction The construction of the instanton action by means of string theory [1–6] has helped elu- cidating the physical meaning of the ADHM construction [7] and allowed for an explicit treatment of a large class of non-perturbative phenomena in supersymmetric theories. -
Howe Pairs, Supersymmetry, and Ratios of Random Characteristic
HOWE PAIRS, SUPERSYMMETRY, AND RATIOS OF RANDOM CHARACTERISTIC POLYNOMIALS FOR THE UNITARY GROUPS UN by J.B. Conrey, D.W. Farmer & M.R. Zirnbauer Abstract. — For the classical compact Lie groups K UN the autocorrelation functions of ratios of characteristic polynomials (z,w) Det(z≡ k)/Det(w k) are studied with k K as random variable. Basic to our treatment7→ is a property− shared− by the spinor repre- sentation∈ of the spin group with the Shale-Weil representation of the metaplectic group: in both cases the character is the analytic square root of a determinant or the reciprocal thereof. By combining this fact with Howe’s theory of supersymmetric dual pairs (g,K), we express the K-Haar average product of p ratios of characteristic polynomials and q conjugate ratios as a character χ which is associated with an irreducible representation of χ the Lie superalgebra g = gln n for n = p+q. The primitive character is shown to extend | to an analytic radial section of a real supermanifold related to gln n , and is computed by | invoking Berezin’s description of the radial parts of Laplace-Casimir operators for gln n . The final result for χ looks like a natural transcription of the Weyl character formula| to the context of highest-weight representations of Lie supergroups. While several other works have recently reproduced our results in the stable range N max(p,q), the present approach covers the full range of matrix dimensions N N. ≥To make this paper accessible to the non-expert reader, we have included a chapter∈ containing the required background material from superanalysis. -
World-Sheet Supersymmetry and Supertargets
Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook World-sheet supersymmetry and supertargets Peter Browne Rønne University of the Witwatersrand, Johannesburg Chapel Hill, August 19, 2010 arXiv:1006.5874 Thomas Creutzig, PR Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Sigma-models on supergroups/cosets The Wess-Zumino-Novikov-Witten (WZNW) model of a Lie supergroup is a CFT with additional affine Lie superalgebra symmetry. Important role in physics • Statistical systems • String theory, AdS/CFT Notoriously hard: Deformations away from WZNW-point Use and explore the rich structure of dualities and correspondences in 2d field theories Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Sigma models on supergroups: AdS/CFT The group of global symmetries of the gauge theory and also of the dual string theory is a Lie supergroup G. The dual string theory is described by a two-dimensional sigma model on a superspace. PSU(2; 2j4) AdS × S5 supercoset 5 SO(4; 1) × SO(5) PSU(1; 1j2) AdS × S2 supercoset 2 U(1) × U(1) 3 AdS3 × S PSU(1; 1j2) supergroup 3 3 AdS3 × S × S D(2; 1; α) supergroup Obtained using GS or hybrid formalism. What about RNS formalism? And what are the precise relations? Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook 3 4 AdS3 × S × T D1-D5 brane system on T 4 with near-horizon limit 3 4 AdS3 × S × T . After S-duality we have N = (1; 1) WS SUSY WZNW model on SL(2) × SU(2) × U4. -
Singlet Glueballs in Klebanov-Strassler Theory
Singlet Glueballs In Klebanov-Strassler Theory A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY IVAN GORDELI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy ARKADY VAINSHTEIN April, 2016 c IVAN GORDELI 2016 ALL RIGHTS RESERVED Acknowledgements First of all I would like to thank my scientific adviser - Arkady Vainshtein for his incredible patience and support throughout the course of my Ph.D. program. I would also like to thank my committee members for taking time to read and review my thesis, namely Ronald Poling, Mikhail Shifman and Alexander Voronov. I am deeply grateful to Vasily Pestun for his support and motivation. Same applies to my collaborators Dmitry Melnikov and Anatoly Dymarsky who have suggested this research topic to me. I am thankful to my other collaborator - Peter Koroteev. I would like to thank Emil Akhmedov, A.Yu. Morozov, Andrey Mironov, M.A. Olshanetsky, Antti Niemi, K.A. Ter-Martirosyan, M.B. Voloshin, Andrey Levin, Andrei Losev, Alexander Gorsky, S.M. Kozel, S.S. Gershtein, M. Vysotsky, Alexander Grosberg, Tony Gherghetta, R.B. Nevzorov, D.I. Kazakov, M.V. Danilov, A. Chervov and all other great teachers who have shaped everything I know about Theoretical Physics. I am deeply grateful to all my friends and colleagues who have contributed to discus- sions and supported me throughout those years including A. Arbuzov, L. Kushnir, K. Kozlova, A. Shestov, V. Averina, A. Talkachova, A. Talkachou, A. Abyzov, V. Poberezh- niy, A. Alexandrov, G. Nozadze, S. Solovyov, A. Zotov, Y. Chernyakov, N. -
Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists
SUPER FUZZY MATRICES AND SUPER FUZZY MODELS FOR SOCIAL SCIENTISTS W. B. Vasantha Kandasamy e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv www.vasantha.net Florentin Smarandache e-mail: [email protected] K. Amal e-mail: [email protected] INFOLEARNQUEST Ann Arbor 2008 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/ Peer reviewers: Dr. S. Osman, Menofia University, Shebin Elkom, Egypt Prof. Valentin Boju, Ph.D., Officer of the Order “Cultural Merit” Category — “Scientific Research” MontrealTech — Institut de Techologie de Montreal Director, MontrealTech Press, P.O. Box 78574 Station Wilderton, Montreal, Quebec, H3S2W9, Canada Prof. Mircea Eugen Selariu, Polytech University of Timisoara, Romania. Copyright 2008 by InfoLearnQuest and authors Cover Design and Layout by Kama Kandasamy Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN-10: 1-59973-027-8 ISBN-13: 978-1-59973-027-1 EAN: 9781599730271 Standard Address Number: 297-5092 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One BASIC CONCEPTS 7 1.1 Supermatrices 7 1.2 Introduction of Fuzzy Matrices 65 Chapter Two FUZZY SUPERMATRICES AND THEIR PROPERTIES 75 2.1 Fuzzy Supermatrices and their Properties 75 2.2 Pseudo Symmetric Supermatrices 117 2.3 Special Operations on Fuzzy Super Special Row and Column Matrix 140 Chapter Three INTRODUCTION TO NEW FUZZY SUPER MODELS 167 3.1 New Super Fuzzy Relational Maps (SFRM) Model 167 3.2 New Fuzzy Super Bidirectional Associative Memories (BAM) model 176 3.3 Description of Super Fuzzy Associative Memories 188 3 3.4 Illustration of Super Fuzzy Models 199 3.5 Super FCM Models 236 FURTHER READING 247 INDEX 275 ABOUT THE AUTHORS 279 4 PREFACE The concept of supermatrix for social scientists was first introduced by Paul Horst. -
Arxiv:2009.00393V2 [Hep-Th] 26 Jan 2021 Supersymmetric Localisation and the Conformal Bootstrap
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 17 (2021), 007, 38 pages Harmonic Analysis in d-Dimensional Superconformal Field Theory Ilija BURIC´ DESY, Notkestraße 85, D-22607 Hamburg, Germany E-mail: [email protected] Received September 02, 2020, in final form January 15, 2021; Published online January 25, 2021 https://doi.org/10.3842/SIGMA.2021.007 Abstract. Superconformal blocks and crossing symmetry equations are among central in- gredients in any superconformal field theory. We review the approach to these objects rooted in harmonic analysis on the superconformal group that was put forward in [J. High Energy Phys. 2020 (2020), no. 1, 159, 40 pages, arXiv:1904.04852] and [J. High Energy Phys. 2020 (2020), no. 10, 147, 44 pages, arXiv:2005.13547]. After lifting conformal four-point functions to functions on the superconformal group, we explain how to obtain compact expressions for crossing constraints and Casimir equations. The later allow to write superconformal blocks as finite sums of spinning bosonic blocks. Key words: conformal blocks; crossing equations; Calogero{Sutherland models 2020 Mathematics Subject Classification: 81R05; 81R12 1 Introduction Conformal field theories (CFTs) are a class of quantum field theories that are interesting for several reasons. On the one hand, they describe the critical behaviour of statistical mechanics systems such as the Ising model. Indeed, the identification of two-dimensional statistical systems with CFT minimal models, first suggested in [2], was a celebrated early achievement in the field. For similar reasons, conformal theories classify universality classes of quantum field theories in the Wilsonian renormalisation group paradigm. On the other hand, CFTs also play a role in the description of physical systems that do not posses scale invariance, through certain \dualities". -
The Domain-Wall/QFT Correspondence
KUL-TF-98/30 hep-th/9807137 Revised, Nov. 98. The domain-wall/QFT correspondence 1 1 2 H.J. Boonstra ∗ , K. Skenderis † and P.K. Townsend ‡ 1Instituut voor Theoretische Fysica KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium 2Institute for Theoretical Physics, University of California at Santa Barbara, CA 93106, USA. Abstract We extend the correspondence between adS-supergravities and superconformal field theories on the adS boundary to a correspondence between gauged supergravities (typi- arXiv:hep-th/9807137v2 22 Nov 1998 cally with non-compact gauge groups) and quantum field theories on domain walls. ∗[email protected] †[email protected] ‡ [email protected], on leave from DAMTP, University of Cambridge, U.K. 1 Introduction Evidence is currently accumulating for a conjectured equivalence between M-theory or IIB superstring theory in an anti-de Sitter (adS) background and a superconformal field theory (SCFT) at the adS boundary [1] (for related earlier work see [2], [3]). The isom- etry group of the KK vacuum acts as the superconformal group on the SCFT at the adS boundary in the manner envisaged in earlier studies of singleton field theories [4] and branes ‘at the end of the universe’ [5]. In the new approach the SCFT describes the dynamics of N near-coincident branes in the low-energy limit (or equivalently in the limit of decoupling gravity). This limit corresponds to the near-horizon limit of the corresponding brane solution of D=11 or IIB supergravity, which turns out to be one of the well-known Kaluza-Klein (KK) compactifications to an adS spacetime [6]. -
String Theory on Ads3 and the Symmetric Orbifold of Liouville Theory
Prepared for submission to JHEP String theory on AdS3 and the symmetric orbifold of Liouville theory Lorenz Eberhardt and Matthias R. Gaberdiel Institut f¨urTheoretische Physik, ETH Zurich, CH-8093 Z¨urich,Switzerland E-mail: [email protected], [email protected] Abstract: For string theory on AdS3 with pure NS-NS flux a complete set of DDF operators is constructed, from which one can read off the symmetry algebra of the spacetime CFT. Together with an analysis of the spacetime spectrum, this allows 3 4 us to show that the CFT dual of superstring theory on AdS3 × S × T for generic NS-NS flux is the symmetric orbifold of (N = 4 Liouville theory) × T4. For the case of minimal flux (k = 1), the Liouville factor disappears, and we just obtain the symmetric orbifold of T4, thereby giving further support to a previous claim. We also show that a similar analysis can be done for bosonic string theory on AdS3 × X. arXiv:1903.00421v1 [hep-th] 1 Mar 2019 Contents 1 Introduction1 2 Bosonic strings on AdS3 3 2.1 The sl(2; R)k WZW model and its free field realisation3 2.2 Vertex operators4 2.3 The DDF operators5 2.4 The identity operator8 2.5 The moding of the spacetime algebra8 2.6 Identifying Liouville theory on the world-sheet 11 2.7 Discrete representations 13 3 4 3 A review of superstrings on AdS3 × S × T 15 3.1 The RNS formalism 15 3.2 The hybrid formalism 17 3.3 Supergroup generators 18 4 The psu(1; 1j2)k WZW model 19 4.1 Wakimoto representation of sl(2; R)k+2 and vertex operators 19 4.2 The short representation 20 4.3 Spectral