Camouflage and Color • Study Guide

Total Page:16

File Type:pdf, Size:1020Kb

Camouflage and Color • Study Guide Camouflage and Color • Study Guide This webisode was developed specifically for use in education to help teach curriculum-based ocean concepts. In this webisode, Jonathan explores marine animals’ use of color to survive, including not just camouflage techniques, but aposematic coloration and ways that animals use color to attract a mate or stand out. Objectives Discussion for after watching the program 1. Introduces viewers to various ways color can be used for survival in the marine 1. The frogfish is an ambush predator. What environment. is an ambush predator? What other ways might animals get their prey? 2. Shows examples of the different kinds of animals using camouflage, aposematic 2. Why do you think some animals in the coloration and other forms of color and ocean want to blend in, but others want to camouflage. stand out? 3. What is mimicry? Other than the examples Questions for before watching the given in the film, can you think of other program examples of mimicry? 1. What is camouflage? How is it often used by 4. What are the two main reasons animals use animals? Give some examples of animals camouflage?(Hint: has to do with being a that are camouflaged. predator or prey). 2. What other ways might animals use color to 5. A nudibranch has aposematic camouflage. survive, other than camouflage?(Hint, think What does that mean? of a peacock). 6. Internet research: How does an octopus 3. Can fish have camouflage? What about accomplish changing the color of its skin? sharks? Join Jonathan Bird on his underwater adventures at www.blueworldTV.com!.
Recommended publications
  • On Visual Art and Camouflage
    University of Northern Iowa UNI ScholarWorks Faculty Publications Faculty Work 1978 On Visual Art and Camouflage Roy R. Behrens University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©1978 The MIT Press Follow this and additional works at: https://scholarworks.uni.edu/art_facpub Part of the Art and Design Commons Recommended Citation Behrens, Roy R., "On Visual Art and Camouflage" (1978). Faculty Publications. 7. https://scholarworks.uni.edu/art_facpub/7 This Article is brought to you for free and open access by the Faculty Work at UNI ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Leonardo. Vol. 11, pp. 203-204. 0024--094X/78/070 I -0203S02.00/0 6 Pergamon Press Ltd. 1978. Printed in Great Britain. ON VISUAL ART AND CAMOUFLAGE Roy R. Behrens* In a number of books on visual fine art and design [ 1, 21, countershading makes a 3-dimensional object seem flat, there is mention of the kinship between camouflage and while normal shading in flat paintings can make a painting, but no one has, to my knowledge, pursued it. I depicted object appear to be 3-dimensional. He also have intermittently researched this relationship for discussed the function of disruptive patterning, in which several years, and my initial observations have recently even the most brilliant colors may contribute to the been published [3]. Now I have been awarded a faculty destruction of an animal’s outline. While Thayer’s research grant from the Graduate School of the description of countershading is still respected, his book is University of Wisconsin-Milwaukee to pursue this considered somewhat fanciful because of exaggerated subject in depth.
    [Show full text]
  • LS28 Camouflage and Mimicry Follow up Student #2
    Follow-up Activity: For Students Life Science 28: Camouflage and Mimicry Introduction: In this lesson, camouflage & mimicry were explored as examples of adaptations adopted by animals to increase their chances of survival. What can an animal do to keep from being a predator's dinner? To survive, some animals use camouflage so they can better blend in with their surroundings. Camouflage is a set of colorings or markings on an animal that help it to blend in with its surroundings, or habitat, and prevent it from being recognized as potential prey. Activity: Candy Camouflage In this science activity, you and your friends will become the hungry predators and you'll hunt for different colored candies. But it may not be as easy as it sounds—some of your prey will be camouflaged by their habitats. Are you ready for the challenge? Materials: • Six plastic bags (one bag for M&Ms; 5 bags for Skittles, separated by color) • Plain M&Ms; at least 10 of each color (at least two 1.69-ounce packages may be needed) • Skittles; at least 60 of each color (one 16-oz package) • Metal pie tin or other deep plate • Cups for collecting candies during the hunt; one cup per predator • Timer • Data charts (attached) • 2-4 Volunteer predators to be hungry M&Ms-feasting birds Preparation: 1. Place 10 M&Ms of each color (yellow, blue, green, brown, red, orange) into one plastic bag 2. Place 60 Skittles of each color (orange, green, red, yellow, purple) into separate plastic bags. This means you will have 5 separate bags of Skittles: one bag containing only red, one bag containing only orange, one bag containing green, one bag of purple and one bag of yellow) 3.
    [Show full text]
  • Predation by the Spider Tidarren Sisyphoides (Walckenaer, 1841) on the Ringneck Coffee Snake Ninia Diademata Baird & Girard, 1853 in Veracruz, Mexico
    Herpetology Notes, volume 14: 301-302 (2021) (published online on 09 February 2021) Predation by the spider Tidarren sisyphoides (Walckenaer, 1841) on the Ringneck Coffee Snake Ninia diademata Baird & Girard, 1853 in Veracruz, Mexico Angel Ivan Contreras Calvario1, Manuel de Luna2,*, Abigail Mora Reyes1, and Xavier Contreras Calvario3 The Ringneck Coffee Snake Ninia diademata Baird & from the spider’s web, the snake spasmed and appeared Girard, 1853 is a very small, fossorial dipsadid (up to somewhat rigid. It was collected while still alive but 42 cm in total length). It has a solid black dorsum with died overnight. Both snake and spider were deposited a pale dorsal collar in the neck area and 83–106 and 73– in the herpetological and arachnological collections, 98 subcaudal scales in males and females, respectively. respectively, of the Universidad Autónoma de Nuevo These characteristics differentiate it from its only other León (voucher numbers UANL 8449 for the snake and Mexican congener, the Redback Coffee Snake N. sebae FCB-ATHER 144 for the spider). (Duméril et al., 1854), which has a red dorsum with a The spider was later identified as a female Tidarren black collar in the neck area, often possesses incomplete sisyphoides (Walckenaer, 1841) (Araneae: Theridiidae) black bands on its dorsum, and has fewer subcaudal (Fig. 1B, C) using Levi’s (1970) keys. There are various scales (41–71 in males, 37–60 in females; Heimes, 2016). recorded instances where theridiid spiders have taken Ninia diademata occurs in eastern as well as southern vertebrate prey many times larger than themselves, Mexico, excluding the Yucatán Peninsula, as well as the including snakes (Beaman and Tucker, 2014; Davis et Central American countries of Belize, Guatemala, and al., 2017; Rocha et al., 2017; Nyffeler and Vetter, 2018) Honduras.
    [Show full text]
  • Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
    Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators.
    [Show full text]
  • Adaptations for Survival: Symbioses, Camouflage & Mimicry
    Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasitism Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Commensalism or Mutualism? Anemone shrimp http://magma.nationalgeographic.com/ Anemone fish http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp and Eel http://magma.nationalgeographic.com/ Whale Barnacles & Lice What kinds of symbioses are these? Commensal Parasite Camouflage • Often important for predators and prey to avoid being seen • Predators to catch their prey and prey to hide from their predators • Camouflage: Passive or adaptive Passive Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Passive Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Adaptive Camouflage Camouflage by Accessorizing Decorator crab Friday Harbor Marine Health Observatory http://www.projectnoah.org/ Camouflage by Mimicry http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Mimicry • Animals can gain protection (or even access to prey) by looking
    [Show full text]
  • Adaptations for Survival: Symbioses, Camouflage
    Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.oceanfootage.com/stockfootage/Cleaning_Station_Fish/ http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasites Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Whale Barnacles & Lice Commensalism or Parasitism? Commensalism or Mutualism? http://magma.nationalgeographic.com/ http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp http://magma.nationalgeographic.com/ Anemone Hermit Crab http://www.scuba-equipment-usa.com/marine/APR04/ Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Adaptive Camouflage Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Camouflage by Mimicry Mimicry • Batesian: an edible species evolves to look similar to an inedible species to avoid predation • Mullerian: two or more inedible species all evolve to look similar maximizing efficiency with which predators learn to avoid them Batesian Mimicry An edible species evolves to resemble an inedible species to avoid predators Pufferfish (poisonous) Filefish (non-poisonous)
    [Show full text]
  • OBITUARIES Sir Edward Poulton, F.R.S
    No. 3870, jANUARY 1, 1944 NATURE 15 the University of Edinburgh, previously held by a tragic death, and his successor, F. Hasenohrl, was Black. To him we owe the discovery of the maximum killed in action on the Italian front in 1915. The density of water. The centenary of John Dalton falls chemists born in 1844 include Prof. J. Emerson on July 27 of this year, but any commemoration Reynolds (died 1920), who occupied for twenty-eight must inevitably be clouded over by the results of years the chair of chemistry in the University of the air raid of December 24, 1940, when the premises Dublin, and Ferdinand Hurter (died 1898), a native of the Manchester Literary and Philosophical Society of Schaffhausen, Switzerland, who came to England were completely destroyed. From 1817 until 1844 in 1867 and became principal chemist to the United DaJton was president of the Society, and within its Alkali Company. Among astronomers, Prof. W. R. walls he taught, lectured and experimented. The Brooks (died 1921) of the United States was famous Society had an unequalled collection of his apparatus, as a 'comet hunter'. Charles Trepied (died 1907) was but after digging among the ruins the only things for many years director of the Observatory at found were his gold watch, a spark eudiometer and Bouzariah, eleven kilometres from Algiers, while some charred remains of letters and note-books. A Annibale Ricco (died 1919), though he began life as month after Dalton passed away in Manchester, an engineer, for nineteen years directed the observa­ Francis Baily died in London, after a life devoted to tory of Catania and Etna, his special subject being astronomy and kindred subjects.
    [Show full text]
  • How Discoveries in Papilio Butterflies Led to a New Species Concept 100
    Systematics and Biodiversity 1 (4): 441–452 Issued 9 June 2004 DOI: 10.1017/S1477200003001300 Printed in the United Kingdom C The Natural History Museum James Mallet* Department of Biology, Perspectives University College London, 4 Stephenson Way, Poulton, Wallace and Jordan: how London NW1 2HE, UK and discoveries in Papilio butterflies led to Department of Entomology, The Natural History Museum, Cromwell Road, a new species concept 100 years ago London SW7 5BD, UK submitted September 2003 accepted December 2003 Abstract A hundred years ago, in January 1904, E.B. Poulton gave an address en- titled ‘What is a species?’ The resulting article, published in the Proceedings of the Entomological Society of London, is perhaps the first paper ever devoted entirely to a discussion of species concepts, and the first to elaborate what became known as the ‘biological species concept’. Poulton argued that species were syngamic (i.e. formed reproductive communities), the individual members of which were united by synepi- gony (common descent). Poulton’s species concept was informed by his knowledge of polymorphic mimicry in Papilio butterflies: male and female forms were members of the same species, in spite of being quite distinct morphologically, because they belonged to syngamic communities. It is almost certainly not a coincidence that Al- fred Russel Wallace had just given Poulton a book on mimicry in December 1903. This volume contained key reprints from the 1860s including the first mimicry papers, by Henry Walter Bates, Wallace himself and Roland Trimen. All these papers deal with species concepts and speciation as well as mimicry, and the last two contain the initial discoveries about mimetic polymorphism in Papilio: strongly divergent female morphs must belong to the same species as non-mimetic males, because they can be observed in copula in nature.
    [Show full text]
  • Mimicry and Camouflage – Wasps to Tree Bark
    Mimicry and Camouflage – Wasps to Tree bark: Mimicry in dragonflies, like migration, is little understood. It does appear that the Eastern Amberwing uses both color and behavior to mimic wasps. Their body coloring resembles that of a paper wasp or yellow-jacket, and when threatened, a perched amberwing will often move their wings and abdomens in a very undragonfly-like manner. It’s believed that this behavior is meant to resemble a wasp, therefor scaring off potential predators like birds, frogs or even dragonfly geeks. I’ve seen this behavior several times, usually when amberwings are perched on wildflowers like goldenrod or eupatorium, and I suppose it does make them look a bit like a small wasp. Ambwerwings spend more time on meadow wildflowers than any other dragonfly – perhaps that’s how they evolved to mimic the behavior of flower-visiting wasps. This female Eastern Amberwing possesses a combo of markings and behavior that resemble a hornet or paper wasp – is it mimicry to scare off would be predators? Perhaps. Many dragonflies will poke you with their abdomen tips if you catch and hold them. It’s all bluff, they of course cannot sting, but perhaps it’s enough to scare off birds, lizards, raccoons and other potential predators that think they’re about to be stung by their dinner. Or they may simply hope that the ovipositors, cerci and epiprocts on their abdomen tips, harmless as they are, are pointed enough to bother the mouths, eyes or toes of their captures. Some dragonflies also have widened “clubs” towards the tip of their abdomen – it’s thought by some that this may be an attempt to mimic scorpions, or even the heads of small tree snakes.
    [Show full text]
  • The Onset and Ontogeny of an Integrated Antipredator
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE www.nature.com/scientificreportsprovided by ResearchOnline at James Cook University OPEN Living in a risky world: the onset and ontogeny of an integrated antipredator phenotype in a coral Received: 30 May 2015 Accepted: 28 September 2015 reef fish Published: 30 October 2015 Maud C.O. Ferrari1, Mark I. McCormick2, Bridie J. M. Allan2, Rebecca Choi3, Ryan A. Ramasamy2, Jacob L. Johansen4, Matthew D. Mitchell1 & Douglas P. Chivers5 Prey individuals with complex life-histories often cannot predict the type of risk environment to which they will be exposed at each of their life stages. Because the level of investment in defences should match local risk conditions, we predict that these individuals should have the ability to modulate the expression of an integrated defensive phenotype, but this switch in expression should occur at key life-history transitions. We manipulated background level of risk in juvenile damselfish for four days following settlement (a key life-history transition) or 10 days post-settlement, and measured a suite of physiological and behavioural variables over 2 weeks. We found that settlement-stage fish exposed to high-risk conditions displayed behavioural and physiological alterations consistent with high-risk phenotypes, which gave them a survival advantage when exposed to predators. These changes were maintained for at least 2 weeks. The same exposure in post-settlement fish failed to elicit a change in some traits, while the expression of other traits disappeared within a week. Our results are consistent with those expected from phenotypic resonance.
    [Show full text]
  • Liolaemus Multimaculatus
    VOLUME 14, NUMBER 2 JUNE 2007 ONSERVATION AUANATURAL ISTORY AND USBANDRY OF EPTILES IC G, N H , H R International Reptile Conservation Foundation www.IRCF.org ROBERT POWELL ROBERT St. Vincent Dwarf Gecko (Sphaerodactylus vincenti) FEDERICO KACOLIRIS ARI R. FLAGLE The survival of Sand Dune Lizards (Liolaemus multimaculatus) in Boelen’s Python (Morelia boeleni) was described only 50 years ago, tes- Argentina is threatened by alterations to the habitats for which they tament to its remote distribution nestled deep in the mountains of are uniquely adapted (see article on p. 66). Papua Indonesia (see article on p. 86). LUTZ DIRKSEN ALI REZA Dark Leaf Litter Frogs (Leptobrachium smithii) from Bangladesh have Although any use of Green Anacondas (Eunectes murinus) is prohibited very distinctive red eyes (see travelogue on p. 108). by Venezuelan law, illegal harvests are common (see article on p. 74). CHARLES H. SMITH, U.S. FISH & WILDLIFE SERVICE GARY S. CASPER Butler’s Garter Snake (Thamnophis butleri) was listed as a Threatened The Golden Toad (Bufo periglenes) of Central America was discovered Species in Wisconsin in 1997. An effort to remove these snakes from in 1966. From April to July 1987, over 1,500 adult toads were seen. the Wisconsin list of threatened wildlife has been thwarted for the Only ten or eleven toads were seen in 1988, and none have been seen moment (see article on p. 94). since 15 May 1989 (see Commentary on p. 122). About the Cover Diminutive geckos (< 1 g) in the genus Sphaerodactylus are widely distributed and represented by over 80 species in the West Indies.
    [Show full text]
  • Camouflage and Surrealism
    Ann Elias Camouflage and Surrealism amouflage in the Twenty-first century is a subject and practice of military science, biological science, culture and society. All are contexts in which concealment and deception—the conceptual underpinnings of Ccamouflage—find physical, visual and psychological expression. Camouflage’s ever-increasing associations today with war, nature, and everyday life are apparent in the global escalation of national military patterns, in intensifying interest in the chemistry and physics of animal behaviours and colours, in expanding cooption of military aesthetics for street fashion, and in the growing popularity of camouflage as a conceptual tool for cultural analysis.1 The word itself gradually spread from French into all languages after the First World War (WWI) when France, the first nation in military history, established a formalsection de camouflage.2 By 1925, ‘camouflage’ was increasingly used to identify animal concealment and deception, science’s terminology having become enmeshed with military lingo. Before the war, however, common biological terms were ‘mimicry’ and ‘concealing coloration’, indeed the very terms and natural phenomena that were brought to military attention by naturalists and scientists, including Abbott H. Thayer, for the development of camouflage in WWI.3 This essay is about intersections of nature, art and war but with an emphasis on how post-war European art was impacted by what Paul Fussell called ‘the new stylish foreign word camouflage’ and also by camouflage aesthetics.4 Roy R. Behrens has written extensively on this subject, but Behrens aside there is surprisingly little investigation of camouflage in relation to the European avantgarde of the 1920s and 1930s.
    [Show full text]