Multiple Photosynthetic Transitions, Polyploidy, and Lateral Gene Transfer in the Grass Subtribe Neurachninae

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Photosynthetic Transitions, Polyploidy, and Lateral Gene Transfer in the Grass Subtribe Neurachninae Journal of Experimental Botany , Vol. 63, 63, No. No. 17, 2, pp. pp. 695–709, 6297–6308, 2012 2012 doi:10.1093/jxb/err313doi:10.1093/jxb/ers282 Advance Access publication 4 November, 2011 This paper is available online free of of all all access access charges charges (see (see http://jxb.oxfordjournals.org/open_access.html http://jxb.oxfordjournals.org/open_access.html for for further further details) details) RESEARCHRESEARCH PAPERPAPER InMultiplePosidonia photosynthetic oceanica cadmium transitions, induces polyploidy, changes and in lateral DNA methylationgene transfer and in the chromatin grass subtribe patterning Neurachninae MariaPascal-Antoine Christin Greco, Adriana Chiappetta,1, Mark J. Wallace Leonardo2,3, BrunoHarmony Clayton and Maria Beatrice4, Erika J. Edwards Bitonti* 1, Robert T. Furbank5, Paul 4 6 7 4, DepartmentW. Hattersley of Ecology,, Rowan University F. Sage of Calabria,, Terry D. Macfarlane Laboratory of Plant and Cyto-physiology, Martha Ludwig Ponte* Pietro Bucci, I-87036 Arcavacata di Rende, Cosenza,1 Department Italy of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02912, USA *2 ToSchool whom of correspondencePlant Biology, University should beof Western addressed. Australia, E-mail: Crawley, [email protected] WA 6009, Australia 3 Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA 6005, Australia 4 School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia Received 29 May 2011; Revised 8 July 2011; Accepted 18 August 2011 Downloaded from 5 CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia 6 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2, Canada Abstract7 Western Australian Herbarium, Science Division, Department of Environment & Conservation, Locked Bag 2, Manjimup, WA 6258, Australia In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent epigenetic* To whom correspondence mechanism. Here,should the be addressed. effects of E-mail: Cd treatment [email protected] on the DNA methylation patten are examined together with http://jxb.oxfordjournals.org/ its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in activelyReceived 6 growing July 2012; organs, Revised under6 September short- 2012; (6 h) Accepted and long- 18 September (2 d or 4 d)2012 term and low (10 mM) and high (50 mM) doses of Cd, through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach, respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase, wasAbstract also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de novoThe Neurachninaemethylation didis the indeed only occur.grass lineage Moreover, known a high to contain dose of C Cd3, C led4, and to C a3–C progressive4 intermediate heterochromatinization species, and as such of at Brown University on January 24, 2013 interphasehas been suggested nuclei and as apoptotic a model figuressystem were for studies also observed of photosynthetic after long-term pathway treatment. evolution The in data the Poaceae; demonstrate however, that Cd a perturbslack of a robust the DNA phylogenetic methylation framework status through has hindered the involvement this possibility. of a specificIn this study, methyltransferase. plastid and nuclear Such markers changes were are linkedused to to reconstruct nuclear chromatin evolutionary reconfiguration relationships likely among to Neurachninae establish a new species. balance In addition, of expressed/repressed photosynthetic types chromatin. were Overall,determined the datawith showcarbon an isotope epigenetic ratios, basis and to genome the mechanism sizes with underlying flow cytometry. Cd toxicity A high in plants. frequency of autopolyploidy was found in the Neurachninae, including in Neurachne munroi F.Muell. and Paraneurachne muelleri S.T.Blake, which Keyindependently words: 5-Methylcytosine-antibody, evolved C4 photosynthesis. cadmium-stress Phylogenetic condition, analyses chromatin also showed reconfiguration, that followingCHROMOMETHYLASE their separate C,4 origins, DNA-methylation,these two taxa exchanged Methylation- aSensitive gene encoding Amplification the C Polymorphism4 form of phospho (MSAP),enolPosidoniapyruvate oceanica carboxylase.(L.) Delile. The C3–C4 intermedi- ate Neurachne minor S.T.Blake is phylogenetically distinct from the two C4 lineages, indicating that intermediacy in this species evolved separately from transitional stages preceding C4 origins. The Neurachninae shows a substantial capacity to evolve new photosynthetic pathways repeatedly. Enablers of these transitions might include anatomical Introductionpre-conditions in the C3 ancestor, and frequent autopolyploidization. Transfer of key C4 genetic elements between independently evolved C4 taxa may have also facilitated a rapid adaptation of photosynthesis in these grasses that Inhad theto survive Mediterranean in the harsh coastal climate ecosystem, appearing the during endemic the late PlioceneAlthough in notAustralia. essential for plant growth, in terrestrial seagrass Posidonia oceanica (L.) Delile plays a relevant role plants, Cd is readily absorbed by roots and translocated into byKeywords: ensuring C primary4 grass evolution, production, C4 photosynthesis, water oxygenation C3–C4 intermediate, and aerial grass organs phylogeny, while, in acquaticlateral gene plants, transfer, it is Neurachne directly taken, up providesParaneurachne niches, polyploidy for some animals, besides counteracting by leaves. In plants, Cd absorption induces complex changes coastal erosion through its widespread meadows (Ott, 1980; at the genetic, biochemical and physiological levels which Piazzi et al., 1999; Alcoverro et al., 2001). There is also ultimately account for its toxicity (Valle and Ulmer, 1972; considerable evidence that P. oceanica plants are able to Sanit di Toppi and Gabrielli, 1999; Benavides et al., 2005; z absorbIntroduction and accumulate metals from sediments (Sanchiz Weber et al., 2006; Liu et al., 2008). The most obvious et al., 1990; Pergent-Martini, 1998; Maserti et al., 2005) thus symptom of Cd toxicity is a reduction in plant growth due to influencingDespite its metalcomplexity, bioavailability the C4 photosynthetic in the marine pathway ecosystem. has anC4 lineages inhibition have of been photosynthesis, postulated in the respiration, PACMAD and clade nitrogen (Grass Forevolved this independently reason, this >62 seagrass times in is flowering widely considered plants (Sage toet al be., metabolism,Phylogeny Working as well Group as a II, reduction 2012). Such in a waterclustering and of mineral C4 ori- a2011 metal), thus bioindicator constitutingspecies a striking (Maserti exampleet of al. convergent, 1988; Pergent evolu- uptakegins is also (Ouzonidou observedet in al.other, 1997; groups, Perfus-Barbeoch with six independentet al., 2000; lin- ettion. al. It, is 1995; especially Lafabrie prevalentet al. in, grasses, 2007). Cdwhere is 22–24 one of distinct most Shuklaeages inet the al. sedges, 2003; (Cyperaceae) Sobkowiak and and Deckert, 23 in the 2003). Caryophyllales widespread heavy metals in both terrestrial and marine At the genetic level, in both animals and plants, Cd environments. can induce chromosomal aberrations, abnormalities in © 2012 The Author(s). ªThis2011 is an The Open Author(s). Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ Thisby-nc/2.0/uk/ is an Open) which Access permits article unrestricted distributed non-commercial under the terms ofuse, the distribution, Creative Commons and reproduction Attribution in Non-Commercialany medium, provided License the(http://creativecommons.or original work is properly cited.g/licenses/by- nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 6298 | Christin et al. (Sage et al., 2011). These patterns indicate that some plant groups it is necessary to have a well-resolved, species-level phylogeny. have a higher propensity for C4 photosynthesis evolution, which Such a phylogeny was not available for the Neurachninae, as may reflect ecological, genomic, and/or anatomical factors that only some members of the group have been analysed with a small facilitate the acquisition of novel traits (Sage, 2001; Marshall number of molecular markers (Hudson et al., 1990; Christin et al., et al., 2007; McKown and Dengler, 2007; Christin et al., 2011; 2008; Grass Phylogeny Working Group II, 2012). Edwards and Ogburn, 2012). Leading environmental factors pro- The objective of the present study was a reconstruction of moting C4 evolution are low atmospheric CO2, heat, drought and the evolutionary history of the Neurachninae, with an emphasis salinity, often in combination (Sage et al., 2012). Anatomical on photosynthetic pathway evolution. Multiple accessions per factors include high vein density, which may be common in dry species were sampled, and phylogenetic analyses of plastid as environments and certain taxonomic groups such as the grasses well as nuclear markers, photosynthetic pathway identification,
Recommended publications
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Enabling the Market: Incentives for Biodiversity in the Rangelands
    Enabling the Market: Incentives for Biodiversity in the Rangelands: Report to the Australian Government Department of the Environment and Water Resources by the Desert Knowledge Cooperative Research Centre Anita Smyth Anthea Coggan Famiza Yunus Russell Gorddard Stuart Whitten Jocelyn Davies Nic Gambold Jo Maloney Rodney Edwards Rob Brandle Mike Fleming John Read June 2007 Copyright and Disclaimers © Commonwealth of Australia 2007 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgment of the source. The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment and Water Resources. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Australian Government does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Contributing author information Anita Smyth: CSIRO Sustainable Ecosystems Anthea Coggan: CSIRO Sustainable Ecosystems Famiza Yunus: CSIRO Sustainable Ecosystems Russell Gorddard: CSIRO Sustainable Ecosystems Stuart Whitten: CSIRO Sustainable Ecosystems Jocelyn Davies: CSIRO Sustainable Ecosystems Nic Gambold: Central Land Council Jo Maloney Rodney Edwards: Ngaanyatjarra Council Rob Brandle: South Austalia Department for Environment and Heritage Mike Fleming: South Australia Department of Water, Land and Biodiversity Conservation John Read: BHP Billiton Desert Knowledge CRC Report Number 18 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgement of the source.
    [Show full text]
  • By H.D.V. PRENDERGAST a Thesis Submitted for the Degree of Doctor of Philosophy of the Australian National University. January 1
    STRUCTURAL, BIOCHEMICAL AND GEOGRAPHICAL RELATIONSHIPS IN AUSTRALIAN c4 GRASSES (POACEAE) • by H.D.V. PRENDERGAST A thesis submitted for the degree of Doctor of Philosophy of the Australian National University. January 1987. Canberra, Australia. i STATEMENT This thesis describes my own work which included collaboration with Dr N .. E. Stone (Taxonomy Unit, R .. S .. B.S .. ), whose expertise in enzyme assays enabled me to obtain comparative information on enzyme activities reported in Chapters 3, 5 and 7; and with Mr M.. Lazarides (Australian National Herbarium, c .. s .. r .. R .. O .. ), whose as yet unpublished taxonomic views on Eragrostis form the basis of some of the discussion in Chapter 3. ii This thesis describes the results of research work carried out in the Taxonomy Unit, Research School of Biological Sciences, The Australian National University during the tenure of an A.N.U. Postgraduate Scholarship. iii ACKNOWLEDGEMENTS My time in the Taxonomy Unit has been a happy one: I could not have asked for better supervision for my project or for a more congenial atmosphere in which to work. To Dr. Paul Hattersley, for his help, advice, encouragement and friendship, I owe a lot more than can be said in just a few words: but, Paul, thanks very much! To Mr. Les Watson I owe as much for his own support and guidance, and for many discussions on things often psittacaceous as well as graminaceous! Dr. Nancy Stone was a kind teacher in many days of enzyme assays and Chris Frylink a great help and friend both in and out of the lab •• Further thanks go to Mike Lazarides (Australian National Herbarium, c.s.I.R.O.) for identifying many grass specimens and for unpublished data on infrageneric groups in Eragrostis; Dr.
    [Show full text]
  • Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
    RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a).
    [Show full text]
  • Viruses Virus Diseases Poaceae(Gramineae)
    Viruses and virus diseases of Poaceae (Gramineae) Viruses The Poaceae are one of the most important plant families in terms of the number of species, worldwide distribution, ecosystems and as ingredients of human and animal food. It is not surprising that they support many parasites including and more than 100 severely pathogenic virus species, of which new ones are being virus diseases regularly described. This book results from the contributions of 150 well-known specialists and presents of for the first time an in-depth look at all the viruses (including the retrotransposons) Poaceae(Gramineae) infesting one plant family. Ta xonomic and agronomic descriptions of the Poaceae are presented, followed by data on molecular and biological characteristics of the viruses and descriptions up to species level. Virus diseases of field grasses (barley, maize, rice, rye, sorghum, sugarcane, triticale and wheats), forage, ornamental, aromatic, wild and lawn Gramineae are largely described and illustrated (32 colour plates). A detailed index Sciences de la vie e) of viruses and taxonomic lists will help readers in their search for information. Foreworded by Marc Van Regenmortel, this book is essential for anyone with an interest in plant pathology especially plant virology, entomology, breeding minea and forecasting. Agronomists will also find this book invaluable. ra The book was coordinated by Hervé Lapierre, previously a researcher at the Institut H. Lapierre, P.-A. Signoret, editors National de la Recherche Agronomique (Versailles-France) and Pierre A. Signoret emeritus eae (G professor and formerly head of the plant pathology department at Ecole Nationale Supérieure ac Agronomique (Montpellier-France). Both have worked from the late 1960’s on virus diseases Po of Poaceae .
    [Show full text]
  • Global Climate Change Impacts on Pacific Islands Terrestrial Biodiversity: a Review
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 9 (1): 203-223, 2016 Review paper Global Climate Change Impacts on Pacific Islands Terrestrial Biodiversity: a review S. Taylor1 and L. Kumar1 1Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia. Phone: (+61) 2 67733363; Fax: (+61) 2 67732769. Corresponding Author: Subhashni Taylor (e-mail: [email protected]) Abstract The islands of the Pacific region hold three of the 35 global biodiversity hotspots with large numbers of endemic species. Global climate change will exacerbate the challenges faced by the biodiversity of this region. In this review, we identify trends in characteristics for 305 terrestrial species threatened by climate change and severe weather according to the International Union for Conservation of Nature and Natural Resources (IUCN). We then review the literature on observed and potential impacts of climate change on terrestrial biodiversity, focusing on the species’ characteristics that were identified. High-elevation ecosystems such as cloud montane forests are projected to disappear entirely by the year 2100, with corresponding global losses of their endemic biodiversity. Sea level rise threatens restricted range species on small low-lying atolls. Shifts in distribution may be possible for generalist species, but range shifts will be difficult for species with small distributions, specialized habitat requirements, slow dispersal rates, and species at high elevations. Accurate assessments of climate change impacts on biodiversity of the region are difficult because of confusion about nomenclature, the many species unknown to science, the lack of baseline data on species’ ecology and distributions, and lack of fine resolution elevation data for very small islands.
    [Show full text]
  • L. Watson – Publications 24 November 2016 1962 Watson, L
    L. Watson – publications 24 November 2016 1962 Watson, L. (1962).The taxonomic significance of stomatal distribution and morphology in Epacridaceae. New Phytol. 61, 36–40. Watson, L. (1962). A peculiar Ericalean pollen grain. Nature 194, 889. Watson, L. (1962). A taxonomic revision of the genus Andersonia R.Br. (Epacridaceae). Kew Bull. 16, 85–127. 1963 Franks, J.W. and Watson, L. (1963). The pollen morphology of some critical Ericales. Pollen et Spores 5, 51–68. Watson, L. (1964). Some remarkable inflorescences in the Ericales and their taxonomic significance. Annals of Botany 28, 311-318. 1964 Watson, L. (1964). The taxonomic significance of certain anatomical observations in Ericaceae: the Ericoideae, Calluna and Cassiope. New Phytol. 63, 274–280. 1965 Drury, D.G. and Watson, L. (1965). Anatomy and the taxonomic significance of vegetative morphology in Senecio. New Phytol. 64, 307–314. Watson, L. (1965). The taxonomic implications of some anatomical variations among Ericaceae. J. Linn. Soc. Bot. 59, 111–125. 1966 Drury, D.G. and Watson, L. (1966). Taxonomic implications of a comparative anatomical study of Inuloideae-Compositae. Amer. J. Bot. 53, 828–833. Drury, D.G and Watson, L. (1966). Anatomy and the taxonomic significace of gross vegetative morphology in Senecio. New Phytol. 64, 307-314. Drury, D.G. and Watson, L.(1966). A bizarre pappus form in Senecio. Taxon 15, 309–311. Watson, L., Williams, W.T. and Lance, G.N. (1966). Angiosperm taxonomy: a comparative study of some novel numerical techniques. J. Linn. Soc. (Bot.) 59, 491–501. 1967 Watson, L., Williams, W.T. and Lance, G.N.
    [Show full text]
  • Nuytsia the Journal of the Western Australian Herbarium 22(6): 341–349 Published Online 18 December 2012
    R. Butcher & P.J.H Hurter, Tephrosia oxalidea (Fabaceae), a new species from the Pilbara 341 Nuytsia The journal of the Western Australian Herbarium 22(6): 341–349 Published online 18 December 2012 Tephrosia oxalidea (Fabaceae: Millettieae), a new species from the Pilbara and Gascoyne bioregions of Western Australia Ryonen Butcher1,3 and P. Johan H. Hurter2 1Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 2GHD, 239 Adelaide Terrace, Perth, Western Australia 6004 3Corresponding author, email: [email protected] Abstract Butcher, R. & Hurter, P.J.H. Tephrosia oxalidea (Fabaceae: Millettieae), a new species from the Pilbara and Gascoyne bioregions of Western Australia. Nuytsia 22(6): 341–349 (2012). The Australian species of Tephrosia Pers. (Fabaceae: Millettieae) have not been revised in full since Bentham’s Flora Australiensis, although considerable work towards this goal has been performed at the herbaria of the Northern Territory (DNA) and Queensland (BRI) to date. Taxonomic work is now underway on the Tephrosia of Western Australia, with Western Australia’s plant census currently recording 23 informally named taxa in this State. One of these, Tephrosia sp. Cathedral Gorge (F.H. Mollemans 2420), is a distinctive species and is described herein as T. oxalidea R.Butcher & P.J.H.Hurter. Images and a distribution map for this species are included, as is a discussion of its affinities. Introduction Tephrosia Pers. is a pantropically distributed genus of pea-flowered legumes comprising c. 350 to over 400 species worldwide (Cowie 2004; Lewis et al. 2005). Centres of species diversity include Africa–Madagascar (c.
    [Show full text]
  • Sheep Nutrition.Pdf
    Sheep Nutrition Ch 00 7/17/02 4:13 PM Page vii Contributors N.R. Adams, CSIRO Livestock Industries, Centre for Mediterranean Agricultural Research, Private Bag 5, Wembley, WA 6913, Australia E.F. Annison, Faculty of Veterinary Science, University of Sydney, Camden, NSW 2570, Australia A.J. Ball, Meat and Livestock Australia, c/o Animal Science, University of New England, Armidale, NSW 2351, Australia G. Caja, Departamento de Ciencia Animal y de los Alimentos, Facultad de Veterinaria, Universidad Autonoma de Barcelona, 08193 Bellaterra, Cerdanyola, Spain S.W. Coleman, USDA-ARS Subtropical Agricultural Research Station, 22271 Chinsegut Hill Road, Brooksville, FL 34601, USA R.L. Coop, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK J.L. Corbett, Animal Science, University of New England, Armidale, NSW 2351, Australia H. Dove, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia J.M. Forbes, Centre for Animal Sciences, Leeds Institute of Biotechnology and Agriculture, University of Leeds, Leeds LS2 9JT, UK M. Freer, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia D.A. Henry, CSIRO Livestock Industries, Centre for Mediterranean Agricultural Research, Private Bag 5, Wembley, WA 6913, Australia P.I. Hynd, Department of Animal Science, Adelaide University, Roseworthy Campus, Roseworthy, SA 5371, Australia G.J. Judson, South Australian Research and Development Institute, 33 Flemington Street, Glenside, SA 5065, Australia A.V. Klieve, Agency for Food and Fibre Sciences, Animal Research Institute, Locked Mail Bag No. 4, Moorooka, Qld 4105, Australia vii Sheep Nutrition Ch 00 7/17/02 4:13 PM Page viii viii Contributors S.O.
    [Show full text]
  • Investigation of Mitochondrial-Derived Plastome Sequences in the Paspalum Lineage (Panicoideae; Poaceae) Sean V
    Burke et al. BMC Plant Biology (2018) 18:152 https://doi.org/10.1186/s12870-018-1379-1 RESEARCH ARTICLE Open Access Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae) Sean V. Burke1* , Mark C. Ungerer2 and Melvin R. Duvall1 Abstract Background: The grass family (Poaceae), ca. 12,075 species, is a focal point of many recent studies that aim to use complete plastomes to reveal and strengthen relationships within the family. The use of Next Generation Sequencing technology has revealed intricate details in many Poaceae plastomes; specifically the trnI - trnL intergenic spacer region. This study investigates this region and the putative mitochondrial inserts within it in complete plastomes of Paspalum and other Poaceae. Results: Nine newly sequenced plastomes, seven of which contain an insert within the trnI - trnL intergenic spacer, were combined into plastome phylogenomic and divergence date analyses with 52 other species. A robust Paspalum topology was recovered, originating at 10.6 Ma, with the insert arising at 8.7 Ma. The alignment of the insert across Paspalum reveals 21 subregions with pairwise homology in 19. In an analysis of emergent self- organizing maps of tetranucleotide frequencies, the Paspalum insert grouped with mitochondrial DNA. Conclusions: A hypothetical ancestral insert, 17,685 bp in size, was found in the trnI - trnL intergenic spacer for the Paspalum lineage. A different insert, 2808 bp, was found in the same region for Paraneurachne muelleri. Seven different intrastrand deletion events were found within the Paspalum lineage, suggesting selective pressures to remove large portions of noncoding DNA. Finally, a tetranucleotide frequency analysis was used to determine that the origin of the insert in the Paspalum lineage is mitochondrial DNA.
    [Show full text]
  • The C4 Plant Lineages of Planet Earth
    Journal of Experimental Botany, Vol. 62, No. 9, pp. 3155–3169, 2011 doi:10.1093/jxb/err048 Advance Access publication 16 March, 2011 REVIEW PAPER The C4 plant lineages of planet Earth Rowan F. Sage1,*, Pascal-Antoine Christin2 and Erika J. Edwards2 1 Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S3B2 Canada 2 Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02912, USA * To whom correspondence should be addressed. E-mail: [email protected] Received 30 November 2010; Revised 1 February 2011; Accepted 2 February 2011 Abstract Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C4 photosynthetic pathway. Here, 62 recognizable lineages of C4 photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a Downloaded from minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C3–C4 intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C4 lineage, indicating that they did not share common C3–C4 ancestors with C4 species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to jxb.oxfordjournals.org cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south- central South America, central Asia, northeastern and southern Africa, and inland Australia.
    [Show full text]