Rapid and Sudden Advection of Warm and Dry Air in the Mediterranean Basin

Total Page:16

File Type:pdf, Size:1020Kb

Rapid and Sudden Advection of Warm and Dry Air in the Mediterranean Basin Manuscript prepared for Nat. Hazards Earth Syst. Sci. with version 5.0 of the LATEX class copernicus.cls. Date: 20 November 2013 Rapid and sudden advection of warm and dry air in the Mediterranean basin J. Mazon1, D. Pino1,2, and M. Barriendos3 1Applied Physics Department, BarcelonaTech (UPC), Barcelona, Spain 2Institute for Space Studies of Catalonia (IEEC–UPC), Barcelona, Spain. 3Institut Catala` de Ciencies` del Clima (IC3) Correspondence to: J. Mazon ([email protected]) Abstract. Rapid advection of extremely warm and dry air normally and uncomfortably hot and usually humid weather, is studied during two events in the Mediterranean basin. On which should last at least one day, but conventionally it lasts 27 August 2010 a rapid advection of extremely warm and 35 from several days to several weeks. The definition presents dry air affected the northeast Iberian Peninsula during few slight variations in the values of exceeded temperature with 5 hours. At the Barcelona city center, the temperature reached respect to the average temperature depending on the national 39.3◦C, which is the maximum temperature value recorded weather service. However, a common characteristic is found during 230 years of daily data series. On 23 March 2008 a in all regional definitions: speaking about a heat wave re- rapid increase of temperature and drop of relative humidity 40 quires duration of at least 2 consecutive days of abnormal were recorded for few hours in Heraklion (Crete). During the temperature values. Thus, heat waves are considered a synop- ◦ 10 morning on that day the recorded temperature reached 34 C tic phenomenon that cover several thousands of square kilo- for several hours in the north coastline of this island. meters and last at least 2 or more days. According to the World Meteorological Organization none Many authors have studied the dynamics of heat waves and of these events can be classified as a heat wave, which re- 45 their effects in several fields, such as agriculture (Jolly et al., quires at least two days of abnormally high temperatures; 2005), human health (Smoyer-Tomic et al., 2003; Meehl and 15 or as a heat burst as defined by the American Meteorolog- Tebald, 2004), or discomfort (Matzarakis and Nastos, 2010; ical Society, where abnormal temperatures take place during Nastos and Matzarakis, 2012), tourism (Steadman, 1984; few minutes. For this reason, we suggest naming this type of Hamilton et al., 2005; Lise and Tol, 2002), energy consump- event flash heat. 50 tion (Karl and Quayle, 1981; Hassid et al., 2000) and wa- By using data from automatic weather stations in the ter demand (Smoyer-Tomic et al., 2003). Furthermore, some 20 Barcelona and Heraklion area and WRF mesoscale numer- studies (Meehl and Tebald, 2004; Trenberth et al., 2007) ical simulations, these events are analyzed. Additionally, the show that an increase in intensity, frequency and the dura- primary risks and possible impacts on several fields are pre- tion of heat waves around the Earth will occur during the th sented. 55 XXI century. In all scenarios shown in the 4 IPCC report (Trenberth et al., 2007), the Mediterranean basin will be one of the most significant regions affected by an increase in both the intensity and frequency of heat waves during this century. 25 1 Introduction If a smaller scale is considered, the glossary of AMET- 60 SOC defines a heat burst as a rare atmospheric event char- The World Meteorological Organization (WMO) defines a acterized by gusty winds, rapid temperature increase, and a heat wave as a phenomenon in which the daily maximum decrease in relative humidity, typically occurring at night or temperature of more than five consecutive days exceeds the early morning (Johnson, 1976; Glickman, 2000). It’s usually average maximum temperature by 5◦C with respect to the associated with descending air during a thunderstorm. The 30 period 1961–1990 (Frich et al., 2012). The glossary of me- 65 typical time scale of heat burst is few minutes, less than an teorology of the American Meteorological Society (AMET- hour. Recorded temperatures during heat bursts have reached SOC, Glickman (2000)) defines a heat wave as a period of ab- 2 J. Mazon et al.: Flash–heat events in the Mediterranean basin well above 32◦C, sometimes rising by 11◦C or more within midity. Automatic weather station located in the Barcelona ◦ only a few minutes. 120 city center recorded 39.3 C (the highest temperature since This paper aims to study two events associated with an 1780) and the relative humidity dropped to 19%. In addition, 70 increase in temperature and decrease in relative humidity oc- the recorded temperature values from 11:00 to 16:00 UTC curring at intermediate temporal and spatial scales. We will were above 30◦C, higher than 5◦C than the mean maximum call this phenomenon flash heat, because it occurs within temperature in August during the period 1961–1990, that has ◦ a time scale shorter than a heat wave but longer than a 125 been 26.8 C. However, for the 12 hours prior to and later heat burst. This event is usually associated with an adia- than the hours in which the maximum value was recorded, 75 batic warming of downslope winds, associated to Foehn ef- the temperature remained within normal values. As it will fect (Maninns and Sawford, 1979; Egger and Hoinka, 1992; be shown, the period of abnormally high temperature could Wakonigg, 1990). To our knowledge, there is no previous sci- be considered as occurring from 11:00 to 16:00 UTC. This entific reference naming this type of events. 130 event cannot be classified according to the above definitions Table 1 summarizes the differences between the three either as a heat wave or as a heat burst. 80 types of abnormal high temperature events mentioned above. Note the different spatial and temporal scales of flash heat, 2.1 Synoptic situation as well as the dynamics of its formation. The structure of this paper is as follows. Section 2 is de- Figure 1 shows the temperature at 850 hPa obtained by the voted to analyze and describe, by using observations and reanalysis of the National Centers of Environmental Predic- 85 mesoscale model numerical simulations, the 27 August 2010 135 tion (NCEP) at 00:00 UTC from 26 to 28 August 2010. A event in the northeast of the Iberian Peninsula, where a very ridge from North Africa remained stationary in Northwest warm and dry air mass affected this area over 8 hours. It fo- Africa for a few days before the 25 August 2010, when it cuses on the Barcelona area, where the maximum daily tem- began to move to the north. On 25 August at 00:00 UTC perature in over 230 years was recorded. According to this (not shown), the 25◦C isotherm at 850 hPa was located at 90 analysis, a preliminary flash–heat definition is proposed in 140 the southern Iberian Peninsula and a large anticyclonic ridge order to analyze the existence of similar flash–heat events was located in Northwest Africa. At the northern third of the during the XIX century in the daily temperature series of Iberian Peninsula the 850–hPa isotherm was 15◦C at 00:00 Barcelona (1790–2012). The rapid increase of temperature UTC. On 26 August, the ridge moved to the north. At 850 and decrease of relative humidity occurred on 23 March 2008 hPa (see Fig. 1a), the 25◦C isotherm was in the central and 95 in Heraklion (Crete island) is analyzed in Section 3. In Sec- 145 southern Iberian Peninsula. On the 27, at 00:00 UTC (Fig. tion 4 we describe the main impacts that this event could pro- 1b), the ridge (25◦C–isotherm at 850 hPa) extended from duce on several fields, mainly in agriculture, energy demand, the southwest to the northeast of the Iberian Peninsula, and health and fires. Finally, in Section 5 the main conclusions moved rapidly to the southeast, displaced by a northeast ad- are presented. vection. On the 28 August, at 00:00 UTC (see Fig. 1c), the ◦ 150 border of the 25 C–isotherm at 850 hPa was displaced to the southeast of the Iberian Peninsula. The 15◦C–isotherm 100 2 The 27 August 2010 event (Barcelona event) at 850 hPa approximately followed the Pyrenees Mountains. On the 29 of August the northeast advection increased, with According the Agency of Spanish Meteorology (AEMET), a 10◦C–isotherm at 850 hPa at 00:00 UTC over the Pyrenees the summer of 2010 was the third warmest summer recorded 155 (not shown). Several storms formed in the northeast Pyrenees in the Iberian Peninsula. Particularly, August 2010 was the during those days. In the south and southeast of the Iberian fifth warmest month since 1971; its mean temperature was Peninsula, the heat wave continued, with temperatures be- ◦ ◦ ◦ 105 1.5 C higher than the average monthly temperature and it tween 20 C and 25 C at 850 hPa at the south and southeast was the third warmest month in this century. At the south until the 31 August 2010. and east of the Iberian Peninsula, maximum temperatures be- ◦ tween 40 and 44 C were recorded. Minimum early morning 160 2.2 Analysis of surface observations temperatures of between 23 and 26◦C were recorded by sev- 110 eral official AEMET weather stations during this period. To avoid heat–island effect, data from the weather station in- However, the heat wave does not affect the north and stalled at the Fabra Observatory, located 10km away from northeast Iberian Peninsula. The warm and dry air mass was the city center (420 masl) was selected.
Recommended publications
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • P1.4 West Texas Mesonet Observations of Wake Lows and Heat Bursts Across Northwest Texas
    P1.4 WEST TEXAS MESONET OBSERVATIONS OF WAKE LOWS AND HEAT BURSTS ACROSS NORTHWEST TEXAS Mark R. Conder*, Steven R. Cobb, and Gary D. Skwira National Weather Service Forecast Office, Lubbock, Texas 1. INTRODUCTION Wake lows (WLs) and heat bursts (HBs) are mesoscale phenomena associated with thunderstorms that can result in strong and sometimes severe (>25.5 m s-1), near-surface winds. The operational detection of severe winds is problematic because the associated convection can appear quite innocuous via WSR-88D data. The thermodynamic environment that supports WL and HB development is similar, and is often compared to the classic “onion” sounding structure as described by Zipser (1977). Observational studies such as Johnson et al. (1989) show that nearly dry-adiabatic lapse rates are prevalent in the lower to mid-troposphere, with a shallow stable layer near ground level. This type of environment is most commonly observed in the high plains during the warm season. While documented heat bursts were infrequent in the past, the recent expansion of surface mesonetworks are increasing the likelihood that these events will be sampled. One such network is the West Texas Mesonet (WTXM), a collection of over 40 meteorological stations spread across the Panhandle and South Plains of northwest Texas. During the period 1 June 2004 to 30 August 2006, the authors have FIG. 1. The Study area including the WTXM station recorded 10 WL/HB events that have been sampled by locations. Not all stations were available for every stations of the WTXM. Some of the more extreme event. measurements include a 15 degrees Celsius increase in temperature at the Pampa and McClean WTXM sites in -1 Meteorological data from each WTXM station is one event and 35 m s wind gusts at sites in Brownfield recorded in 5-minute intervals, representing average and Jayton on separate occasions.
    [Show full text]
  • The Southern Plains Cyclone
    The Southern Plains Cyclone A Weather Newsletter from your Norman Forecast Office for the Residents of western and central Oklahoma and western north Texas We Make the Difference When it Matters Most! Volume 2 Summer 2004 Issue 3 Behind the Scenes at the Norman Forecast Office Meet Your Weatherman Cheryl Sharpe By Rick Smith, Warning Coordination Meteorologist The National Weather Service’s ther caused by the weather or made main mission is to provide information worse by the weather – tornadoes and to help save lives. This is the reason we severe thunderstorms, flooding, ice come to work everyday. We are part of a storms, blizzards, wildfires, and heat network of 122 local weather forecast waves, among others. But, did you offices that cover the entire United know that the Norman Forecast Office States, with each office responsible for a also plays a key role in assisting with specific group of counties. The people at non-weather related disasters? each of these offices work hard to pro- From the Murrah Building bombing vide the best local weather information in 1995 to wildfires and other non- possible. weather related emergencies, the NWS At the Norman Forecast Office, we provides support and information in a take this responsibility seriously and variety of situations. ¡Hola! I am Cheryl Sharpe, one of strive to be the best when it comes to pro- We are staffed 24 hours a day every- the general forecasters at the Norman viding information you can use to help day of the year with at least two people Forecast Office. In addition to my regu- make decisions, plan activities, or just on shift at all times to allow us to re- lar duties as a meteorologist, I also assist live your day-to-day life in Oklahoma spond.
    [Show full text]
  • The Impact of Unique Meteorological Phenomena Detected by the Oklahoma Mesonet and ARS Micronet on Automated Quality Control Christopher A
    The Impact of Unique Meteorological Phenomena Detected by the Oklahoma Mesonet and ARS Micronet on Automated Quality Control Christopher A. Fiebrich and Kenneth C. Crawford Oklahoma Climatological Survey, Norman, Oklahoma ABSTRACT To ensure quality data from a meteorological observing network, a well-designed quality control system is vital. Automated quality assurance (QA) software developed by the Oklahoma Mesonetwork (Mesonet) provides an effi- cient means to sift through over 500 000 observations ingested daily from the Mesonet and from a Micronet spon- sored by the Agricultural Research Service of the United States Department of Agriculture (USDA). However, some of nature's most interesting meteorological phenomena produce data that fail many automated QA tests. This means perfectly good observations are flagged as erroneous. Cold air pooling, "inversion poking," mesohighs, mesolows, heat bursts, variations in snowfall and snow cover, and microclimatic effects produced by variations in vegetation are meteorological phenomena that pose a problem for the Mesonet's automated QA tests. Despite the fact that the QA software has been engineered for most observa- tions of real meteorological phenomena to pass the various tests—but is stringent enough to catch malfunctioning sensors—erroneous flags are often placed on data during extreme events. This manuscript describes how the Mesonet's automated QA tests responded to data captured from microscale meteorological events that, in turn, were flagged as erroneous by the tests. The Mesonet's operational plan is to cata- log these extreme events in a database so QA flags can be changed manually by expert eyes. 1. Introduction and personnel at the central processing site for the Oklahoma Mesonet in Norman, Oklahoma.
    [Show full text]
  • Literacy Lab #36 - 102 at Midnight! Earth Science - Breed - 2012/2013
    Name Date Literacy Lab #36 - 102 At Midnight! Earth Science - Breed - 2012/2013 Directions: Take a few minutes to read the article below either online (or on the back of this page.) Write responses to the statements or questions below. Cut/copy/paste is not allowed – use your own words and thoughts, based in research if needed. Read more: http://www.meteorologynews.com/2011/06/09/rare-heat-burst-strikes- wichita-102-degrees-at-midnight/ Fact-finding: List three facts that you learned in this article. 1. 2. 3. Vocabulary: List and define three unfamiliar words in the space below. Implications: What are your feelings about this “discovery”? Express your feelings (tactfully) about whether this is an advancement of science or a bad idea. Rare Heat Burst Strikes Wichita: 102 Degrees at Midnight (METEOROLOGYNEWS.COM) A rare heat burst struck Wichita, Kansas overnight, resulting in temperatures spiking to over 100 degrees long after the sun had set for the evening. The automated weather station at the Wichita airport registered a jump from 85 degrees to 102 degrees in a span of just 20 minutes, according to Stephanie Dunten, a meteorologist with the National Weather Service in Wichita. The surge in temperatures began at 11:22 p.m. CST (12:22am CDT) when a pocket of air in the upper atmosphere collapsed to the surface, Dunten said. That sent winds of more than 50 miles an hour through portions of the city as the air hit the ground and spread out. According to KAKE-TV, Sedgwick County 911 dispatchers received calls of trees and power lines down.
    [Show full text]
  • RAOB User Manual
    RAOB The Complete RAwinsonde OBservation Program A product of Eosonde Research Services, LLC User Guide & Technical Manual Version 6.9 Note: This document contains information regarding all available program modules & options. Copyright (C) 1994-2020. All rights reserved. Portions(C) 1982-2000 Microsoft Corporation. All rights reserved. RAOB License Agreement The user must comply with the following agreement with Eosonde Research Services, LLC (ERS) in order to use this software. SINGLE USER . ERS grants the single user the License to use the RAOB software program on a single computer (single CPU) at a single location. Each workstation, upon which the software is used, whether such workstation is a stand-alone computer or a networked computer, must have a separately licensed copy of this software. SITE LICENSE . ERS grants the user the right to use the number of copies of the RAOB software for which payment has been made. For each additional site license purchased, the user may operate that number of additional program copies in addition to the single user copy. For example, if 4 additional site licenses are purchased, a maximum of 5 simultaneous RAOB programs can operate at the same time on different stand-alone computers, or up to 5 users can access the RAOB program from a networked computer server. TRANSFERS . You may physically transfer this software from one of your computers to another computer provided that the software is used on only one computer at a time. You may not distribute copies of this software or accompanying written materials to others. You may not transfer this software to anyone without the prior written consent of ERS.
    [Show full text]
  • A Climatological Analysis of Heatbursts in Oklahoma (1994–2009)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2011 A climatological analysis of heatbursts in Oklahoma (1994–2009) Renee A. McPherson University of Oklahoma Norman Campus Justin D. Lane NOAA/National Weather Service Kenneth C. Crawford University of Oklahoma Norman Campus William G. McPherson Jr. University of Oklahoma Norman Campus Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons McPherson, Renee A.; Lane, Justin D.; Crawford, Kenneth C.; and McPherson, William G. Jr., "A climatological analysis of heatbursts in Oklahoma (1994–2009)" (2011). Publications, Agencies and Staff of the U.S. Department of Commerce. 290. https://digitalcommons.unl.edu/usdeptcommercepub/290 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 31: 531–544 (2011) Published online 4 February 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.2087 A climatological analysis of heatbursts in Oklahoma (1994–2009) Renee A. McPherson,a* Justin D. Lane,b Kenneth C. Crawforda and William G. McPherson Jrc a Oklahoma Climatological Survey, University of Oklahoma, Norman, OK, USA b NOAA/National Weather Service, Greer, SC, USA c Center for Spatial Analysis, University of Oklahoma, Norman, OK, USA ABSTRACT: Heatbursts are characterized by a sudden and highly localized increase in air temperature, a simultaneous decrease in relative humidity and dewpoint temperature, and strong gusty winds, typically associated with decaying thunderstorms.
    [Show full text]
  • Heat Burst - Wikipedia, the Free Encyclopedia Page 1 of 3
    Heat burst - Wikipedia, the free encyclopedia Page 1 of 3 Heat burst From Wikipedia, the free encyclopedia In meteorology, a heat burst is a rare atmospheric phenomenon characterised by gusty winds and a rapid increase in temperature and decrease in dew point (moisture). Heat bursts typically occur during night- time and are associated with decaying thunderstorms.[1] Although this phenomenon is not fully understood, it is theorized that the event is caused when rain evaporates (virga) into a parcel of cold dry air high in the atmosphere making the air denser than its surroundings.[2] The parcel descends rapidly, warming due to compression, overshoots its equilibrium level and reaches the surface, similar to a downburst.[3] Recorded temperatures during heat bursts have reached well above 90 °F (32 °C), sometimes rising by 20 °F (11 °C) or more within only a few minutes. More extreme events have also been documented, where temperatures have been reported to exceed 188 °F (87 °C), although such extreme events have never been officially verified. Heat bursts are also characterised by extremely dry air and are sometimes associated with very strong, even damaging, winds. Some documented cases ■ Wichita, Kansas, June 9, 2011: Temperatures rose from the lower 85'F to 102'F at about 1:00am. The heat burst caused some wind damage (40-50 mph) and local residents reported the phenomenon to area weather stations. [4] ■ Sioux Falls, South Dakota, August 3, 2008: Temperatures rose rapidly from the lower 70s (20s) to 101 °F (38.3 °C) in a matter of minutes.
    [Show full text]
  • Heat Burst Detection by a Temporally Fine-Scale Mesonet
    Heat Burst Detection by a Temporally Fine-Scale Mesonet JAY TROBEC KELO-TV, Sioux Falls, SD (Submitted 19 December 2007; In final form 3 March 2008) ABSTRACT A heat burst which occurred at Sioux Falls, South Dakota, early in the morning of 11 August 2007, took place in close proximity to both the KFSD WSR-88D and to privately owned mesonet sensors which record data in 1-min increments. The event began with the decay of a thunderstorm, when precipitation a few hundred meters AGL descended to the ground and was immediately followed by the heat burst. Two mesonet sensors 2-km apart reported a marked temperature increase rate, averaging 0.23°C min -1. The barometric pressure fell at an average rate of 0.13 hPa min -1 during the combined precipitation −heat burst period. The rise and fall of temperatures corresponding with the heat burst concluded within 45 min. _______________ 1. Introduction A heat burst is defined as a localized, sudden increase in surface temperature associated with a thunderstorm, shower, or mesoscale convective system (Johnson 1983; Glickman 2000). Such an event occurred at Sioux Falls, South Dakota, between 0700 −0900 UTC (0200 −0400 CDT) on 11 August 2007. With decaying thunderstorms over and south of the city, the National Weather Service (NWS) Automated Surface Observing System (ASOS) sensor located at the airport in northern Sioux Falls (KFSD) reported a marked rise and subsequent fall in the hourly temperature report, accompanied by a temporary shift in wind direction and an increase in wind speed, with gusts to 30 knots (Table 1 ).
    [Show full text]
  • Impressive Heat
    Impressive Nocturnal Heat Burst over Wichita, Kansas June 9th, 2011 By Kevin Darmofal WFO Wichita, KS What is a Heat Burst ? • Localized, sudden increase in surface temperature associated with a thunderstorm, shower or mesoscale convective system, often accompanied by extreme drying. Occurs in association with precipitation-driven downdrafts penetrating a shallow surface layer and reaching the ground. Source: AMS, Glossary of Meteorology • Characteristics from prior cases have shown presence of a deep, dry-adiabatic layer aloft (~ 450-700 mb), with a more stable layer near the surface (usually with the nocturnal inversion). The downdraft within the decaying precipitation warms and accelerates within the dry-adiabatic layer, eventually penetrating the more stable layer near the ground in the form of a heat burst. How Rare are Heat Bursts? Some Recent and Notable Occurrences • Central Oklahoma, May 12-13, 2009 : Temperature climbed to over 90 degrees in the late evening at Hollis, OK, with Dew Point drop over 30 degrees. Several overnight heat bursts also in the OKC metro area with minor wind damage. • Sioux Falls, SD, August 3, 2008 : Temperature soared from 70 to 101 in less than 20 minutes, and accompanied by 50 to 60 mph winds. • Midland, TX, June 16, 2008 : Temperature rose from 71 to 97 degrees in minutes just before Midnight, with a wind gust measured to 62 mph. • Emporia, KS, May 25, 2008 : Temperature climbed from 71 to 91 degrees around 5 am. • Canby, MN, July 16, 2006 : Temperature rose to 100 degrees and Dew Point dropped from 70F to 32F in one hour (63 mph wind gust).
    [Show full text]
  • New World New Mind Robert Ornstein & Paul Ehrlich Malor
    N New World New Mind ew W NEW WORLD “New World New Mind is an extraordinary look at human beings and our civilization. I strongly recommend orld this book to my Senate colleagues and all Americans.” —Former Senator Timothy Wirth (Colorado) NEW MIND “A brilliant book...we have to learn to think differently. N There is still time to save ourselves if we listen to authors “A rare book that changes people’s lives, like these.” ew —Doris Lessing rarer still a book that changes the world.” M — San Francisco Chronicle “An extraordinary undertaking. Seldom have I read a book that combines so effectively so many strands ind “The world may be going to pot or up in smoke, of human experience and interest—all beautifully and all because our miserably unprepared yet blended.” powerful brains can unleash forces beyond our —Norman Cousins, author of moral and political control. We shall have to Anatomy of an Illness Robert Ornstein & Paul Ehrlich Paul & Ornstein Robert bring mind and world together, with proper “Should become required reading for all those who want respect and understanding of both, if we are to know where humanity has come from and the changes to maintain any hope for human salvation on we now need to make to face our future.” a beautiful planet. This book by two great —Dr. Donald C. Johansen, author of Lucy humanists—one an expert on mind, one on the “A fascinating, radical analysis of the world’s great natural world—points the way... problems.” Let us all listen, read and act..
    [Show full text]
  • Page 1 of 5 Heat Burst 6/10/2011
    Heat Burst Page 1 of 5 Follow Us: Site Search Home Forecasts Severe Weather Maps Weather Apps Video iWitness Weather Trave My Enter ZIP, City or Place (e.g. Disney World) Saved Save a Location Locations Exact weather for any address or landmark in the U.S. TRY IT SEND TO MY PHONE WeatherInsights®: The Weather Channel Blog Recent Entries | Archive | About This Blog May 4, 2006 Heat Burst Add this to: Dr. Greg Forbes, Severe Weather Expert Winds gusted to 69 mph at Fort Worth's Meacham Airport (FTW) shortly after 3 a.m. on Wednesday, flipping airplanes and damaging roofs near the airport. There was even an estimated 90 mph wind gust at the heliport nearby. Now at this time of year, severe winds aren't that unusual. But in this case, note that temperatures shot upward from 72 to 82F. Usually they plummet during a thunderstorm. So this event wasn't from a severe thunderstorm but from a relatively rare phenomenon called a heat burst. You can see the localized red warm spot over Fort Worth on the figure at the time of the event. Data Th on the figure shows how quickly the temperatures and winds evolved. G a • • • • • G W B to http://www.weather.com/blog/weather/8_9327.html 6/10/2011 Heat Burst Page 2 of 5 • • • Th It's called a heat burst because it brings a warmup and its winds strike in a bursting pattern. It is caused by downward moving winds -- downdrafts -- that hit the ground and burst outward as strong gusts.
    [Show full text]