Alternatives to the Calculus: Nonstandard Analysis and Smooth Infinitesimal Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Alternatives to the Calculus: Nonstandard Analysis and Smooth Infinitesimal Analysis Alternatives to the Calculus: Nonstandard Analysis and Smooth Infinitesimal Analysis A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirement for the degree Master of Arts Jesse P. Houchens May 2013 © 2013 Jesse P. Houchens. All Rights Reserved. 2 This thesis titled Alternatives to the Calculus: Nonstandard Analysis and Smooth Infinitesimal Analysis by JESSE P. HOUCHENS has been approved for the Department of Philosophy and the College of Arts and Sciences by Philip W. Ehrlich Professor of Philosophy Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT HOUCHENS, JESSE P., M.A., May 2013, Philosophy Alternatives to the Calculus: Nonstandard Analysis and Smooth Infinitesimal Analysis Director of Thesis: Philip W. Ehrlich We attempt to clarify and evaluate what shall be called Mac Lane’s thesis—the thesis that nonstandard analysis (NSA) and smooth infinitesimal analysis (SIA) are alternatives to the standard approach to the calculus. In doing so, we outline the historical approaches to the calculus, the standard approach to the calculus, and two nonstandard approaches, namely NSA and SIA; we also attempt to clarify and evaluate a set of comparisons of NSA and SIA, namely Bell’s 5 mathematico-philosophical contentions and Bell’s historical contention. 4 For my parents who continually remind me “While it may not always be easy, it will always be worth it.” 5 ACKNOWLEDGMENTS First, I would like to thank the members of my thesis committee. Todd Eisworth provided insightful comments from the perspective of a working mathematician. In addition, his set theory course allowed me to clarify many of the ideas underlying this thesis. Stewart Shapiro travelled down to Athens for the defense as well as allowed me to participate in his in his seminar on continuity and infinitesimals at The Ohio State University. His comments were very helpful in clarifying many of my arguments. In addition, it was in his seminar that I was first exposed to NSA and SIA and that many of the questions raised in section II.A were first voiced. Second, I would like to express my sincere gratitude to Philip Ehrlich for advising this project. Each week, as I returned from Dr. Shapiro’s seminar, he would ask me what was discussed and my thoughts on the matter. When coming up with the topic of this thesis, he gave me invaluble advice for making the project manageable. In addition, he directed me to excellent sources on the history of the calculus as well as on each of the mathematical theories. Finally, his patience as I attempted to understand each of the theories as well as his willingness to always correct my mistakes and provide a surplus of comments on previous drafts was absolutely beneficial. Overall, one could say that Phil’s guidance contributed significantly in improving the quality of this paper. Finally, I would like to thank my family, former professors, and fellow graduate students as they listened to my struggles and constantly voiced their confidence in my abilities. 6 TABLE OF CONTENTS Abstract..............................................................................................................................3 Dedication..........................................................................................................................4 Acknowledgements............................................................................................................5 List of Figures....................................................................................................................7 Introduction........................................................................................................................8 1. Historical and Theoretical Background........................................................................11 1.1. Historical Approaches to the Calculus.........................................................11 1.2. The Standard Approach to the Calculus.......................................................21 1.3. Nonstandard Analysis..................................................................................30 1.4. Smooth Infinitesimal Analysis.....................................................................47 2. Clarifications and Evaluations......................................................................................57 2.1. Bell’s 5 Mathematico-Philosophical Contentions.........................................57 2.2. Bell’s Historical Contention..........................................................................70 2.3. Mac Lane’s Thesis.........................................................................................73 Conclusion.........................................................................................................................79 Works Cited.......................................................................................................................80 7 LIST OF FIGURES Figure 1. Newton’s differential calculus………………….……………….……….13 Figure 2. Newton’s integral calculus...…………………………………………......14 Figure 3. Leibniz’ calculus………..………………………………………………..15 Figure 4. Toricelli’s trumpet………………………………………………………..21 Figure 5. Infinitesimal difference between dy /x and y /x …...…………...…..44 Figure 6. Motivation for nondegeneracy………….……………………….………..58 Figure 7. Local straightness SIA………………..…………………………………..62 Figure 8. Local straightness NSA 1………………………..………………………..63 Figure 9. Local straighntess NSA 2……………………………..…………………..64 8 INTRODUCTION After a historically-sensitive discussion of integration and differentiation in Mathematics, Form and Function, Saunders Mac Lane concludes with the following: This discussion of alternative views of the calculus may serve to support our thesis that Mathematics is not just formalism and is not just empirically convenient ideas, but consists in formalizable intuitive or empirical ideas. Calculus fits this thesis as to the nature of Mathematics because it starts from problems (such as the calculation of areas or of rates of change) and from these problems develops suggestive ideas which ultimately can be fully formalized… Another thesis asserts that the same intuitive idea can be variously formalized. For the calculus, we know that this is the case. Indeed, the earlier and originally wholly speculative use of infinitesimals can be rigorously formalized in at least two different ways: By using Abraham Robinson’s non-standard model of the reals, as presented for example in Keisler’s text [1976] on calculus, or by using Lawvere’s proposals to use ‘elementary topoi’ in which the real line R is presented not as a field but as a ring in which there is a suitable infinitesimal neighborhood of 0 (see Kock [1981]). (Mac Lane 155) The passage above contains two theses: A) The historical development of the calculus consisted of different attempts to formalize intuitive ideas suggested by basic problems; B) There are at least two different ways to rigorously formalize the “originally wholly speculative use of infinitesimals”, specifically the ways employed in nonstandard analysis (NSA) and smooth infinitesimal analysis (SIA)1. These two theses, we believe, motivate a third, namely that NSA and SIA are two alternatives to the calculus. Let this third thesis be called Mac Lane’s thesis. John L. Bell has made a remark similar to Mac Lane’s thesis restricted to SIA: “As we show in this book, within [SIA] the basic calculus...can be developed along traditional ‘infinitesimal’ lines—with full rigor—using straightforward calculations with infinitesimals in place of the limit concept.” ([2008] 4) 1 While Mac Lane references Kock’s book on synthetic differential geometry (SDG), the fragment of SDG that addresses the calculus is SIA. 9 The purpose of this essay is to explicate and evaluate Mac Lane’s thesis. This will involve first discussing some of the differing historical approaches to the calculus as well as the problems that motivated its development. After doing so, the standard ε—δ approach to the calculus as well as the two nonstandard approaches, NSA and SIA, will be outlined to facilitate comparison among the theories. According to John L. Bell, some of the differences between NSA and SIA are the following: 1. In models of [SIA], only smooth maps between objects are present. In models of nonstandard analysis, all set-theoretically definable maps (including discontinuous ones) appear. 2. The logic of [SIA] is intuitionistic, making possible the nondegeneracy of the microneighbourhoods ∆ and Mi, i = 1, 2, 3. The logic of nonstandard analysis is classical, causing all these microneighborhoods to collapse to zero. 3. In [SIA], the Principle of Microaffineness entails that all curves are ‘locally straight’. Nothing resembling this is possible in [NSA]. 4. The property of nilpotency of the microquantities of [SIA] enables the differential calculus to be reduced to simple algebra. In [NSA] the use of infinitesimals is a disguised form of the classical limit method. 5. In any model of [NSA] R* has exactly the same set theoretically expressible properties as R does: in the sense of that model, therefore, R* is in particular an Archimedean ordered field. This means that the ‘infinitesimals’ and ‘infinite numbers’ of nonstandard analysis are so not in the sense of the model in which they ‘live’, but only relative to the ‘standard’ model with which the construction began. That is, speaking figuratively, a ‘denizen’ of a model of nonstandard analysis would be unable to detect
Recommended publications
  • An Introduction to Nonstandard Analysis 11
    AN INTRODUCTION TO NONSTANDARD ANALYSIS ISAAC DAVIS Abstract. In this paper we give an introduction to nonstandard analysis, starting with an ultrapower construction of the hyperreals. We then demon- strate how theorems in standard analysis \transfer over" to nonstandard anal- ysis, and how theorems in standard analysis can be proven using theorems in nonstandard analysis. 1. Introduction For many centuries, early mathematicians and physicists would solve problems by considering infinitesimally small pieces of a shape, or movement along a path by an infinitesimal amount. Archimedes derived the formula for the area of a circle by thinking of a circle as a polygon with infinitely many infinitesimal sides [1]. In particular, the construction of calculus was first motivated by this intuitive notion of infinitesimal change. G.W. Leibniz's derivation of calculus made extensive use of “infinitesimal” numbers, which were both nonzero but small enough to add to any real number without changing it noticeably. Although intuitively clear, infinitesi- mals were ultimately rejected as mathematically unsound, and were replaced with the common -δ method of computing limits and derivatives. However, in 1960 Abraham Robinson developed nonstandard analysis, in which the reals are rigor- ously extended to include infinitesimal numbers and infinite numbers; this new extended field is called the field of hyperreal numbers. The goal was to create a system of analysis that was more intuitively appealing than standard analysis but without losing any of the rigor of standard analysis. In this paper, we will explore the construction and various uses of nonstandard analysis. In section 2 we will introduce the notion of an ultrafilter, which will allow us to do a typical ultrapower construction of the hyperreal numbers.
    [Show full text]
  • Cauchy, Infinitesimals and Ghosts of Departed Quantifiers 3
    CAUCHY, INFINITESIMALS AND GHOSTS OF DEPARTED QUANTIFIERS JACQUES BAIR, PIOTR BLASZCZYK, ROBERT ELY, VALERIE´ HENRY, VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, TARAS KUDRYK, SEMEN S. KUTATELADZE, THOMAS MCGAFFEY, THOMAS MORMANN, DAVID M. SCHAPS, AND DAVID SHERRY Abstract. Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson’s frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz’s distinction be- tween assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robin- son’s framework, while Leibniz’s law of homogeneity with the im- plied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide paral- lel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz’s infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Eu- ler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infi- nite exponent. Such procedures have immediate hyperfinite ana- logues in Robinson’s framework, while in a Weierstrassian frame- work they can only be reinterpreted by means of paraphrases de- parting significantly from Euler’s own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson’s framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of de- arXiv:1712.00226v1 [math.HO] 1 Dec 2017 parted quantifiers in his work.
    [Show full text]
  • Plotting, Derivatives, and Integrals for Teaching Calculus in R
    Plotting, Derivatives, and Integrals for Teaching Calculus in R Daniel Kaplan, Cecylia Bocovich, & Randall Pruim July 3, 2012 The mosaic package provides a command notation in R designed to make it easier to teach and to learn introductory calculus, statistics, and modeling. The principle behind mosaic is that a notation can more effectively support learning when it draws clear connections between related concepts, when it is concise and consistent, and when it suppresses extraneous form. At the same time, the notation needs to mesh clearly with R, facilitating students' moving on from the basics to more advanced or individualized work with R. This document describes the calculus-related features of mosaic. As they have developed histori- cally, and for the main as they are taught today, calculus instruction has little or nothing to do with statistics. Calculus software is generally associated with computer algebra systems (CAS) such as Mathematica, which provide the ability to carry out the operations of differentiation, integration, and solving algebraic expressions. The mosaic package provides functions implementing he core operations of calculus | differen- tiation and integration | as well plotting, modeling, fitting, interpolating, smoothing, solving, etc. The notation is designed to emphasize the roles of different kinds of mathematical objects | vari- ables, functions, parameters, data | without unnecessarily turning one into another. For example, the derivative of a function in mosaic, as in mathematics, is itself a function. The result of fitting a functional form to data is similarly a function, not a set of numbers. Traditionally, the calculus curriculum has emphasized symbolic algorithms and rules (such as xn ! nxn−1 and sin(x) ! cos(x)).
    [Show full text]
  • Fermat, Leibniz, Euler, and the Gang: the True History of the Concepts Of
    FERMAT, LEIBNIZ, EULER, AND THE GANG: THE TRUE HISTORY OF THE CONCEPTS OF LIMIT AND SHADOW TIZIANA BASCELLI, EMANUELE BOTTAZZI, FREDERIK HERZBERG, VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, TAHL NOWIK, DAVID SHERRY, AND STEVEN SHNIDER Abstract. Fermat, Leibniz, Euler, and Cauchy all used one or another form of approximate equality, or the idea of discarding “negligible” terms, so as to obtain a correct analytic answer. Their inferential moves find suitable proxies in the context of modern the- ories of infinitesimals, and specifically the concept of shadow. We give an application to decreasing rearrangements of real functions. Contents 1. Introduction 2 2. Methodological remarks 4 2.1. A-track and B-track 5 2.2. Formal epistemology: Easwaran on hyperreals 6 2.3. Zermelo–Fraenkel axioms and the Feferman–Levy model 8 2.4. Skolem integers and Robinson integers 9 2.5. Williamson, complexity, and other arguments 10 2.6. Infinity and infinitesimal: let both pretty severely alone 13 3. Fermat’s adequality 13 3.1. Summary of Fermat’s algorithm 14 arXiv:1407.0233v1 [math.HO] 1 Jul 2014 3.2. Tangent line and convexity of parabola 15 3.3. Fermat, Galileo, and Wallis 17 4. Leibniz’s Transcendental law of homogeneity 18 4.1. When are quantities equal? 19 4.2. Product rule 20 5. Euler’s Principle of Cancellation 20 6. What did Cauchy mean by “limit”? 22 6.1. Cauchy on Leibniz 23 6.2. Cauchy on continuity 23 7. Modern formalisations: a case study 25 8. A combinatorial approach to decreasing rearrangements 26 9.
    [Show full text]
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • Tutorial 8: Solutions
    Tutorial 8: Solutions Applications of the Derivative 1. We are asked to find the absolute maximum and minimum values of f on the given interval, and state where those values occur: (a) f(x) = 2x3 + 3x2 12x on [1; 4]. − The absolute extrema occur either at a critical point (stationary point or point of non-differentiability) or at the endpoints. The stationary points are given by f 0(x) = 0, which in this case gives 6x2 + 6x 12 = 0 = x = 1; x = 2: − ) − Checking the values at the critical points (only x = 1 is in the interval [1; 4]) and endpoints: f(1) = 7; f(4) = 128: − Therefore the absolute maximum occurs at x = 4 and is given by f(4) = 124 and the absolute minimum occurs at x = 1 and is given by f(1) = 7. − (b) f(x) = (x2 + x)2=3 on [ 2; 3] − As before, we find the critical points. The derivative is given by 2 2x + 1 f 0(x) = 3 (x2 + x)1=2 and hence we have a stationary point when 2x + 1 = 0 and points of non- differentiability whenever x2 + x = 0. Solving these, we get the three critical points, x = 1=2; and x = 0; 1: − − Checking the value of the function at these critical points and the endpoints: f( 2) = 22=3; f( 1) = 0; f( 1=2) = 2−4=3; f(0) = 0; f(3) = (12)2=3: − − − Hence the absolute minimum occurs at either x = 1 or x = 0 since in both − these cases the minimum value is 0, while the absolute maximum occurs at x = 3 and is f(3) = (12)2=3.
    [Show full text]
  • Classifying the Representation Type of Infinitesimal Blocks of Category
    Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt (Under the Direction of Brian D. Boe) Abstract Let g be a simple Lie algebra over the field C of complex numbers, with root system Φ relative to a fixed maximal toral subalgebra h. Let S be a subset of the simple roots ∆ of Φ, which determines a standard parabolic subalgebra of g. Fix an integral weight ∗ µ µ ∈ h , with singular set J ⊆ ∆. We determine when an infinitesimal block O(g,S,J) := OS of parabolic category OS is nonzero using the theory of nilpotent orbits. We extend work of Futorny-Nakano-Pollack, Br¨ustle-K¨onig-Mazorchuk, and Boe-Nakano toward classifying the representation type of the nonzero infinitesimal blocks of category OS by considering arbitrary sets S and J, and observe a strong connection between the theory of nilpotent orbits and the representation type of the infinitesimal blocks. We classify certain infinitesimal blocks of category OS including all the semisimple infinitesimal blocks in type An, and all of the infinitesimal blocks for F4 and G2. Index words: Category O; Representation type; Verma modules Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt B.A., Utah State University, 1999 M.S., Utah State University, 2001 M.A, The University of Georgia, 2006 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Athens, Georgia 2008 c 2008 Kenyon J. Platt All Rights Reserved Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J.
    [Show full text]
  • 0.999… = 1 an Infinitesimal Explanation Bryan Dawson
    0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder .
    [Show full text]
  • Understanding Student Use of Differentials in Physics Integration Problems
    PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 9, 020108 (2013) Understanding student use of differentials in physics integration problems Dehui Hu and N. Sanjay Rebello* Department of Physics, 116 Cardwell Hall, Kansas State University, Manhattan, Kansas 66506-2601, USA (Received 22 January 2013; published 26 July 2013) This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq). In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second- semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics. DOI: 10.1103/PhysRevSTPER.9.020108 PACS numbers: 01.40.Àd mathematical symbols [3]. For instance, mathematicians I. INTRODUCTION often use x; y asR variables and the integrals are often written Mathematical integration is widely used in many intro- in the form fðxÞdx, whereas in physics the variables ductory and upper-division physics courses.
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Connes on the Role of Hyperreals in Mathematics
    Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V.
    [Show full text]