Neutral Emergence and Coarse Graining Cellular Automata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cellular Automata in the Triangular Tessellation
Complex Systems 8 (1994) 127- 150 Cellular Automata in the Triangular Tessellation Cart er B ays Departm ent of Comp uter Science, University of South Carolina, Columbia, SC 29208, USA For the discussion below the following definitions are helpful. A semito talistic CA rule is a rule for a cellular aut omaton (CA) where (a) we tally the living neighbors to a cell without regard to their orientation with respect to th at cell, and (b) the rule applied to a cell may depend upon its current status.A lifelike rule (LFR rule) is a semitotalistic CA rule where (1) cells have exactly two states (alive or dead);(2) the rule giving the state of a cell for the next generation depends exactly upon (a) its state this generation and (b) the total count of the number of live neighbor cells; and (3) when tallying neighbors of a cell, we consider exactly those neighbor ing cells that touch the cell in quest ion. An LFR rule is written EIEhFIFh, where EIEh (t he "environment" rule) give th e lower and upper bounds for the tally of live neighbors of a currently live cell C so that C remains alive, and FlFh (the "fertility" rule) give the lower and upp er bounds for the tally of live neighbors required for a current ly dead cell to come to life. For an LFR rule to specify a game of Life we impose two further conditions: (A) there must exist at least one glider (t ranslat ing oscillator) t hat is discoverable with prob ability one by st arting with finite random initi al configurations (sometimes called "random primordial soup") , and (B) th e probability is zero that a fi nite rando m initial configuration leads to unbounded growth. -
Cellular Automata, Pdes, and Pattern Formation
18 Cellular Automata, PDEs, and Pattern Formation 18.1 Introduction.............................................. 18 -271 18.2 Cellular Automata ....................................... 18 -272 Fundamentals of Cellular Automaton Finite-State Cellular • Automata Stochastic Cellular Automata Reversible • • Cellular Automata 18.3 Cellular Automata for Partial Differential Equations................................................. 18 -274 Rules-Based System and Equation-Based System Finite • Difference Scheme and Cellular Automata Cellular • Automata for Reaction-Diffusion Systems CA for the • Wave Equation Cellular Automata for Burgers Equation • with Noise 18.4 Differential Equations for Cellular Automata.......... 18 -277 Formulation of Differential Equations from Cellular Automata Stochastic Reaction-Diffusion • 18.5 PatternFormation ....................................... 18 -278 Complexity and Pattern in Cellular Automata Comparison • of CA and PDEs Pattern Formation in Biology and • Xin-She Yang and Engineering Y. Young References ....................................................... 18 -281 18.1 Introduction A cellular automaton (CA) is a rule-based computing machine, which was first proposed by von Newmann in early 1950s and systematic studies were pioneered by Wolfram in 1980s. Since a cellular automaton consists of space and time, it is essentially equivalent to a dynamical system that is discrete in both space and time. The evolution of such a discrete system is governed by certain updating rules rather than differential equations. -
Representing Reversible Cellular Automata with Reversible Block Cellular Automata Jérôme Durand-Lose
Representing Reversible Cellular Automata with Reversible Block Cellular Automata Jérôme Durand-Lose To cite this version: Jérôme Durand-Lose. Representing Reversible Cellular Automata with Reversible Block Cellular Automata. Discrete Models: Combinatorics, Computation, and Geometry, DM-CCG 2001, 2001, Paris, France. pp.145-154. hal-01182977 HAL Id: hal-01182977 https://hal.inria.fr/hal-01182977 Submitted on 6 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 145–154 Representing Reversible Cellular Automata with Reversible Block Cellular Automata Jérôme Durand-Lose Laboratoire ISSS, Bât. ESSI, BP 145, 06 903 Sophia Antipolis Cedex, France e-mail: [email protected] http://www.i3s.unice.fr/~jdurand received February 4, 2001, revised April 20, 2001, accepted May 4, 2001. Cellular automata are mappings over infinite lattices such that each cell is updated according to the states around it and a unique local function. Block permutations are mappings that generalize a given permutation of blocks (finite arrays of fixed size) to a given partition of the lattice in blocks. We prove that any d-dimensional reversible cellular automaton can be expressed as the composition of d 1 block permutations. -
Single Digits
...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library -
Cellular Automation
John von Neumann Cellular automation A cellular automaton is a discrete model studied in computability theory, mathematics, physics, complexity science, theoretical biology and microstructure modeling. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays.[2] A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t = 0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the stochastic cellular automaton and asynchronous cellular automaton. The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. -
Planning Meets Self-Organization Integrating
Frontiers of Architectural Research (2012) 1, 400–404 Available online at www.sciencedirect.com www.elsevier.com/locate/foar Planning meets self-organization: Integrating interactive evolutionary computation with cellular automata for urban planning Hao Hua Zi.014 Tiechestr. 49; Zurich 8037, Switzerland Received 6 April 2012; received in revised form 13 August 2012; accepted 15 August 2012 KEYWORDS Abstract Interactive; The experiment carried by the author in 2010 is to test if self-organizing systems could be Evolutionary; systematically regulated according to the user’s preference for global behavior. Self-organizing Self-organization; has been appreciated by architects and urban planners for its richness in the emerging global Cellular automata behaviors; however, design and self-organizing are contradictory in principle. It seems that it is inevitable to balance the design and self-organization if self-organization is employed in a design task. There have been approaches combining self-organizing with optimization process in a parallel manner. This experiment strives to regulate a self-organizing system according to non-defined objectives via real-time interaction between the user and the computer. Particularly, cellular automaton is employed as the self-organizing system to model a city district. & 2012. Higher Education Press Limited Company. Production and hosting by Elsevier B.V. All rights reserved. 1. Background and planning. We can group these fields into two categories: the natural and the artificial. The former observes certain 1.1. Self-organization extraordinary phenomena in natural systems and interprets them by self-organization; the latter constructs artificial systems running in a self-organizing manner for novel solu- The concept of self-organization emerged from a wide range tions to certain problems. -
Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing
LETTER Communicated by Richard Rohwer Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing Ozgur Yilmaz ozguryilmazresearch.net Turgut Ozal University, Department of Computer Engineering, Ankara 06010, Turkey This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic com- putation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of au- tomaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolu- tion of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is shown to be capable of long-term memory, and it requires orders of magnitude less computation compared to echo state networks. As the focus of the letter, we suggest that binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing. To demonstrate the capability of the proposed system, we make analogies directly on image data by asking, What is the automobile of air? 1 Introduction Many real-life problems in artificial intelligence require the system to re- member previous input. Recurrent neural networks (RNN) are powerful tools of machine learning with memory. For this reason, they have be- come one of the top choices for modeling dynamical systems. In this letter, we propose a novel recurrent computation framework that is analogous to echo state networks (ESN) (see Figure 1b) but with significantly lower computational complexity. -
Emergent Defect Dynamics in Two-Dimensional Cellular Automata
Journal of Cellular Automata, Vol. 0, pp. 1–14 ©2008 Old City Publishing, Inc. Reprints available directly from the publisher Published by license under the OCP Science imprint, Photocopying permitted by license only a member of the Old City Publishing Group Emergent Defect Dynamics in Two-Dimensional Cellular Automata Martin Delacourt1 and Marcus Pivato2,∗ 1Laboratoire de l’Informatique du Parallélisme, École Normale Supérieure de Lyon, 46 Allée d’Italie, 69634 Lyon, France 2Department of Mathematics, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, Canada Received: November 1, 2007. Accepted: March 12, 2008. A cellular automaton (CA) exhibits ‘emergent defect dynamics’ (EDD) if generic initial conditions rapidly coalesce into large, homogeneous ‘domains’(exhibiting some spatial pattern) separated by moving ‘defects’. There are many known examples of EDD in one-dimensional CA, but not in higher dimensions. We describe the results of an automated search for two-dimensional CA exhibiting EDD. We found a plethora of examples of EDD, but we also found that the proportion of CA with EDD declines rapidly with increasing neighbourhood size. Keywords: Defect, dislocation, kink, domain boundary, emergent defect dynamics. A well-known phenomenon in one-dimensional cellular automata (CA) is the emergence of homogeneous ‘domains’—each exhibiting some regular spa- tial pattern—separated by defects (or ‘domain boundaries’ or ‘kinks’) which evolve and propagate over time, and occasionally collide. This emergent defect dynamics (EDD) is clearly visible, for example, in elementary cellular automata #18, #22, #54, #62, #110, and #184. EDD in one-dimensional CAhas been studied both empirically [1–5,11] and theoretically [6,8–10,13–16,19]. -
Self-Organized Patterns and Traffic Flow in Colonies of Organisms
Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates∗ Debashish Chowdhury1, Katsuhiro Nishinari2, and Andreas Schadschneider3 1 Department of Physics Indian Institute of Technology Kanpur 208016, India 2 Department of Applied Mathematics and Informatics Ryukoku University Shiga 520-2194, Japan 3 Institute for Theoretical Physics Universit¨at zu K¨oln 50937 K¨oln, Germany August 6, 2018 Abstract arXiv:q-bio/0401006v3 [q-bio.PE] 5 Feb 2004 Flocks of birds and schools of fish are familiar examples of spa- tial patterns formed by living organisms. In contrast to the patterns on the skins of, say, zebra and giraffe, the patterns of our interest are transient although different patterns change over different time scales. The aesthetic beauty of these patterns have attracted the attentions of poets and philosophers for centuries. Scientists from ∗A longer version of this article will be published elsewhere 1 various disciplines, however, are in search of common underlying prin- ciples that give rise to the transient patterns in colonies of organisms. Such patterns are observed not only in colonies of organisms as sim- ple as single-cell bacteria, as interesting as social insects like ants and termites as well as in colonies of vertebrates as complex as birds and fish but also in human societies. In recent years, particularly over the last one decade, physicists have utilized the conceptual framework as well as the methodological toolbox of statistical mechanics to unravel the mystery of these patterns. In this article we present an overview emphasizing the common trends that rely on theoretical modelling of these systems using the so-called agent-based Lagrangian approach. -
Diary Presage Instructions
DIARY PRESAGE INSTRUCTIONS PAUL ROMHANY MIKE MAIONE Copyright © 2013 Paul Romhany, Mike Maione All rights reserved. DEDICATION This routine is dedicated to our wives who put up with us asking them to keep thinking of a day in the week. CONTENTS 1 INTRODUCTION!-----------------------------------1 2 BASIC WORKINGS!--------------------------------2 3 PROVERB ROUTINE!-----------------------------4 4 SCRATCH & WIN PREDICTION!---------------9 5 COLOR PREDICTION!---------------------------12 6 TRIBUTE TO HOY!-------------------------------14 7 ROYAL FLUSH!------------------------------------15 8 FORTUNE COOKIE!------------------------------16 9 ACAAN WEEK!-------------------------------------20 10 MIND READING WORDS!--------------------23 11. BIRTHDAY CARD TRICK!--------------------29 12. BIRTHDAY CARD TRICK 2!------------------35 13. BOOK TEST!-------------------------------------37 14. DISTRESSING!----------------------------------38 ACKNOWLEDGMENTS We would like to acknowledge the following people. Richard Webster, Stanley Collins, Terry Rogers, Long Island’s C.U.E. Club, Joe Silkie 1 INTRODUCTION Thank you for purchasing Diary Presage. We truly believe you have in your procession one of the strongest book tests, certainly the strongest Diary type book test ever devised. A statement we don’t use lightly and after reading these instructions and using the book we think you’ll agree. The concept originally came about after I reviewed another book test by Mike using the same principle called Celebrity Presage. I contacted Mike with my idea for the diary and together we worked on producing Diary Presage. It went through many stages until we got it to what you have now, and in collaboration with Richard Webster and Atlas Brookings we can now offer the fraternity this amazing product. After working this ourselves we both realize the hardest part is holding back and not performing all the routines at once. -
Name of Game Date of Approval Comments Nevada Gaming Commission Approved Gambling Games Effective August 1, 2021
NEVADA GAMING COMMISSION APPROVED GAMBLING GAMES EFFECTIVE AUGUST 1, 2021 NAME OF GAME DATE OF APPROVAL COMMENTS 1 – 2 PAI GOW POKER 11/27/2007 (V OF PAI GOW POKER) 1 BET THREAT TEXAS HOLD'EM 9/25/2014 NEW GAME 1 OFF TIE BACCARAT 10/9/2018 2 – 5 – 7 POKER 4/7/2009 (V OF 3 – 5 – 7 POKER) 2 CARD POKER 11/19/2015 NEW GAME 2 CARD POKER - VERSION 2 2/2/2016 2 FACE BLACKJACK 10/18/2012 NEW GAME 2 FISTED POKER 21 5/1/2009 (V OF BLACKJACK) 2 TIGERS SUPER BONUS TIE BET 4/10/2012 (V OF BACCARAT) 2 WAY WINNER 1/27/2011 NEW GAME 2 WAY WINNER - COMMUNITY BONUS 6/6/2011 21 + 3 CLASSIC 9/27/2000 21 + 3 CLASSIC - VERSION 2 8/1/2014 21 + 3 CLASSIC - VERSION 3 8/5/2014 21 + 3 CLASSIC - VERSION 4 1/15/2019 21 + 3 PROGRESSIVE 1/24/2018 21 + 3 PROGRESSIVE - VERSION 2 11/13/2020 21 + 3 XTREME 1/19/1999 (V OF BLACKJACK) 21 + 3 XTREME - (PAYTABLE C) 2/23/2001 21 + 3 XTREME - (PAYTABLES D, E) 4/14/2004 21 + 3 XTREME - VERSION 3 1/13/2012 21 + 3 XTREME - VERSION 4 2/9/2012 21 + 3 XTREME - VERSION 5 3/6/2012 21 MADNESS 9/19/1996 21 MADNESS SIDE BET 4/1/1998 (V OF 21 MADNESS) 21 MAGIC 9/12/2011 (V OF BLACKJACK) 21 PAYS MORE 7/3/2012 (V OF BLACKJACK) 21 STUD 8/21/1997 NEW GAME 21 SUPERBUCKS 9/20/1994 (V OF 21) 211 POKER 7/3/2008 (V OF POKER) 24-7 BLACKJACK 4/15/2004 2G'$ 12/11/2019 2ND CHANCE BLACKJACK 6/19/2008 NEW GAME 2ND CHANCE BLACKJACK – VERSION 2 9/24/2008 2ND CHANCE BLACKJACK – VERSION 3 4/8/2010 3 CARD 6/24/2021 NEW GAME NAME OF GAME DATE OF APPROVAL COMMENTS 3 CARD BLITZ 8/22/2019 NEW GAME 3 CARD HOLD’EM 11/21/2008 NEW GAME 3 CARD HOLD’EM - VERSION 2 1/9/2009 -
Detecting Emergent Processes in Cellular Automata with Excess Information
Detecting emergent processes in cellular automata with excess information David Balduzzi1 1 Department of Empirical Inference, MPI for Intelligent Systems, Tubingen,¨ Germany [email protected] Abstract channel – transparent occasions whose outputs are marginal- ized over. Finally, some occasions are set as ground, which Many natural processes occur over characteristic spatial and fixes the initial condition of the coarse-grained system. temporal scales. This paper presents tools for (i) flexibly and Gliders propagate at 1/4 diagonal squares per tic – the scalably coarse-graining cellular automata and (ii) identify- 4n ing which coarse-grainings express an automaton’s dynamics grid’s “speed of light”. Units more than cells apart cannot well, and which express its dynamics badly. We apply the interact within n tics, imposing constraints on which coarse- tools to investigate a range of examples in Conway’s Game grainings can express glider dynamics. It is also intuitively of Life and Hopfield networks and demonstrate that they cap- clear that units should group occasions concentrated in space ture some basic intuitions about emergent processes. Finally, and time rather than scattered occasions that have nothing to we formalize the notion that a process is emergent if it is bet- ter expressed at a coarser granularity. do with each other. In fact, it turns out that most coarse- grainings express a cellular automaton’s dynamics badly. The second contribution of this paper is a method for dis- Introduction tinguishing good coarse-grainings from bad based on the following principle: Biological systems are studied across a range of spa- tiotemporal scales – for example as collections of atoms, • Coarse-grainings that generate more information, rela- molecules, cells, and organisms (Anderson, 1972).