Scenegraphs and Engines Scenegraphs

Total Page:16

File Type:pdf, Size:1020Kb

Scenegraphs and Engines Scenegraphs Scenegraphs and Engines Scenegraphs Application Scenegraph Windows/Linux OpenGL Hardware Vienna University of Technology 2 Scenegraphs Choosing the right libraries is a difficult process Very different target applications Different capabilities Underlying Graphics APIs Needs to fit the content pipeline Important for application development Not important for research (though convenient) Vienna University of Technology 3 Content Pipeline Choosing the right libraries is a difficult process Very different target applications Different capabilities Underlying Graphics APIs/Operating Systems Needs to fit the content pipeline Important for application development Not important for research (though convenient) Vienna University of Technology 4 Typical Content Pipeline We need: Content creation tools Exporters Scenegraph/ Engine MechAssault 2 content pipeline Vienna University of Technology 5 DCC tools Only “real” open source option: Blender EthiEverything you nee dfG/Mid for Game/Movie production Modelling/Rigging Animation Rendering/Compositing Contains complete game engine+editor Fully integrated with UI Immense feature list causes steep learning curve! Vienna University of Technology 6 Blender Vienna University of Technology 7 Blender Vienna University of Technology 8 Wings3D Easy to use subdivion surface modeller Vienna University of Technology 9 Textures Gimp: Full featured image editing Vienna University of Technology 10 Scenegraphs/Engines Scenegraphs deal with Rendering EiEngines dlithdeal with Rendering Physics AI Audio Game logic … Vienna University of Technology 11 OpenScenegraph “Inofficial” Scenegraph of OpenGL Implements OpenGL 2. 0 Very clean design Very high performance High portability Manipulators Targeted to VR Application Visualisation Vienna University of Technology 12 Delta3D “Game” and Simulation-Engine, integrates OpenScenegraph OpenDynamics Engine Character Animation Library OpenAL (Audio) Game Networking Engine Tracker Editor Vienna University of Technology 13 OGRE Commercial Grade Graphics Engine Highly active community Strong modular design Bindings/Implementations in C++,Java, C#, Python, Ruby State of the art rendering Abstracts DirectX and OpenGL Combines with a lot of other librar ies Build your own game engine! Vienna University of Technology 14 OGRE Countless tools/addons Very extensible “Higher order” render management state management, spatial culling, dealing with transparency Proven, stable engine used in several commercial products EthiEverything you nee dtkd to make a computer game! Vienna University of Technology 15 OGRE I will use OGRE example implementations throughout the course Pretty much everything in this course is implemented in OGRE and OGRE addons Very good way to play around with the course contents ..without having to implement the basic algorithms www.ogre3d.org Vienna University of Technology 16 Scenegraphs Open Source delivers many choices: OGRE Irrlicht OpenScenegraph Crystal Space jME (Java ) Pd3DPanda3D OpenSG Blender Game Engine The Nebula Device 2 Reality Factory C4 Engine RealmForge Many, many others… 3D Engine Database/Search Engine: http://www.devmaster .net/engines/ Vienna University of Technology 17 Tipps Learn one of the major DCC Programs Blender, Maya, 3DSMax , Softimage XSI , Cinema4D, Lightwave Takes time and is sometimes painful Learn one of the major scenegraphs/engines Fast implementation of small projects Reference Design/Implementation Choose software on Previous knowledge/ Programming Language RidftRequired features Application content Vienna University of Technology 18.
Recommended publications
  • Geoviewer3d: 3D Geographical Information Viewing
    Ibero-American Symposium on Computer Graphics - SIACG (2006), pp. 1–4 P. Brunet, N. Correia, and G. Baranoski (Editors) GeoViewer3D: 3D Geographical Information Viewing Rafael Gaitán1, María Ten1, Javier Lluch1 y, Luis W. Sevilla2z 1Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 2Consellería de Infraestructuras y Transporte, Avenida de Aragón Valencia, Spain Abstract Our State Government is developing a Geographical Information System (GIS), called gvSIG. This project follows the open source philosophy, and uses JAVA as development platform. Consequently, it is portable and can be used by anyone around the world. In this paper, we describe the design and architecture of a prototype for browsing 3D geospatial information. GeoViewer3D is a system that handles and displays worldwide satellite imagery in- cluding textures and elevation data. It has a modular architecture and an efficient 3D rendering system based on OpenSceneGraph. The system incorporates a disk cache to improve access to GIS data. The goal of this prototype is to join the gvSIG project as 3D information viewer. Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities H.4 [Information Systems Applications]: 1. Introduction Recent advances in 3D technology are gradually enabling the development and exploitation of 3D graphical informa- A Geographical Information System (GISs) is an integrated tion systems [FPM99, Jon89]. New applications, like Nasa system that stores, analyzes, shares, edits and displays spa- World Wind or Google Earth have lately been developed. tial data and associated information. Recently GIS have be- Still, there are only a few 3D geographical information ap- come more important due to the great variety of application plications.
    [Show full text]
  • Framework Para O Desenvolvimento De Experiências Virtuais Com Interacção Háptica
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Framework para o Desenvolvimento de Experiências Virtuais com Interacção Háptica Telmo da Rocha Pereira Mestrado Integrado em Engenharia Informática e Computação Orientador: Prof. A. Augusto de Sousa Co-orientadora: Prof. ª Teresa Restivo Co-orientador: Prof. António Mendes Lopes 28 de Junho de 2010 Framework para o Desenvolvimento de Experiências Virtuais com Interacção Háptica Telmo da Rocha Pereira Mestrado Integrado em Engenharia Informática e Computação Aprovado em provas públicas pelo Júri: Presidente: Professor João Correia Lopes Vogal Externo: Professor António Ramires Fernandes Orientador: Professor António Augusto de Sousa 31 de Julho de 2010 Resumo A presente dissertação apresenta o trabalho efectuado na área do Desenvolvimento de Experiências Virtuais com Interacção Háptica, nomeadamente experiências relacionadas com o comportamento físico de objectos. Este trabalho enquadra-se numa perspectiva de poder introduzir o desenvolvimento de experiências virtuais com interacção háptica no ensino, estando definido como objectivo a concepção de um conjunto de metodologias que permitam criar este tipo de experiências de forma simples e rápida. Inicia-se assim o trabalho com uma revisão bibliográfica das áreas envolvidas, nomeadamente simulação por computador, computação gráfica, realidade virtual e interacção háptica. Seguidamente são investigadas e analisadas possíveis soluções actualmente existentes e passíveis de serem aplicadas. Dado que não se encontrou uma solução que satisfizesse as necessidades do problema, apresenta-se uma análise das tecnologias necessárias para conceber uma nova solução: motor gráfico, motor físico e dispositivo háptico. As duas primeiras tecnologias referidas são alvo de uma avaliação, que permite escolher, de entre um conjunto de opções, qual o motor gráfico e físico que melhor se adequa às necessidades.
    [Show full text]
  • Openscenegraph (OSG)—The Cross-Platform Open Source Scene
    Project Report Student: Katerina Taskova 3-year PhD student International Postgraduate School Jozef Stefan Ljubljana, Slovenia This project was a SIMLAB student internship project financed by a scholarship of the German Academic Exchange Service (DAAD) within the framework of the Stability Pact of Southern Eastern Europe funded by the German federal government. Period of the internship: 06.01.2009 - 29. 03.2009 Department: Computation in Engineering Faculty of Civil Engineering Technique University of Munich Advisor on the project: Dr. Martin Ruess Computation in Engineering Faculty of Civil Engineering Technique University of Munich Project description Idea The main idea was to incorporate user interactivity with simulation models during runtime in order to get an immediate response to model changes, a concept known as Computational Steering. This requires an implementation of a single-sided communication concept (with Massage Passing Interface, version MPI2) for the communication between simulation and visualization (two independently running processes with their own memory). Simulation The simulation process simulates the behavior of a real physical system. More specifically, it simulates the vibration (dynamic response) from a harmonic/periodic loading on thin plates. This process permanently produces results, scalar simulation data in sequential time steps, which are the input for the visualization process. Typically this calculation is numerical expensive and time-consuming. For this purpose was used a C++ implemented Finite-Element software package for dynamic simulation by Dr.Martin Ruess and it wasn’t a task for implementation in this project. Visualization The visualization process is the second independent process responsible exclusively for the visualization of the results generated with the thin plate vibration simulator.
    [Show full text]
  • Blinding Silence a Sound-Based Puzzle Game Interactive Media and Game Development
    Project Number: RL1-P009 Blinding Silence A Sound-Based Puzzle Game Interactive Media and Game Development A Major Qualifying Project Report submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by Ryan Bedell Elliot Borenstein Drew Hickcox Lukas Wong-Achorn Advised by Professor Jennifer deWinter Professor Robert W. Lindeman Abstract for the development of Blinding Silence: A Sound Based Puzzle Game By Ryan Bedell, Elliot Borenstein, Drew Hickcox, Lukas Wong-Achorn This is an Interactive Media and Game Development Major Qualifying Project report, focusing on the state and development of a video game based on Terathon’s C4 Engine. The game, titled Blinding Silence, is a single player game with a unique sound-based visual aesthetic and Wiimote-based control scheme. This document discusses the state, development, and original design of the game Blinding Silence. Blinding Silence has a unique control scheme that uses two Wiimotes and an infrared LED headset for in- game navigation. The game also has a unique visual design where every noise makes a burst of light, allowing players to “see” sound. Through these the player solves physical puzzles. The player controls a blind man with a mysterious staff he uses as a cane. The world has been taken over by darkness, with people endlessly repeating the same task forever. The man discovers he can influence people with sound and begins uncovering the chain of events that led to the catastrophe. Blinding Silence has a visual style indentified by its sound-based lighting. Models are viewed in silhouette, which removes the importance of textures and increases the importance of models.
    [Show full text]
  • Game Engines
    3/16/10 Game Engines Technical Game Development II Professor Charles Rich Computer Science Department [email protected] IMGD 4000 (D 10) 1 Pedagogical Goal . Your technical skills should not be tied to any particular game engine . Just like your programming skills should not be tied to any particular programming language . Use the best tools for each job . ... or the tools you were given IMGD 4000 (D 10) 2 1 3/16/10 Definition Game Engine A series of modules and interfaces that allows a development team to focus on product game- play content, rather than technical content. [Julian Gold, OO Game Dev.] . But this class is about “the technical content” ! IMGD 4000 (D 10) 3 Buy versus Build . Depends on your needs, resources and constraints • technical needs (e.g., “pushing the envelope” ?) • financial resources (e.g., venture capital ?) • time constraints (e.g., 1 mo. or 2 yr. ?) • platform constraints (e.g., Flash ?) • other factors (e.g., sequel ?) . Most games commonly built today with some sort of “engine layer” IMGD 4000 (D 10) 4 2 3/16/10 Types of Engine Architectures (Roughly) . Monolithic (e.g., Unreal Engine) . Modular (e.g., C4 Engine) . Tool Kit (e.g., jME) IMGD 4000 (D 10) 5 Monolithic Engines (e.g., Unreal) . “old style”--typically grew out of specific game . tend to be genre-specific . difficult to go beyond extensions/modifications not anticipated in (e.g., scripting) API . proven, comprehensive capabilities IMGD 4000 (D 10) 6 3 3/16/10 Modular Engines (e.g., C4) . “modern”--often developed by game engine company . use object-oriented techniques for greater modularity .
    [Show full text]
  • CSE 167: Introduction to Computer Graphics Lecture #9: Scene Graph
    CSE 167: Introduction to Computer Graphics Lecture #9: Scene Graph Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 2 due tomorrow at 2pm Midterm next Tuesday 2 HP Summer Internship Calling all UCSD students who are interested in a computer science internship! San Diego can be a tough place to gain computer science experience as a student compared to other cities which is why I am so excited to present this positon to your sharp students! (There are 10 open spots for the right candidates) The position is with HP and will be for the duration of the upcoming summer. Here are a few details about the exciting opportunity. Company: HP Position Title: Refresh Support Technician Contract/Perm: 3-4 month contract Pay Rate: $13-15/hr based on experience Interview Process: Hire off of a resume Work Address: Rancho Bernardo location Top Skills: Refresh windows 7 & 8.1 experience Must have: Windows refresh 7 or 8.1 experience Minimum Vocational/Diploma/Associate Degree (technical field) Equivalent with 1-2 years of working experience in related fields, or Degree holder with no or less than 1 year relevant working experience. This is a competitive position and will move quickly. If you have any students who might be interested please have them contact me to be considered for this role. My direct line is 858 568 7582 . Curtis Stitts Technical Recruiter THE SELECT GROUP [email protected] | Web Site 9339 Genesee Avenue, Ste. 320 | San Diego, CA 92121 3 Lecture Overview Scene Graphs
    [Show full text]
  • Game AI in Delta3d
    Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Games (CIG 2007) Game AI in Delta3D Christian J. Darken Bradley G. Anderegg Perry L. McDowell MOVES Institute/CS Dept. Alion Science and Technology Corp MOVES Institute Naval Postgraduate School banderegg at alionscience dot com Naval Postgraduate School cjdarken at nps dot edu mcdowell at nps dot edu Abstract—Delta3D is a GNU-licensed open source game space, we came up with a four-part philosophical credo upon engine with an orientation towards supporting “serious games” such as those with defense and homeland security applications. which we based building our game and simulation engine: AI is an important issue for serious games, since there is more pressure to “get the AI right”, as opposed to providing an 1. Maintain openness in all aspects to avoid lock-ins entertaining user experience. We describe several of our near- and increase flexibility. and longer-term AI projects oriented towards making it easier to build AI-enhanced applications in Delta3D. 2. Maintain the capability to support multiple genres, Keywords: Artificial Intelligence, Game Engines since we never know what type of application it will have to support next. I.INTRODUCTION Delta3D is a open source (Lesser GNU Public License 3. Build the engine in a modular fashion so that we (LPGL)) game engine created at the MOVES Institute, part can swap anything out as technologies mature at of the Naval Postgraduate School in Monterey. While different rates. originally designed for military game-based simulations, Delta3D can be used as the underlying architecture for a 4.
    [Show full text]
  • Estudo Comparativo Entre Engines De Jogos
    FACULDADE DE TECNOLOGIA, CIÊNCIAS E EDUCAÇÃO Graduação GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO Estudo comparativo entre engines de jogos Carlos Gabriel Agostinho Gonçalo Klinke Adinovam Henriques de Macedo Pimenta (Orientador) RESUMO A evolução das engines está agora se movendo para jogos mais realistas e tecnicamente ricos em vários campos, como a física, sons e renderização. Das primeiras engines até as engines mais atuais voltadas para jogos 3D, o objetivo do desenvolvimento permanece o mesmo: fornecer ao desenvolvedor uma plataforma para criar jogos exclusivos de tal maneira que os desenvolvedores não precisem escrever ou desenvolver o jogo a partir do zero, mas apenas implementar a ideia com a ajuda de uma engine. Desta maneira, muitos desenvolvedores (experientes ou iniciantes) têm encontrado nestas ferramentas a maneira mais simples, rápida e profissional de desenvolver novos jogos. Porém, com tantas engines disponíveis, o desenvolvedor precisa fazer uma escolha considerando os dados mais relevantes ao seu projeto. Este trabalho analisou dados de vários atributos relevantes ao processo de escolha considerando as 10 engines mais populares atualmente, servindo de conhecimento e auxílio à este processo decisório. Palavras-chave: Motores de jogos. Desenvolvimento de jogos. Jogos digitais. ABSTRACT The evolution of the game engines is now moving to more realistic and technically rich games in various fields such as physics, sounds and rendering. From the first enginesto the most current engines for 3D gaming, the goal of development remains the same: to provide the developer with a platform to create exclusive games in such a way that developers do not have to write or develop the game from scratch, but only implement the idea with the help of an engine.
    [Show full text]
  • Openscenegraph 3.0 Beginner's Guide
    OpenSceneGraph 3.0 Beginner's Guide Create high-performance virtual reality applications with OpenSceneGraph, one of the best 3D graphics engines Rui Wang Xuelei Qian BIRMINGHAM - MUMBAI OpenSceneGraph 3.0 Beginner's Guide Copyright © 2010 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: December 2010 Production Reference: 1081210 Published by Packt Publishing Ltd. 32 Lincoln Road Olton Birmingham, B27 6PA, UK. ISBN 978-1-849512-82-4 www.packtpub.com Cover Image by Ed Maclean ([email protected]) Credits Authors Editorial Team Leader Rui Wang Akshara Aware Xuelei Qian Project Team Leader Reviewers Lata Basantani Jean-Sébastien Guay Project Coordinator Cedric Pinson
    [Show full text]
  • Game Engines
    Game Engines Martin Samuelčík VIS GRAVIS, s.r.o. [email protected] http://www.sccg.sk/~samuelcik Game Engine • Software framework (set of tools, API) • Creation of video games, interactive presentations, simulations, … (2D, 3D) • Combining assets (models, sprites, textures, sounds, …) and programs, scripts • Rapid-development tools (IDE, editors) vs coding everything • Deployment on many platforms – Win, Linux, Mac, Android, iOS, Web, Playstation, XBOX, … Game Engines 2 Martin Samuelčík Game Engine Assets Modeling, scripting, compiling Running compiled assets + scripts + engine Game Engines 3 Martin Samuelčík Game Engine • Rendering engine • Scripting engine • User input engine • Audio engine • Networking engine • AI engine • Scene engine Game Engines 4 Martin Samuelčík Rendering Engine • Creating final picture on screen • Many methods: rasterization, ray-tracing,.. • For interactive application, rendering of one picture < 33ms = 30 FPS • Usually based on low level APIs – GDI, SDL, OpenGL, DirectX, … • Accelerated using hardware • Graphics User Interface, HUD Game Engines 5 Martin Samuelčík Scripting Engine • Adding logic to objects in scene • Controlling animations, behaviors, artificial intelligence, state changes, graphics effects, GUI, audio execution, … • Languages: C, C++, C#, Java, JavaScript, Python, Lua, … • Central control of script executions – game consoles Game Engines 6 Martin Samuelčík User input Engine • Detecting input from devices • Detecting actions or gestures • Mouse, keyboard, multitouch display, gamepads, Kinect
    [Show full text]
  • A Survey of Technologies for Building Collaborative Virtual Environments
    The International Journal of Virtual Reality, 2009, 8(1):53-66 53 A Survey of Technologies for Building Collaborative Virtual Environments Timothy E. Wright and Greg Madey Department of Computer Science & Engineering, University of Notre Dame, United States Whereas desktop virtual reality (desktop-VR) typically uses Abstract—What viable technologies exist to enable the nothing more than a keyboard, mouse, and monitor, a Cave development of so-called desktop virtual reality (desktop-VR) Automated Virtual Environment (CAVE) might include several applications? Specifically, which of these are active and capable display walls, video projectors, a haptic input device (e.g., a of helping us to engineer a collaborative, virtual environment “wand” to provide touch capabilities), and multidimensional (CVE)? A review of the literature and numerous project websites indicates an array of both overlapping and disparate approaches sound. The computing platforms to drive these systems also to this problem. In this paper, we review and perform a risk differ: desktop-VR requires a workstation-class computer, assessment of 16 prominent desktop-VR technologies (some mainstream OS, and VR libraries, while a CAVE often runs on building-blocks, some entire platforms) in an effort to determine a multi-node cluster of servers with specialized VR libraries the most efficacious tool or tools for constructing a CVE. and drivers. At first, this may seem reasonable: different levels of immersion require different hardware and software. Index Terms—Collaborative Virtual Environment, Desktop However, the same problems are being solved by both the Virtual Reality, VRML, X3D. desktop-VR and CAVE systems, with specific issues including the management and display of a three dimensional I.
    [Show full text]
  • Game Creation Blueprint What You Need to Know to Build Your Own Games
    1 Terms and Conditions LEGAL NOTICE The Publisher has strived to be as accurate and complete as possible in the creation of this report, notwithstanding the fact that he does not warrant or represent at any time that the contents within are accurate due to the rapidly changing nature of the Internet. While all attempts have been made to verify information provided in this publication, the Publisher assumes no responsibility for errors, omissions, or contrary interpretation of the subject matter herein. Any perceived slights of specific persons, peoples, or organizations are unintentional. In practical advice books, like anything else in life, there are no guarantees of income made. Readers are cautioned to reply on their own judgment about their individual circumstances to act accordingly. This book is not intended for use as a source of legal, business, accounting or financial advice. All readers are advised to seek services of competent professionals in legal, business, accounting and finance fields. You are encouraged to print this book for easy reading. 2 Table of Contents Foreword Chapter 1: Game Creation Basics Chapter 2: What Tools Are Needed? Chapter 3: 2D Game Creation Software Chapter 4: 3D Game Creation Software Chapter 5: Game Modification Chapter 6: Building a Game on a Social Site 3 Foreword Video gaming can be a very entertaining experience for many people. Sometimes you will notice that hours have gone by while you are playing. If you are a person who enjoys playing video games you may want to consider creating your own video game. The market for video games continuously expands.
    [Show full text]