Color. the Total Wavefunction Is Then Written As the Product of A) a Spatial Part Ψ(R), B) a Spin Part Χ, and C) a Color Wavefunction Χc

Total Page:16

File Type:pdf, Size:1020Kb

Color. the Total Wavefunction Is Then Written As the Product of A) a Spatial Part Ψ(R), B) a Spin Part Χ, and C) a Color Wavefunction Χc Time reversal Isospin Symmetry e.g. proton and neutron The strong forces on u and d quarks are the same, as far as we know but the (smaller) electromagnetic forces are different because the quarks have different electric charges.In addition, the d quark is a few MeV/c2 heavier than the u quark, as we discuss later. This isospin symmetry, as it is called, is a good approximation. Families of particles like (6.1) and (6.2) are called isospin multiplets. Isospin quantum numbers • In order to formulate isospin symmetry mathematically, we first introduce three new quantum numbers, that are conserved in strong interactions. 1)Hypercharge Y is defined by are the baryon number, charm bottom and top. 2)Also introduce Q- em charge, 3)We define isospin Note; mathematics of I, I3 similar to mathematics of spin quantum numbers: Simple quark model. Allowed quantum numbers: Isospin and Strangeness For baryons allowed quark states are, and strange quark does not contribute to isospin An example: sigma baryons isotriplet • The A member of triplet can be produced e.g. in reaction: and then decays in one of the ways: In weak interaction: lifetime 8x10-10 s If we discovered in these reactions and do not know its quantum numbers, we can find from conservation laws that for And hence : Since I3=1, we predict two more states with I3=0 and I3=-1, also discovered Two families of the lightest mesons (including u,d,s quarks) for quark-antiquark pair 0- and 1- Parity for L=0, and the spin S = 0 or S=1 in quark model Comment on u–anti u, d-anti d, and s-anti s states • For these states it can be matematically shown (see appendix C) that states with definite isospin quantum numbers are: • The state. Has the same quantum numbers as mix with and can mix These states: 6. 23 and mixture 6.24 ab, correspond to The light baryons in quark model Spin/ Parity.: (L=0) and Baryon magnetic moments prediction from adding Dirac’s quarks moments (in simple quark model) The agreement with the 3-quark simple model of baryons is not exact: there is an admixture of other states with the same quantum numbers: e.g. 1) not simple S states (like for deutron), or 2) pentaquark states or something else? The u, d quark mass splitting (1) In the simple quark model we effectively assume that there are only valence quarks in the hadrons: quark-antiquark pairs in mesons, and 3 quarks in baryons (or 3 antiquarks in antibaryons) We assume no gluons, no see of quark antiquark pairs, no exotic states. In this case if we try to calculate the masses of the quarks, we will get the so called “constituent” masses, (see e.g. constituent quark masses calculated when fitting the magnetic moments of quarks in Chapter 6): ms = 510MeV/c2, mu,d = 336MeV/c2. (6.32) Constituent masses of the quarks, listed in 6.32, are “effective” quark masses, including for instance the mass of the relativistic gluon cloud emitted by these quarks. Not surprisingly the “constituent” masses are (significantly) larger than the more realistic for many calculations “bare” quark masses, which should not take into account e.g. the relativistic mass of gluon clouds, emitted by quarks. Such “bare” masses (only of the order of few MeV for u and d quarks), are usually called “current algebra” quark masses, and they will be discussed later in this course. Here we estimate the mass splitting of the u and d constituent quarks. We get a reasonable value for the mass splitting, comparable to the one obtained in more sophisticated calculations, which are not discussed here. The u, d quark mass splitting (2) We will use the measured masses of Σ particles to estimate the quark mass splitting, and assume that the quark mass difference arise from the quark mass differences, and from electromagnetic interactions between pairs of quarks (see for details M&S 4th Chapter 6) We have: where eq are the quark charges, δ is a constant, and M0 is the contribution to the Σ masses arising from the strong interactions between the quarks which is assumed to be the same for all pairs of quarks. From these equations we get: This estimate is within a factor of 2 from more sophisticated calculations. Hadron mass splittings The mass differences between different members of a given supermultiplet are conveniently separated into the small (neglected in this estimate) mass differences between members of the same isospin multiplet and the large mass differences between members of different isospin multiplets For the 3/2+ decuplet this gives: 2 where ms − mu,d ≈ 170 MeV/c from (6.32) The L = 0 heavy quark states (mesons) Although in the above discussion we have only considered states containing the ‘light quarks’ u, d and s, it is straightforward to extend these ideas to include the ‘heavy quarks’ b and c (see M&S 6th Chapter) Here we have a very brief discussion of states containing heavy quarks, mostly giving names for mesons and baryons. For more details see M&S. The L = 0 heavy quark states (baryons, examples) Extensive data exist only for baryons containing a single heavy quark. We shall therefore concentrate on the predictions for these states. The spectroscopy of hadrons with non-zero charm and bottom is still very much a developing area of experimental research Color The quark theory of hadrons as we saw is very successful, but appears to contradict the Pauli principle. The apparent contradiction between the quark model and the Pauli principle was resolved in 1964 by Greenberg, who argued that in addition to space and spin degrees of freedom, quarks must possess a new quantum number: a color. The total wavefunction is then written as the product of a) a spatial part ψ(r), b) a spin part χ, and c) a color wavefunction χC : In addition the color confinement hypothesis is stated, that hadrons can only exist in states, called color singlets, which have zero values for all color charges, while quarks, which have non-zero color charges, can only exist con- fined within them. As we shall see shortly, this explains why hadrons have integer electric charges, while fractionally charged combinations like are forbidden, in accordance with experimental observation. Color charges and confinement The basic assumption of the color theory is that any quark q = u, d, s, ... can exist in three different color states χC = r, g, b, standing for ‘red’, ‘green’ and ‘blue’, respectively. Just as the spin states χ = α, β correspond to different values of the spin component S3, the color states χC correspond to different values of two of the color charges called the color hypercharge and the color isospin charge. They are denoted Yc and , and their values for the single quark states χC = r, g, b are listed in Table 6.13(a). Their values for other states composed of quarks and antiquarks then follow by using the they are additive quantum numbers, like electric charge, whose values for particles and antiparticles are equal in magnitude but opposite in sign Again, we assume that according to confinement hypothesis, only states with zero color quantum numbers can exist: We next consider the combinations of m quarks and n anti-quarks that are allowed by the confinement condition (6.41). Only the compbinations below (see M&S for details) can exist according to the confinement: Confinement We assume that according to confinement hypothesis, only states with zero color quantum numbers can exist: We next consider the combinations of m quarks and n anti-quarks that are allowed by the confinement condition (6.41). Only the combinations below (see M&S for details) can exist: One can show (see M&S Chapter 6) that the only antisymmetric combination for the color part of the wave function (you can check that it is antisymmetric): .
Recommended publications
  • Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays
    Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays !Resonances !Heavy Meson and Baryons !Decays and Quantum numbers !CKM matrix 1 Announcements •No lecture on Friday. •Remaining lectures: •Tuesday 13 March •Friday 16 March •Tuesday 20 March •Friday 23 March •Tuesday 27 March •Friday 30 March •Tuesday 3 April •Remaining Tutorials: •Monday 26 March •Monday 2 April 2 From Friday: Mesons and Baryons Summary • Quarks are confined to colourless bound states, collectively known as hadrons: " mesons: quark and anti-quark. Bosons (s=0, 1) with a symmetric colour wavefunction. " baryons: three quarks. Fermions (s=1/2, 3/2) with antisymmetric colour wavefunction. " anti-baryons: three anti-quarks. • Lightest mesons & baryons described by isospin (I, I3), strangeness (S) and hypercharge Y " isospin I=! for u and d quarks; (isospin combined as for spin) " I3=+! (isospin up) for up quarks; I3="! (isospin down) for down quarks " S=+1 for strange quarks (additive quantum number) " hypercharge Y = S + B • Hadrons display SU(3) flavour symmetry between u d and s quarks. Used to predict the allowed meson and baryon states. • As baryons are fermions, the overall wavefunction must be anti-symmetric. The wavefunction is product of colour, flavour, spin and spatial parts: ! = "c "f "S "L an odd number of these must be anti-symmetric. • consequences: no uuu, ddd or sss baryons with total spin J=# (S=#, L=0) • Residual strong force interactions between colourless hadrons propagated by mesons. 3 Resonances • Hadrons which decay due to the strong force have very short lifetime # ~ 10"24 s • Evidence for the existence of these states are resonances in the experimental data Γ2/4 σ = σ • Shape is Breit-Wigner distribution: max (E M)2 + Γ2/4 14 41.
    [Show full text]
  • Arxiv:1502.07763V2 [Hep-Ph] 1 Apr 2015
    Constraints on Dark Photon from Neutrino-Electron Scattering Experiments S. Bilmi¸s,1 I. Turan,1 T.M. Aliev,1 M. Deniz,2, 3 L. Singh,2, 4 and H.T. Wong2 1Department of Physics, Middle East Technical University, Ankara 06531, Turkey. 2Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. 3Department of Physics, Dokuz Eyl¨ulUniversity, Izmir,_ Turkey. 4Department of Physics, Banaras Hindu University, Varanasi, 221005, India. (Dated: April 2, 2015) Abstract A possible manifestation of an additional light gauge boson A0, named as Dark Photon, associated with a group U(1)B−L is studied in neutrino electron scattering experiments. The exclusion plot on the coupling constant gB−L and the dark photon mass MA0 is obtained. It is shown that contributions of interference term between the dark photon and the Standard Model are important. The interference effects are studied and compared with for data sets from TEXONO, GEMMA, BOREXINO, LSND as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space. PACS numbers: 13.15.+g,12.60.+i,14.70.Pw arXiv:1502.07763v2 [hep-ph] 1 Apr 2015 1 CONTENTS I. Introduction 2 II. Hidden Sector as a beyond the Standard Model Scenario 3 III. Neutrino-Electron Scattering 6 A. Standard Model Expressions 6 B. Very Light Vector Boson Contributions 7 IV. Experimental Constraints 9 A. Neutrino-Electron Scattering Experiments 9 B. Roles of Interference 13 C. Results 14 V. Conclusions 17 Acknowledgments 19 References 20 I. INTRODUCTION The recent discovery of the Standard Model (SM) long-sought Higgs at the Large Hadron Collider is the last missing piece of the SM which is strengthened its success even further.
    [Show full text]
  • Two Tests of Isospin Symmetry Break
    THE ISOBARIC MULTIPLET MASS EQUATION AND ft VALUE OF THE 0+ 0+ FERMI TRANSITION IN 32Ar: TWO TESTS OF ISOSPIN ! SYMMETRY BREAKING A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy by Smarajit Triambak Alejandro Garc¶³a, Director Umesh Garg, Director Graduate Program in Physics Notre Dame, Indiana July 2007 c Copyright by ° Smarajit Triambak 2007 All Rights Reserved THE ISOBARIC MULTIPLET MASS EQUATION AND ft VALUE OF THE 0+ 0+ FERMI TRANSITION IN 32Ar: TWO TESTS OF ISOSPIN ! SYMMETRY BREAKING Abstract by Smarajit Triambak This dissertation describes two high-precision measurements concerning isospin symmetry breaking in nuclei. 1. We determined, with unprecedented accuracy and precision, the excitation energy of the lowest T = 2; J ¼ = 0+ state in 32S using the 31P(p; γ) reaction. This excitation energy, together with the ground state mass of 32S, provides the most stringent test of the isobaric multiplet mass equation (IMME) for the A = 32, T = 2 multiplet. We observe a signi¯cant disagreement with the IMME and investigate the possibility of isospin mixing with nearby 0+ levels to cause such an e®ect. In addition, as byproducts of this work, we present a precise determination of the relative γ-branches and an upper limit on the isospin violating branch from the lowest T = 2 state in 32S. 2. We obtained the superallowed branch for the 0+ 0+ Fermi decay of ! 32Ar. This involved precise determinations of the beta-delayed proton and γ branches. The γ-ray detection e±ciency calibration was done using pre- cisely determined γ-ray yields from the daughter 32Cl nucleus from an- other independent measurement using a fast tape-transport system at Texas Smarajit Triambak A&M University.
    [Show full text]
  • Lecture 5 Symmetries
    Lecture 5 Symmetries • Light hadron masses • Rotations and angular momentum • SU(2 ) isospin • SU(2 ) flavour • Why are there 8 gluons ? • What do we mean by colourless ? FK7003 1 Where do the light hadron masses come from ? Proton (uud ) mass∼ 1 GeV. Quark Q Mass (GeV) π + ud mass ∼ 130 MeV (e) () u- up 2/3 0.003 ∼ u, d mass 3-5 MeV. d- down -1/3 0.005 ⇒ The quarks account for a small fraction of the light hadron masses. [Light hadron ≡ hadron made out of u, d quarks.] Where does the rest come from ? FK7003 2 Light hadron masses and the strong force Meson Baryon Light hadron masses arise from ∼ the stron g field and quark motion. ⇒ Light hadron masses are an observable of the strong force. FK7003 3 Rotations and angular momentum A spin-1 particle is in spin-up state i.e . angular momentum along an 2 ℏ 1 an arbitrarily chosen +z axis is and the state is χup = . 2 0 The coordinate system is rotated π around y-axis by transformatiy on U 1 0 ⇒ UUχup= = = χ down 0 1 spin-up spin-down No observable will change. z Eg the particle still moves in the same direction in a changing B-field regardless of how we choose the z -axis in the lab. 1 ∂B 0 ∂B 0 ∂z 1 ∂z Rotational inv ariance ⇔ angular momentum conservation ( Noether) SU(2) The group of 22(× unitary U* U = UU * = I ) matrices with det erminant 1 . SU (2) matrices ≡ set of all possible rotation s of 2D spinors in space.
    [Show full text]
  • Detection of a Hypercharge Axion in ATLAS
    Detection of a Hypercharge Axion in ATLAS a Monte-Carlo Simulation of a Pseudo-Scalar Particle (Hypercharge Axion) with Electroweak Interactions for the ATLAS Detector in the Large Hadron Collider at CERN Erik Elfgren [email protected] December, 2000 Division of Physics Lule˚aUniversity of Technology Lule˚a, SE-971 87, Sweden http://www.luth.se/depts/mt/fy/ Abstract This Master of Science thesis treats the hypercharge axion, which is a hy- pothetical pseudo-scalar particle with electroweak interactions. First, the theoretical context and the motivations for this study are discussed. In short, the hypercharge axion is introduced to explain the dominance of matter over antimatter in the universe and the existence of large-scale magnetic fields. Second, the phenomenological properties are analyzed and the distin- guishing marks are underlined. These are basically the products of photons and Z0swithhightransversemomentaandinvariantmassequaltothatof the axion. Third, the simulation is carried out with two photons producing the axion which decays into Z0s and/or photons. The event simulation is run through the simulator ATLFAST of ATLAS (A Toroidal Large Hadron Col- lider ApparatuS) at CERN. Finally, the characteristics of the axion decay are analyzed and the crite- ria for detection are presented. A study of the background is also included. The result is that for certain values of the axion mass and the mass scale (both in the order of a TeV), the hypercharge axion could be detected in ATLAS. Preface This is a Master of Science thesis at the Lule˚a University of Technology, Sweden. The research has been done at Universit´edeMontr´eal, Canada, under the supervision of Professor Georges Azuelos.
    [Show full text]
  • 11. the Cabibbo-Kobayashi-Maskawa Mixing Matrix
    11. CKM mixing matrix 103 11. THE CABIBBO-KOBAYASHI-MASKAWA MIXING MATRIX Revised 1997 by F.J. Gilman (Carnegie-Mellon University), where ci =cosθi and si =sinθi for i =1,2,3. In the limit K. Kleinknecht and B. Renk (Johannes-Gutenberg Universit¨at θ2 = θ3 = 0, this reduces to the usual Cabibbo mixing with θ1 Mainz). identified (up to a sign) with the Cabibbo angle [2]. Several different forms of the Kobayashi-Maskawa parametrization are found in the In the Standard Model with SU(2) × U(1) as the gauge group of literature. Since all these parametrizations are referred to as “the” electroweak interactions, both the quarks and leptons are assigned to Kobayashi-Maskawa form, some care about which one is being used is be left-handed doublets and right-handed singlets. The quark mass needed when the quadrant in which δ lies is under discussion. eigenstates are not the same as the weak eigenstates, and the matrix relating these bases was defined for six quarks and given an explicit A popular approximation that emphasizes the hierarchy in the size parametrization by Kobayashi and Maskawa [1] in 1973. It generalizes of the angles, s12 s23 s13 , is due to Wolfenstein [4], where one ≡ the four-quark case, where the matrix is parametrized by a single sets λ s12 , the sine of the Cabibbo angle, and then writes the other angle, the Cabibbo angle [2]. elements in terms of powers of λ: × By convention, the mixing is often expressed in terms of a 3 3 1 − λ2/2 λAλ3(ρ−iη) − unitary matrix V operating on the charge e/3 quarks (d, s,andb): V = −λ 1 − λ2/2 Aλ2 .
    [Show full text]
  • Arxiv:1904.02304V2 [Hep-Lat] 4 Sep 2019 Isospin Splittings in Decuplet Baryons 2
    ADP-19-6/T1086 LTH 1200 DESY 19-053 Isospin splittings in the decuplet baryon spectrum from dynamical QCD+QED R. Horsley1, Z. Koumi2, Y. Nakamura3, H. Perlt4, D. Pleiter5;6, P.E.L. Rakow7, G. Schierholz8, A. Schiller4, H. St¨uben9, R.D. Young2 and J.M. Zanotti2 1 School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK 2 CSSM, Department of Physics, University of Adelaide, SA, Australia 3 RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan 4 Institut f¨urTheoretische Physik, Universit¨atLeipzig, 04109 Leipzig, Germany 5 J¨ulich Supercomputer Centre, Forschungszentrum J¨ulich, 52425 J¨ulich, Germany 6 Institut f¨urTheoretische Physik, Universit¨atRegensburg, 93040 Regensburg, Germany 7 Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK 8 Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany 9 Regionales Rechenzentrum, Universit¨atHamburg, 20146 Hamburg, Germany CSSM/QCDSF/UKQCD Collaboration Abstract. We report a new analysis of the isospin splittings within the decuplet baryon spectrum. Our numerical results are based upon five ensembles of dynamical QCD+QED lattices. The analysis is carried out within a flavour- breaking expansion which encodes the effects of breaking the quark masses and electromagnetic charges away from an approximate SU(3) symmetric point. The results display total isospin splittings within the approximate SU(2) multiplets that are compatible with phenomenological estimates. Further, new insight is gained into these splittings by separating the contributions arising from strong and electromagnetic effects. We also present an update of earlier results on the octet baryon spectrum. arXiv:1904.02304v2 [hep-lat] 4 Sep 2019 Isospin splittings in decuplet baryons 2 1.
    [Show full text]
  • Charm Meson Molecules and the X(3872)
    Charm Meson Molecules and the X(3872) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Masaoki Kusunoki, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Eric Braaten, Adviser Professor Richard J. Furnstahl Adviser Professor Junko Shigemitsu Graduate Program in Professor Brian L. Winer Physics Abstract The recently discovered resonance X(3872) is interpreted as a loosely-bound S- wave charm meson molecule whose constituents are a superposition of the charm mesons D0D¯ ¤0 and D¤0D¯ 0. The unnaturally small binding energy of the molecule implies that it has some universal properties that depend only on its binding energy and its width. The existence of such a small energy scale motivates the separation of scales that leads to factorization formulas for production rates and decay rates of the X(3872). Factorization formulas are applied to predict that the line shape of the X(3872) differs significantly from that of a Breit-Wigner resonance and that there should be a peak in the invariant mass distribution for B ! D0D¯ ¤0K near the D0D¯ ¤0 threshold. An analysis of data by the Babar collaboration on B ! D(¤)D¯ (¤)K is used to predict that the decay B0 ! XK0 should be suppressed compared to B+ ! XK+. The differential decay rates of the X(3872) into J=Ã and light hadrons are also calculated up to multiplicative constants. If the X(3872) is indeed an S-wave charm meson molecule, it will provide a beautiful example of the predictive power of universality.
    [Show full text]
  • 06.08.2010 Yuming Wang the Charm-Loop Effect in B → K () L
    The Charm-loop effect in B K( )`+` ! ∗ − Yu-Ming Wang Theoretische Physik I , Universitat¨ Siegen A. Khodjamirian, Th. Mannel,A. Pivovarov and Y.M.W. arXiv:1006.4945 Workshop on QCD and hadron physics, Weihai, August, 2010 1 0 2 4 6 8 10 12 14 16 18 20 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 0 2 4 6 8 10 12 14 16 18 20 I. Motivation and introduction ( ) + B K ∗ ` `− induced by b s FCNC current: • prospectiv! e channels for the search! for new physics, a multitude of non-trival observables, Available measurements from BaBar, Belle, and CDF. Current averages (from HFAG, Sep., 2009): • BR(B Kl+l ) = (0:45 0:04) 10 6 ! − × − BR(B K l+l ) = (1:08+0:12) 10 6 : ! ∗ − 0:11 × − Invariant mass distribution and FBA (Belle,−2009): ) 2 1.2 /c 1 2 1 L / GeV 0.5 0.8 F -7 (10 0.6 2 0 0.4 1 0.2 dBF/dq 0.5 ) 0 FB 2 A /c 2 0.5 0 0.4 / GeV -7 0.3 (10 1 2 0.2 I A 0 0.1 dBF/dq 0 -1 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 0 2 4 6 8 10 12 14 16 18 20 q2(GeV2/c2) q2(GeV2/c2) Yu-Ming Wang Workshop on QCD and hadron physics, Weihai, August, 2010 2 q2(GeV2/c2) q2(GeV2/c2) Decay amplitudes in SM: • A(B K( )`+` ) = K( )`+` H B ; ! ∗ − −h ∗ − j eff j i 4G 10 H = F V V C (µ)O (µ) ; eff p tb ts∗ i i − 2 iX=1 Leading contributions from O and O can be reduced to B K( ) 9;10 7γ ! ∗ form factors.
    [Show full text]
  • Electro-Weak Interactions
    Electro-weak interactions Marcello Fanti Physics Dept. | University of Milan M. Fanti (Physics Dep., UniMi) Fundamental Interactions 1 / 36 The ElectroWeak model M. Fanti (Physics Dep., UniMi) Fundamental Interactions 2 / 36 Electromagnetic vs weak interaction Electromagnetic interactions mediated by a photon, treat left/right fermions in the same way g M = [¯u (eγµ)u ] − µν [¯u (eγν)u ] 3 1 q2 4 2 1 − γ5 Weak charged interactions only apply to left-handed component: = L 2 Fermi theory (effective low-energy theory): GF µ 5 ν 5 M = p u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 Complete theory with a vector boson W mediator: g 1 − γ5 g g 1 − γ5 p µ µν p ν M = u¯3 γ u1 − 2 2 u¯4 γ u2 2 2 q − MW 2 2 2 g µ 5 ν 5 −−−! u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 2 low q 8 MW p 2 2 g −5 −2 ) GF = | and from weak decays GF = (1:1663787 ± 0:0000006) · 10 GeV 8 MW M. Fanti (Physics Dep., UniMi) Fundamental Interactions 3 / 36 Experimental facts e e Electromagnetic interactions γ Conserves charge along fermion lines ¡ Perfectly left/right symmetric e e Long-range interaction electromagnetic µ ) neutral mass-less mediator field A (the photon, γ) currents eL νL Weak charged current interactions Produces charge variation in the fermions, ∆Q = ±1 W ± Acts only on left-handed component, !! ¡ L u Short-range interaction L dL ) charged massive mediator field (W ±)µ weak charged − − − currents E.g.
    [Show full text]
  • Charm and Strange Quark Contributions to the Proton Structure
    Report series ISSN 0284 - 2769 of SE9900247 THE SVEDBERG LABORATORY and \ DEPARTMENT OF RADIATION SCIENCES UPPSALA UNIVERSITY Box 533, S-75121 Uppsala, Sweden http://www.tsl.uu.se/ TSL/ISV-99-0204 February 1999 Charm and Strange Quark Contributions to the Proton Structure Kristel Torokoff1 Dept. of Radiation Sciences, Uppsala University, Box 535, S-751 21 Uppsala, Sweden Abstract: The possibility to have charm and strange quarks as quantum mechanical fluc- tuations in the proton wave function is investigated based on a model for non-perturbative QCD dynamics. Both hadron and parton basis are examined. A scheme for energy fluctu- ations is constructed and compared with explicit energy-momentum conservation. Resulting momentum distributions for charniand_strange quarks in the proton are derived at the start- ing scale Qo f°r the perturbative QCD evolution. Kinematical constraints are found to be important when comparing to the "intrinsic charm" model. Master of Science Thesis Linkoping University Supervisor: Gunnar Ingelman, Uppsala University 1 kuldsepp@tsl .uu.se 30-37 Contents 1 Introduction 1 2 Standard Model 3 2.1 Introductory QCD 4 2.2 Light-cone variables 5 3 Experiments 7 3.1 The HERA machine 7 3.2 Deep Inelastic Scattering 8 4 Theory 11 4.1 The Parton model 11 4.2 The structure functions 12 4.3 Perturbative QCD corrections 13 4.4 The DGLAP equations 14 5 The Edin-Ingelman Model 15 6 Heavy Quarks in the Proton Wave Function 19 6.1 Extrinsic charm 19 6.2 Intrinsic charm 20 6.3 Hadronisation 22 6.4 The El-model applied to heavy quarks
    [Show full text]
  • Introduction to Flavour Physics
    Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section.
    [Show full text]