Emergency Propulsion-Based Autoland System

Total Page:16

File Type:pdf, Size:1020Kb

Emergency Propulsion-Based Autoland System EMERGENCY PROPULSION-BASED AUTOLAND SYSTEM Nicolas Fezans∗ , Maxence Gamaleri∗ ∗DLR (German Aerospace Center) - Institute of Flight Systems [email protected] Keywords: Autoland, Propulsion-Controlled Aircraft, Emergency System, Monte Carlo Simulations Abstract still happen and has happened several times in the past (e.g. Japan Airlines flight 123 near Tokyo, In this paper, an emergency autoland system ca- United-Airlines flight 232 in Sioux-City or DHL pable of landing automatically with the ATTAS in Bagdad). As shown in the three aforemen- research aircraft only using engine thrust vari- tioned accidents it might still be possible to con- ations is presented. This autoland is intention- trol the aircraft by means of thrust variations. Of ally kept as simple as possible, but demonstrates course the maneuverability of the aircraft is then good performance even in the presence of uncer- very restricted, but this possibility has been in- tainties and external disturbances. The perfor- vestigated since the early 90’s when a research mance in the presence of wind shears is shown program on propulsion controlled aircraft (PCA) in the paper. It is based on a previously published took place at NASA. In this program, a pilot as- propulsion-based control law for the inner loops. sistance system was developed and demonstrated Implementing this simple emergency autoland in in simulator as well as in flight tests with several modern aircraft is not challenging. Aircraft al- aircraft types [1–3]. More recently developments ready in service could also be retrofitted. have been made on PCA technologies at the DLR and a propulsion-based control law was even suc- 1 Introduction cessfully demonstrated in flight test [4, 5]. The developed system was able to assist pilots and Jet airplanes are usually designed to be con- provide them good chances to land successfully. trolled by means of both engines (mainly act- During the first part of our simulator studies, pi- ing on speed/energy) and control surfaces which lots did not receive explanations on the way they are deflected to generate aerodynamic forces and should use the system. The goal was to check moments at several places on the airplane frame. experimentally the affordance of the developed These control surfaces are usually actuated by system and how fast pilots were able to figure means of hydraulic actuators. Quite recently, out how to use it. Results were very encourag- electrical actuators have also been introduced in ing but it appeared that some of the airline pi- the most modern jet airplanes. As these sys- lots taking part to the studies misunderstood the tems are crucial for the control of the aircraft, si- basic flight dynamics principles the control law multaneous failures affecting them must be pre- relies on, leading sometimes to dangerous reac- vented. Therefore, aircraft control surface actu- tions. After short explanations, all pilots were ation systems are implemented using highly re- able to land with acceptable touchdown condi- dundant architectures: multiple actuators, control tions in almost all following trials. signal transmission chains and power sources. In our opinion, this good result reproduces Even though aircraft are designed such that the results obtained by NASA in the 90’s but a complete failure of the primary control effec- still is not fully satisfying. Indeed, both airline tors is extremely improbable, this situation can 1 NICOLAS FEZANS, MAXENCE GAMALERI and military pilot trainings should not be used level obtained is sufficient, which validates this to train intensively for this very remote situation. initial choice. Without specific training and without making pi- The global structure can be represented by the lot aware of the way aircraft can be controlled block diagram in Fig. 1 in which the way the au- by means of thrust variations, the added value for topilot uses the already existing propulsion-based the system is clear but much lower as it seems it control law is explicitly shown. In this figure only could be. Apart from that, one of the results of the components of the autopilot that are activated the simulator tests was that the performance of during autoland operations are represented inside pilots seemed to be mainly limited by the men- the “autopilot” block. tal workload. This was not a surprise as the air- craft reaction is very slow and pilots must be ex- Glideslope γREF PLA L tremely attentive to predict the consequences of controller Control t law Airplane o Ground their actions (even with the the assistance of the l i ΦREF from [5] p track o control law from [5]). This suggests a completely t controller PLA R u different solution: the design of an autopilot with A χREF an autoland function. This autoland permits to Localizer γ, Φ, p, q, r, nz, N1 L, N1 R get results independently of pilot understandings controller of the way the system is working internally. Ad- Inertial position and speed ditionally, this will permit to get a performance Fig. 1 Control structure for automatic landing level in the presence of disturbances that a human pilot would never obtain. The autoland function has to intercept the The autoland function of the autopilot will be runway centerline and the glidepath, to track presented in details in section 2. In section 3, the them up to the ground and to land possibly with behaviour of the autoland is demonstrated using a flare. In a previous version of this autoland [6], Monte Carlo simulations. Finally, conclusions the deviations with respect to the runway cen- and outlook are provided in section 4. terline and the glidepath were provided by the glideslope and localizer indicators. When the air- 2 Propulsion-based autoland craft is quite far from the localizer and glideslope emitters, these indicators can be interpreted as an For the design of the propulsion-based autopilot, angular measurement of the lateral and vertical two main options were considered: deviations. As shown in Fig. 1 and with the aim of giving more flexibility to the pilot to choose • the design of a standalone autopilot, the approach slope and later to ease the defini- which would directly command the en- tion and realisation of a flare maneuver, the clas- gines through the power lever angles, sical ILS measurements were replaced by the in- or: ertial position and speed. Internally the reference • the design of an autopilot as an outer loop system used is the WGS-84 system. Of course for the pre-existing propulsion-based con- a relative positioning cannot be replaced by an trol law (see. [5]). absolute one without some other changes: in the present case it must be additionally assumed that As it was estimated that the second option would the position and orientation of the runway are ease significantly the development of the autopi- known with precision and that the absolute po- lot, this option was chosen. Of course, when im- sitioning is also precise enough. Note that “ab- posing a structure to a controller the reachable solute positioning” does not mean GPS and only performance and robustness might be reduced GPS, but could be obtained by coupling inertial (compared to the unstructured case). It is later platforms with GPS and barometric+radar alti- shown by simulation results that the performance tude or any other useful source available. 2 Emergency Propulsion-based Autoland System 2.1 The underlying control law of [5] the flight path angle. Such a control law will ba- sically consist of controlling the phugoid (accept- This autopilot is designed as an outer loop using able response time, good damping, and no static the control law of [5], which is already follow- error on the flight path) while avoiding unneces- ing the references on the flight path angle and on sary excitation of the short-period mode. the roll angle. In the current paper, this control Note that the flight path angle cannot be con- law, how it works and how to tune it will not be trolled independently from the speed. In order to re-explained in details but a short overview is pre- reach the runway the angle of descent (i.e. the sented hereafter. flight path angle) must be controlled. Once the flight path angle is determined, there is no degree 2.1.1 Control law requirements of freedom left to select the speed. In this section, the main requirements for suc- Lateral Control cessful approach and landing by means of a PCA system are discussed with focus on how desirable The lateral dynamics of an aircraft are com- they are, how difficult it will be to reach them, posed of: and which trade-off between the performance cri- • the Dutch roll mode exhibiting a pair of teria should be made. Obviously, classical han- complex conjugate and stable poles with dling qualities criteria are not applicable for an very low damping, aircraft having a propulsion-based control law. • the roll mode which is aperiodic and stable, Longitudinal Control • the spiral mode which is slow and quite of- The longitudinal motion is mainly composed ten slightly unstable. of the phugoid mode and the short-period mode. As for the short-period mode, the Dutch roll The period of the phugoid is generally between mode and the roll mode are generally too fast 30 and 60 seconds for transport airplanes. The to be significantly modified by means of the en- frequency of the short-period mode depends on gines, in particular in the low-thrust domain that the aircraft and its center of gravity location, but will generally be required for descent and ap- would typically lie between 1:5 and 3 rad=s. proach. However, a control law based on thrust Increasing the total thrust of the engines leads can easily modify the spiral mode in order to to an increase of the energy rate of the aircraft.
Recommended publications
  • Department of Transportation Federal Aviation Administration
    Thursday, October 6, 2005 Part II Department of Transportation Federal Aviation Administration 14 CFR Parts 1, 25, 91, etc. Enhanced Airworthiness Program for Airplane Systems/Fuel Tank Safety (EAPAS/FTS); Proposed Advisory Circulars; Proposed Rule and Notices VerDate Aug<31>2005 16:39 Oct 05, 2005 Jkt 208001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\06OCP2.SGM 06OCP2 58508 Federal Register / Vol. 70, No. 193 / Thursday, October 6, 2005 / Proposed Rules DEPARTMENT OF TRANSPORTATION • Mail: Docket Management Facility; before and after the comment closing U.S. Department of Transportation, 400 date. If you wish to review the docket Federal Aviation Administration Seventh Street, SW., Nassif Building, in person, go to the address in the Room PL–401, Washington, DC 20590– ADDRESSES section of this preamble 14 CFR Parts 1, 25, 91, 121, 125, 129 001. between 9 a.m. and 5 p.m., Monday • Fax: 1–202–493–2251. through Friday, except Federal holidays. [Docket No. FAA–2004–18379; Notice No. • Hand Delivery: Room PL–401 on You may also review the docket using 05–08 ] the plaza level of the Nassif Building, the Internet at the Web address in the RIN 2120–AI31 400 Seventh Street, SW., Washington, ADDRESSES section. DC, between 9 a.m. and 5 p.m., Monday Privacy Act: Using the search function Enhanced Airworthiness Program for through Friday, except Federal holidays. of our docket Web site, anyone can find Airplane Systems/Fuel Tank Safety For more information on the and read the comments received into (EAPAS/FTS) rulemaking process, see the any of our dockets, including the name SUPPLEMENTARY INFORMATION section of of the individual sending the comment AGENCY: Federal Aviation this document.
    [Show full text]
  • Garmin Reveals Autoland Feature Rotorcraft Industry Slams Possible by Matt Thurber NYC Helo Ban Page 45
    PUBLICATIONS Vol.50 | No.12 $9.00 DECEMBER 2019 | ainonline.com Flying Short-field landings in the Falcon 8X page 24 Regulations UK Labour calls for bizjet ban page 14 Industry Forecast sees deliveries rise in 2020 page 36 Gratitude for Service Honor flight brings vets to D.C. page 41 Air Transport Lion Air report cites multiple failures page 51 Rotorcraft Garmin reveals Autoland feature Industry slams possible by Matt Thurber NYC helo ban page 45 For the past eight years, Garmin has secretly Mode. The Autoland system is designed to Autoland and how it works, I visited been working on a fascinating new capabil- safely fly an airplane from cruising altitude Garmin’s Olathe, Kansas, headquarters for ity, an autoland function that can rescue an to a suitable runway, then land the airplane, a briefing and demo flight in the M600 with airplane with an incapacitated pilot or save apply brakes, and stop the engine. Autoland flight test pilot and engineer Eric Sargent. a pilot when weather conditions present can even switch on anti-/deicing systems if The project began in 2011 with a Garmin no other safe option. Autoland should soon necessary. engineer testing some algorithms that could receive its first FAA approval, with certifi- Autoland is available for aircraft manu- make an autolanding possible, and in 2014 cation expected shortly in the Piper M600, facturers to incorporate in their airplanes Garmin accomplished a first autolanding in followed by the Cirrus Vision Jet. equipped with Garmin G3000 avionics and a Columbia 400 piston single. In September The Garmin Autoland system is part of autothrottle.
    [Show full text]
  • Radio Altimeter Industry Coalition Coalition Overview David Silver, Aerospace Industries Association
    Radio Altimeter Industry Coalition Coalition Overview David Silver, Aerospace Industries Association 7/1/2021 2 Background • The aviation industry, working through a multi-stakeholder group formed after open, public invitation by RTCA, conducted a study to determine interference threshold to radio altimeters • The study found that 5G systems operating in the 3.7-3.98 GHz band will cause harmful interference altimeter systems operating in the 4.2- 4.4 GHz band – and in some cases far exceed interference thresholds • Harmful interference has the serious potential to impact public and aviation safety, create delays in aircraft operations, and prevent operations responding to emergency situations 7/1/2021 3 Goals and Way Forward • To ensure the safety of the public and aviation community, government, manufacturers, and operators must work together to: • Further refine the full scope of the interference threat • Determine operational environments affected • Identify technical solutions that will resolve interference issues • Develop future standards • Government needs to bring the telecom and aviation industries to the table to refine understanding of the extent of the problem and collaboratively develop mitigations to address the changing spectrum environment near-, mid-, and long- term. 7/1/2021 4 Coalition Tech-Ops Presentation John Shea, Helicopter Association International Sai Kalyanaraman, Ph.D., Collins Aerospace 7/1/2021 5 What is a Radar Altimeter? • Radar altimeters are the only device on the aircraft that can directly measure the distance between the aircraft and the ground and only operate in 4200-4400 MHz • Operate when the aircraft is on the surface to over 2500’ above ground Radar Altimeter Antennas Radar Altimeter Antennas Photo credit: Honeywell Photo credit: ALPA 7/1/2021 6 How Does a Radar Altimeter Work? 1.
    [Show full text]
  • National Transportation Safety Board
    b NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT SCANDINAVIAN AIRLINES SYSTEM FLIGHT 901 McDONNELL DOUGLAS DC- 10-30 JOHN F. KENNEDY INTERNATIONAL AIRPORT JAMAICA, NEW YORK FEBRUARY 28, 1984 NTSB/AAR-84/ 15 UNITED STATES GOVERNMENT NTSB/AkR-84/15 PB84-910415 4. Ti t le end Subt i t le Aircraft Accident Report-- 5.Report Date Scandinavian Airlines System Flight 901 MdDonnell Douglas November 15, 1984 DC-10-3d Norwegian Registry LN-RKB John F. Kennedy Inter- 6.Performi ng Organization national Aimort Jamaica. New York, Februarv 28. 1984 Code 7. Author(s) 8.Performing Organization Report No. 9. Performing Organization Name and Address 10.Work Unit No. National Transportation Safety Board 3894-A Bureau of Accident Investigation 11.Contract or Grant No. Washington, D.C. 20594 1 13.Type of Report and Period Covered 12.Sponsdring Agency Name and Address Aircraft Accident Report February 28, 1984 NATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20594 1 .Sponsoring Agency Code 1 15.Supplementary Notes 1.8bstract On February 28, 1984, Scandinavian Airlines System Flight 901, a McDonnell Douglas DC-10-30, was a regularly scheduled international passenger flight from Stockholm, Sweden, to New York City, New York, with an en route stop at Oslo, Norway. Following an approach to runway 4 right at New York's John F. Kennedy International Airport, the airplane touched down about 4,700 ft (1,440 meters) beyond the threshold of the 8,400-foot (2,560-meter) runway and could not be stopped on the runway. The airplane was steered to the right to avoid the approach light pier at the departure end of the runway and came to rest in Thurston Basin, a tidal waterway located about 600 ft from the departure end of runway 4R.
    [Show full text]
  • The Final Approach Speed
    Flight Safety Foundation Approach-and-landing Accident Reduction Tool Kit FSF ALAR Briefing Note 8.2 — The Final Approach Speed Assuring a safe landing requires achieving a balanced • Wind; distribution of safety margins between: • Flap configuration (when several flap configurations are • The computed final approach speed (also called the certified for landing); target threshold speed); and, • Aircraft systems status (airspeed corrections for • The resulting landing distance. abnormal configurations); • Icing conditions; and, Statistical Data • Use of autothrottle speed mode or autoland. Computation of the final approach speed rarely is a factor The final approach speed is based on the reference landing in runway overrun events, but an approach conducted speed, VREF. significantly faster than the computed target final approach speed is cited often as a causal factor. VREF usually is defined by the aircraft operating manual (AOM) and/or the quick reference handbook (QRH) as: The Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force found that “high-energy” 1.3 x stall speed with full landing flaps approaches were a causal factor1 in 30 percent of 76 approach- or with selected landing flaps. and-landing accidents and serious incidents worldwide in 1984 through 1997.2 Final approach speed is defined as: Defining the Final Approach Speed VREF + corrections. The final approach speed is the airspeed to be maintained down Airspeed corrections are based on operational factors (e.g., to 50 feet over the runway threshold. wind, wind shear or icing) and on landing configuration (e.g., less than full flaps or abnormal configuration). The final approach speed computation is the result of a decision made by the flight crew to ensure the safest approach and The resulting final approach speed provides the best landing for the following: compromise between handling qualities (stall margin or • Gross weight; controllability/maneuverability) and landing distance.
    [Show full text]
  • N JO 7110/777 Emergency Autoland System
    U.S. DEPARTMENT OF TRANSPORTATION N JO 7110.777 NOTICE FEDERAL AVIATION ADMINISTRATION Air Traffic Organization Policy Effective Date: September 10, 2020 Cancellation Date: December 31, 2020 SUBJ: Emergency Autoland System 1. Purpose of This Notice. This notice alerts air traffic control personnel of an emergency landing system that has been developed and installed in some aircraft which controllers may encounter in the National Airspace System. This notice also provides guidance regarding related changes to FAA Order JO 7110.65, Air Traffic Control. 2. Audience. This notice applies to the following Air Traffic Organization (ATO) service units: Air Traffic Services (AJT), Safety and Technical Training (AJI), and all associated air traffic control facilities. 3. Where Can I Find This Notice? This notice is available on the MyFAA employee website at https://employees.faa.gov/tools_resources/orders_notices/ and on the air traffic publications website at http://www.faa.gov/air_traffic/publications/. 4. Cancellation. This notice is canceled upon the publication of FAA Order JO 7110.65Y, Change 3, effective December 31, 2020. 5. Explanation of Policy Change. This change allows the Emergency Autoland system to alert the controller of an emergency situation and the intentions of the aircraft. It also defines the Emergency Autoland behavior as well as clarifies some items pertaining to the handling of emergency aircraft. 6. Procedures/Action. Amend FAA Order JO 7110.65Y by changing paragraphs 10-1-1, 10-1-2, 10- 2-1, 10-2-5, and 10-2-15 to read as follows: 10-1-1. EMERGENCY DETERMINATIONS Title thru subparagraph b. No change c.
    [Show full text]
  • Business & Commercial Aviation
    JUNE/JULY 2020 $10.00 AviationWeek.com/BCA Business & Commercial Aviation 2020 PURCHASE PLANNING HANDBOOK Production Aircraft Comparison A Look at the Trends and New AND Performance Tables Developments in Avionics ALSO IN THIS ISSUE Bombardier Global 7500 Smoke Signals Under Pressure Mountain Wave Monsters One Too Many Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Fuel Dumping Are Analyzed
    Project Curiosities of Civil Aviation Scientifically Explained for Passengers - Insight and Entertaintment Author: Raschiq Moschtaq Supervisor: Prof. Dr.-Ing. Dieter Scholz, MSME Submitted: 05.07.2018 Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering 2 © This work is protected by copyright The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/4.0 Any further request may be directed to: Prof. Dr.-Ing. Dieter Scholz, MSME E-Mail see: http://www.ProfScholz.de This work is part of: Digital Library - Projects & Theses - Prof. Dr. Scholz http://library.ProfScholz.de Published by Aircraft Design and Systems Group (AERO) Department of Automotive and Aeronautical Engineering Hamburg University of Applied Science 3 Abstract The aim of this project is to uncover some selected peculiarities and secrets of aviation and to explain them clearly to the reader. The points listed are limited solely to commercial passen- ger aviation, but cover various independent topics such as the cabin, the aircraft systems, the airline and many more. The depth of the elaboration of the respective topic depends signifi- cantly on the complexity of the same. Depending on the situation, visualizations in the form of figures, tables and graphics are used, and the simplest basic physical-technical knowledge is required. The explanation takes place in a scientific-theoretical and nevertheless entertain- ing manner. In total, 13 curiosities are analysed and subsequently assessed. The individual points which this thesis deals with were selected in such a way that in practice they arouse in- terest, but in part also incomprehension, and are usually not self-explanatory.
    [Show full text]
  • Information and Display Requirements for the Independent Landing Monitor
    ." . INFORMATION AND DISPLAYREQUIREMENTS FOR INDEPENDENTLANDING MONITORS SYSTEMS"., CONTROL, INC. Palo Alto, Calif. 94306 for LaagZey Research Center NATIONALAERONAUTICS AND SPACEADMINISTRATION WASHINGTON, D. C. AUGUST 1976 - TECH LIBRARY KAFB, NM ~~ 0063475' 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA CR-2687 ~~ ~ ~~ 4. Title and Subtitle 5. Rewrt Date August 1976 . Information. and Display Requirements for Independent I "" LandingMonitors I 6. PerformingOrganization Code 7. Author(s) 8. Performing Organization ReportNo., J.S. Karmarkar and J.A. Sorensen . 10. Work UnitNo. 9. Performing Organization Name and Address SYSTEMS CONTROL, INC. (Vt) 11. Contract orGrant No. 1801 Page Mill Road NAS1-13490 Palo A1 to, CA 94306 13. T pe ofRe rt andPeriod Covered ___ ".."I.~"" 12. SponsoringAgency Name and Address $1 nal Gport NationalAeronautics .and SpaceAdministration July 1974 - July 1975 14. Sponsoring'Agency Code . LangleyResearch Center Hampton,-!!Win.ia 15. Supplementary Notes Langley technical monitor: Patrick A. Gainer Final report. 16. Abstract The rising costs of air travel and the increased demand for consistent service has motivated providing avionicssystems which enableall-weather landing capability. All-weatherlanding can be at least partially accomplishedthrough provision of auto- maticlanding (autoland) systems andimproved landingaids such as the microwave land- ing system (MLS). The trend towardsincreased automation, together with increased equipment and maintenance costs, have motivated a rethinking of the potential role of the crew during automaticphases of flight. The problem,addressed in this study, con- cerns the waysan Independent Landing Monitor (ILM)may be used by the crew to comple- nent the autolandfunction. In particular, a systematicprocedure is devisedto es- tablishthe information and display requirements of an ILM during the landing phase of the flight.
    [Show full text]
  • E:\Flypast\Flypast 40-4.Wpd
    Volume 40 December 2005 Number 4 http://www.cahs.ca/torontochapter This Month’s Meeting: receiving the DFC. He also holds the Order of Mustangs and Voodoo Military Merit and is Canada’s most decorated Christmas Special Meeting citizen. In the postwar period he was also the Gift Exchange - Once again meeting attendees CO of RCAF Squadron #411 at Downsview. are invited to bring a wrapped unmarked He later became Chief of Reserves of the Christmas gift to exchange for another. This has Canadian Armed Forces. been a long term tradition for the Toronto He is currently the author of “Generally Chapter’s December meetings. Speaking - The Memoirs of Major-General Richard Rohmer”, his 28th. book. Speakers - We are pleased to have two excellent speakers for this meeting. Mr. Martin Keenan - Mr. Keenan is a chapter member , past chapter director and a heavy lubricants expert with Petro Canada. He is also an aviation researcher with special interest in high performance aircraft and has been published in “Airforce” magazine. All are welcome to come out and celebrate on He will speak on the CF-101B “Voodoo” in the 102nd. Anniversary of Powered Flight! Canadian service. December 17th Meeting starts at 1:00 p.m. sharp. Chapter News - December 2005 ....... 7 2006 Winter / Spring Meeting Dates ... 7 2006 Snowbirds Schedule ............ 7 Last Month’s Meeting Video --- de Havilland at Hatfield Reporter: Gord McNulty Toronto Chapter Secretary-Treasurer Bob Winson presented an outstanding 70-minute colour video, de Havilland at Hatfield, as an Major-General Richard Rohmer - alternative when scheduled guest speaker Allen Major-General Rohmer was one of Canada’s top Stern was unable to attend because of work Mustang photo reconnaissance pilots in WW II obligations.
    [Show full text]
  • Robust Autoland Design by Multi-Model H Synthesis with A
    aerospace Article Robust Autoland Design by Multi-Model H¥ Synthesis with a Focus on the Flare Phase Jean-Marc Biannic * and Clément Roos Systems & Information Processing Department, The French Aerospace Lab (ONERA), 31055 Toulouse, France; [email protected] * Correspondence: [email protected]; Tel.: +33-562-252-916 Received: 29 November 2017; Accepted: 7 February 2018; Published: 9 February 2018 Abstract: Recent advances in the resolution of multi-model and multi-objective control problems via non-smooth optimization are exploited to provide a novel methodology in the challenging context of autoland design. Based on the structured H¥ control framework, this paper focuses on the demanding flare phase under strong wind conditions and parametric uncertainties. More precisely, the objective is to control the vertical speed of the aircraft before touchdown while minimizing the impact of windshear, ground effects, and airspeed variations. The latter is indeed no longer controlled accurately during flare and strongly affected by wind. In addition, parametric uncertainties are to be considered when designing the control laws. To this purpose, extending previous results published by the authors in a conference paper, a specific multi-model strategy taking into account variations of mass and center-of-gravity location is considered. The methodology is illustrated on a realistic aircraft benchmark proposed by the authors, which is fully described in this paper and freely available from the SMAC (Systems Modeling Analysis & Control) toolbox website (http://w3.onera.fr/smac). Keywords: multi-objective H¥ control; multi-model design; flare control design; aircraft control; autoland systems 1. Introduction The steady growth of air traffic in recent years has led to drastic safety standards with the goal of limiting the number of accidents.
    [Show full text]
  • Killers in Aviation: FSF Task Force Presents Facts About Approach-And-Landing and Controlled-Flight-Into-Terrain Accidents
    FLIGHT SAFETY FOUNDATION NOVEMBER–DECEMBER 1998 JANUARY–FEBRUARY 1999 FLIGHT SAFETY DIGEST Killers in Aviation: FSF Task Force Presents Facts About Approach-and-landing and Controlled-flight-into-terrain Accidents Special FSF Report FLIGHT SAFETY FOUNDATION For Everyone Concerned Flight Safety Digest With the Safety of Flight Vol. 17 No. 11–12 November–December 1998 Officers and Staff Vol. 18 No. 1–2 January–February 1999 Stuart Matthews US$80.00 (members) US$120.00 (nonmembers) Chairman, President and CEO Board of Governors James S. Waugh Jr. Treasurer In This Issue Carl Vogt General Counsel and Secretary Killers in Aviation: FSF Task Force Presents Board of Governors Facts about Approach-and-landing and 1 ADMINISTRATIVE Controlled-flight-into-terrain Accidents Nancy Richards This special report includes the most recent versions of working- Executive Secretary group reports from the FSF Approach-and-landing Accident Ellen Plaugher Reduction (ALAR) Task Force, as well as previously published Executive Support–Corporate Services reports that also include data about controlled -flight-into-terrain (CFIT) accidents. These combined reports present a unique and FINANCIAL comprehensive review of ALAs and CFIT. Elizabeth Kirby Controller 1997 Fatal-accident Rates among Aircraft in TECHNICAL Scheduled Services Increased, but 257 Robert H. Vandel Director of Technical Projects Passenger-fatality Rate Decreased Jim Burin The International Civil Aviation Organization said that the 1997 Deputy Director of Technical Projects passenger-fatality rate for turbojet aircraft was substantially Robert H. Gould lower than the passenger-fatality rates for propeller-driven Managing Director of Aviation Safety Audits aircraft. and Internal Evaluation Programs Robert Feeler Standards for Engineered-materials Manager of Aviation Safety Audits Arresting Systems Aim to Provide 260 Robert Dodd, Ph.D.
    [Show full text]