Hepa Filtered Patient Isolation Rooms

Total Page:16

File Type:pdf, Size:1020Kb

Hepa Filtered Patient Isolation Rooms HEPA FILTERED PATIENT ISOLATION ROOMS • Neutropenic Patient Isolation Room • Infectious Patient Isolation Room High level protection against airborne infections Zero leakage HEPA filter system Negative plenum UV inactivation Comfort living area Low noise level Optimized heating / cooling Comfort temperature distribution Easy Use and Maintenance Isolated air ventilation system Advanced microprocessor control Maximum savings Fast and easy modular installation Low energy consumption Validation guarantee www.filtrex.co.uk Unit 17, Burnt Mill Industrial Estate, Elizabeth Way, Harlow, Essex, CM20 2HS Telephone: 01279 457590 | Fax: 01279 457591 | Email: sales@filtrex.co.uk SPECIFICATIONS PATIENT ISOLATION ROOMS Fresh air and pre-ltration HEPA ltration (0.3μm, %99,97) Recirculation air Air conditioning and treatment Negative plenum technology Zero leakage from ducts and ceiling PATIENT ISOLATION ROOM ADVANCED SPECIFICATIONS Stand alone air ventilation & treatment: Decreased loss and problems compared to central HVAC integrated systems Excellent Particle Removal Capacity through the discharge of the air velocity from the ceiling top and air intake from the oor base. Prevention of contaminated air leakage from ceiling or surrounding Continous UV inactivation of heating/cooling units coil surfaces Minimum dead zones: Unique airow & air diffuser designs Eco mode work: Saves energy, keeps room cleanliness class High performance HEPA-Fan-Filter Unit Air Filtration Independent adjustment of ACH Real time monitorized Positive air pressure TECHNOLOGIES Hybrid airflow by unique HEPA Fan Filter units and sophisticated CFD modelling • Laminar airow over operation bed • Turbulent airow at rest of the room Non-disturbing airflow rate for patient Owerflow air sweeping technic to surrounding rooms PID controlled precise temperature adjustment Very low noise level by active noise control system (optional) Fast and safe decontamination-room recovery (optional) Excellent air and temperature distribution by CFD modelling ROOM HEPA FILTERED AIR DISTRIBUTION ROOM TEMPERATURE DISTRIBUTION MIN. TEMPERATURE: 17.0°C MAX. TEMPERATURE: 36.7°C AVG. TEMPERATURE: 18.8°C Early amortization by Filtrex energy saving designs CLASSICCAL FILTREX • Decreased pressure loss by unique HEPA Fan Filter Unit SYSTEM SYSTEM • Increased HEPA life through perfect pre-ltration AIR LEAKAGE 1449 m³/h 345 m³/h • Efcent Centrifuge Fan with back inclined vane structure RATE • Only needed fresh air usage HEATING LOSS 301 kWh/day 58 kWh/day • Automaticc lter compensation system ENERGY AMOUNT COOLING LOSS • Decreased air transport volume 268,6 kWh/day 64,8 kWh/day ENERGY AMOUNT HEATING 5980 kW/day 3670,8 kW/day COOLING 9080,4 kW/day 6522,8 kW/day *Comparison of HEPA filtration energy consumption between conventional and Filtrex system (Calculations based on 40 patient isolation room) POSITIVE PRESSURE PATIENT ROOM NEGATIVE PRESSURE PATIENT ROOM PATIENT ISOLATION CEILING TYPE HEPA FILTRATION SYSTEM TECHNICAL SPECIFICATIONS VENTILATION SPECIFICATION UNIT RATE DESCRIPTION Fresh air flow rate m/h 200-500 Nominal rate is 400 m/h. Adjustable. Ach ACH (1/h) ≥ ACH 3 Air change per hour (ACH) is kept at minimum 3. Toplam hava debisi m/h 800-1400 Nominal rate is 2400 m/h. Adjustable. Total air change per hour ACH (1/h) ≥ ACH 10 Nominal rate of ACH =12 Recirculation air flow rate m/h 600-1000 Laminer air ow over patient bed, turbulent air ow type at rest of the room, hybrid air ow type is applied. Filtered air directs from the ceiling and sucked through by 2 different positioned culvers at Air flow type and direction the bottom. Owerow air are swept to ante room through culverts at the door Owerflof air flow rate m/h 200-400 top of Neutropenic patient room. (Min. 2m/s) Sweeping of owerow air at Infectious Patient room is not being applied. Air exhausted through air ducts to the athmosphere. WC area is m/h 100-150 Wc exhaust air flow rate kept at min 15 Pa negative pressure. Air exhausted through air ducts to the athmosphere. Exhaust air m/h 1500-2500 Exhaust air duct air flow rate ducts are kept at min 8 Pa negative pressure. FILTRATION Fresh air G4 panel type pre-lter, F7 V-type pre-lter, H12 class HEPA lter Patient room F7 casette type pre-lter, H13 HEPA lter HEATING-COOLING Cold/Warm water, electrical heater, UV inactivation system, air-mix compartment, condensation Patient room prevented unpassaged heating featured at isolation panel, easy cleaning surfaced heating/cooling units. Heating/Cooling power min. 5000 Watt. AUTOMATION SYSTEM/SERNSORS 5,7 Inch touch sensitive screen PLC control panel: Continuous measurement of temperature, Control Parameters pressure, air ow rate controlled by sensors. Energy saving through Day and Night (Eco) mode run. Temperature Sensor RS 485 connected hygenic wall type temperature and humidty sensor Pressure Sensor Micro type pressure key performs between 7-25 Pa measurement. Air Flow Measurement Average air ow rate measurement by rotor type air ow velocity sensor. ALARMS Pressure Activated at room pressure under 8 Pa Air Flow Rate Alarm activation at ACH ≤ 5 QUALITY AND CERTIFICATES CE, ISO9001-2008, ISO 14644 Clean Room class compatibility, Electrical and Electronic safety Certificates compatibility of EN61010, Accredited test company Validation guarantee (When installation made by Metis or by its certied technical service personnel) Telephone: 01279 457590 | Fax: 01279 457591 | Email: sales@filtrex.co.uk | www.filtrex.co.uk Unit 17, Burnt Mill Industrial Estate, Elizabeth Way, Harlow, Essex, CM20 2HS.
Recommended publications
  • Air Compressor Noise Control Air Compressor Noise Control
    AIR COMPRESSOR BY NOISE CONTROL USA AIR COMPRESSOR NOISE CONTROL AIR COMPRESSOR NOISE CONTROL Compressor are often noisy an effective solution is often required to suppress the noise emitted from them. Compressor noise is usually a nuisance because they are sitting on comparatively lightweight structures. The best way to soundproof and to reduce any noise from a compressor regardless of size is to enclose it within a Floor Mounted 4-Sided Soundproofing Acoustic blanket Enclosure. For best results the enclosure should be as large as possible to allow less heat buildup and also to be more effective at reducing the noise output from reaching other areas and acoustically isolating the Compressor to contain structure borne sound being transmitted from where it is mounted. Depending on the current sound levels of the Compressor and your noise reduction goals, an abatement solution can be determined. In most applications a soundproofing blanket enclosure will meet your sound reduction needs. This is a two to four sided soundproofing enclosure with or without a roof. Typically a frame and track is constructed to suspend the soundproofing curtain panels. The soundproofing blankets material is a composite material bonding mass loaded vinyl with an acoustical absorber and faced with a vinyl diamond stitched facing. Using our Soundproofing Acoustic Blankets to construct a 4-sided noise control solution will significantly reduce sound. The noise reduction to be expected is a range of 20 to 40 decibels. The better the construction, weight of blankets and amount of soundproofing acoustic blankets used (the surface area) all factor into your sound reduction numbers.
    [Show full text]
  • Suburban Noise Control with Plant Materials and Solid Barriers
    Suburban Noise Control with Plant Materials and Solid Barriers by DAVID I. COOK and DAVID F. Van HAVERBEKE, respectively professor of engineering mechanics, University of Nebraska, Lin- coln; and silviculturist, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colo. ABSTRACT.-Studies were conducted in suburban settings with specially designed noise screens consisting of combinations of plant inaterials and solid barriers. The amount of reduction in sound level due to the presence of the plant materials and barriers is re- ported. Observations and conclusions for the measured phenomenae are offered, as well as tentative recommendations for the use of plant materials and solid barriers as noise screens. YOUR$50,000 HOME IN THE SUB- relocated truck routes, and improved URBS may be the object of an in- engine muffling can be helpful. An al- vasion more insidious than termites, and ternative solution is to create some sort fully as damaging. The culprit is noise, of barrier between the noise source and especially traffic noise; and although it the property to be protected. In the will not structurally damage your house, Twin Cities, for instance, wooden walls it will cause value depreciation and dis- up to 16 feet tall have been built along comfort for you. The recent expansion Interstate Highways 35 and 94. Al- of our national highway systems, and though not esthetically pleasing, they the upgrading of arterial streets within have effectively reduced traffic noise, the city, have caused widespread traffic- and the response from property owners noise problems at residential properties. has been generally favorable.
    [Show full text]
  • Construction Noise Control Products and Vendors Guidance Sheet
    Construction Noise Control Products and Vendors Guidance Sheet Revised: 16 July 2018 Distributed by: New York City Department of Environmental Protection (NYC DEP) The following is intended to provide guidance to construction contractors with respect to finding and selecting suitable construction noise control products. These products and vendors may be helpful to contractors for achieving compliance with the New York City Noise Code, and more specifically, with the Construction Noise Rules found in Local Law 113, Section 24-219, Chapter 28, Title 15 of the Rules of New York City which went into effect in July 2007. While there are similarities in the approach to construction noise control for all work sites, the specific measures and solutions need to be carefully selected and implemented correctly. In general, noise control measures can be applied at the noise source, along the pathway, or at the receiver (listener) directly. For these reasons, it is highly recommended that contractors discuss their situation with a qualified acoustical consultant as early as possible. It is always more cost-effective to design for good acoustics from the beginning rather than to rely on retrofit solutions when noise becomes a problem later. To aid in the selection of an acoustical consultant, links to several national professional societies are provided. The NYC DEP can also provide a list of consultants. This information is not an exhaustive list of noise control products and vendors. It is intended for guidance and informative purposes only, and should not be construed as an official endorsement of any product, vendor, or consultant by the City of New York.
    [Show full text]
  • Advanced Air and Noise Pollution Control VOLUME 2 HANDBOOK of ENVIRONMENTAL ENGINEERING
    Advanced Air and Noise Pollution Control VOLUME 2 HANDBOOK OF ENVIRONMENTAL ENGINEERING Advanced Air and Noise Pollution Control Edited by Lawrence K. Wang, PhD, PE, DEE Zorex Corporation, Newtonville, NY Lenox Institute of Water Technology, Lenox, MA Krofta Engineering Corp., Lenox, MA Norman C. Pereira, PhD Monsanto Corporation (Retired), St. Louis, MO Yung-Tse Hung, PhD, PE, DEE Department of Civil and Environmental Engineering Cleveland State University, Cleveland, OH Consulting Editor Kathleen Hung Li, MS © 2005 Humana Press Inc. 999 Riverview Drive, Suite 208 Totowa, New Jersey 07512 humanapress.com All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permission from the Publisher. All authored papers, comments, opinions, conclusions, or recommendations are those of the author(s), and do not necessarily reflect the views of the publisher. For additional copies, pricing for bulk purchases, and/or information about other Humana titles, contact Humana at the above address or at any of the following numbers: Tel.: 973-256-1699; Fax: 973-256-8341; E-mail: [email protected] This publication is printed on acid-free paper. h ANSI Z39.48-1984 (American Standards Institute) Permanence of Paper for Printed Library Materials. Cover design by Patricia F. Cleary. Photocopy Authorization Policy: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Humana Press Inc., provided that the base fee of US $25.00 is paid directly to the Copyright Clearance Center at 222 Rosewood Drive, Danvers, MA 01923.
    [Show full text]
  • Reducing Exposure to Lead and Noise at Indoor Firing Ranges
    Reducing Exposure to Lead and Noise at Indoor Firing Ranges Several studies of firing ranges have shown that exposure to lead and noise Summary can cause health problems associated Workers and users of indoor with lead exposure and hearing loss, firing ranges may be exposed particularly among employees and in- to hazardous levels of lead and structors. Lead exposure occurs main- noise. The National Institute ly through inhalation of lead fumes or for Occupational Safety and ingestion (e.g., eating or drinking with Health (NIOSH) recommends contaminated hands) (see Figure 2) steps for workers and employ- [NIOSH 2009]. ers to reduce exposures. Exposure Limits Description of Lead Exposure OSHA has established limits for air- borne exposure to lead (see 29 CFR According to the Bureau of Justice Figure 1. Law enforcement officers 1910.1025*). The standard creates during shooting practice. Statistics, more than 1 million Fed- the action level and the permissi- eral, State, and local law enforce- ble exposure limit (PEL). The action ment officers work in the United below 60 µg lead/100g of whole blood level for airborne lead exposure is 30 [NIOSH 2009]. States [DOJ 2004]. They are re- micrograms per cubic meter of air quired to train regularly in the use of (µg/m3) as an 8-hour time weighted firearms. Indoor firing ranges are -of average (TWA). The OSHA PEL for Noise ten used because of their controlled airborne exposure to lead is 50 µg/m3 conditions (see Figure 1). In addition as an 8-hour TWA, which is reduced For noise exposure, the OSHA lim- to workers, more than 20 million ac- for shifts longer than 8 hours.
    [Show full text]
  • Guide to Understanding Condensation
    Guide to Understanding Condensation The complete Andersen® Owner-To-Owner™ limited warranty is available at: www.andersenwindows.com. “Andersen” is a registered trademark of Andersen Corporation. All other marks where denoted are marks of Andersen Corporation. © 2007 Andersen Corporation. All rights reserved. 7/07 INTRODUCTION 2 The moisture that suddenly appears in cold weather on the interior We have created this brochure to answer questions you may have or exterior of window and patio door glass can block the view, drip about condensation, indoor humidity and exterior condensation. on the floor or freeze on the glass. It can be an annoying problem. We’ll start with the basics and offer solutions and alternatives While it may seem natural to blame the windows or doors, interior along the way. condensation is really an indication of excess humidity in the home. Exterior condensation, on the other hand, is a form of dew — the Should you run into problems or situations not covered in the glass simply provides a surface on which the moisture can condense. following pages, please contact your Andersen retailer. The important thing to realize is that if excessive humidity is Visit the Andersen website: www.andersenwindows.com causing window condensation, it may also be causing problems elsewhere in your home. Here are some other signs of excess The Andersen customer service toll-free number: 1-888-888-7020. humidity: • A “damp feeling” in the home. • Staining or discoloration of interior surfaces. • Mold or mildew on surfaces or a “musty smell.” • Warped wooden surfaces. • Cracking, peeling or blistering interior or exterior paint.
    [Show full text]
  • A Comprehensive Review of Thermal Energy Storage
    sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.
    [Show full text]
  • Technical Guide For: Noise Control – Engineering Controls, Work Practices, & Administrative Controls
    Technical Guide for: Noise Control – Engineering Controls, Work Practices, & Administrative Controls Table of Contents Noise Control Basics ..................................................................................................................................... 2 There are four basic principles of noise control: ........................................................................................... 2 Noise controls from OTI class 521 ............................................................................................................... 3 Noise controls from NIOSH ......................................................................................................................... 7 Noise Control: A guide for workers and employers ................................................................................... 13 Case Studies of Successful Engineering Control and Work Practices ...................................................... 138 Pallet Manufacturer Noise Controls Case Study ................................................................................... 138 Pallet Disassembly & Repair Facility Noise Controls Case Study ....................................................... 145 Metal Recycler Shaker Table Noise Controls Case Study .................................................................... 157 Case Study – Vacuum Pump Noise ...................................................................................................... 160 Edge Bander and Wood Grinder Noise Control Case Study ...............................................................
    [Show full text]
  • Initial Start-Up When Starting up the Cooler Refrigeration System for the First Time, the Following Events Occur
    SEQUENCE OF OPERATION COOLERS AND FREEZERS COOLERS All standard units are equipped with an adjustable thermostat located on the lower right hand side of the evaporator coil, on the inside of the walk-in. All units are set at the factory to the temperature requested by the customer. Minor adjustments in operating temperature may be made to suit your needs by a qualified refrigeration technician. Polar King recommends that you do not set the temperature colder than required, as this will cause unnecessary power consumption. Recommended temperature for a cooler ranges from +34° to +37° F, unless specified otherwise for special applications. Refrigeration - Initial Start-Up When starting up the cooler refrigeration system for the first time, the following events occur. The operating sequence is as follows: (1) Thermostat calls for refrigerant. (2) Liquid line solenoid valve opens, allowing refrigerant to flow. (3) Pressure control makes the control circuit and the condensing unit operates. (4) When the room thermostat is satisfied, the liquid line solenoid will close, and the compressor will pump down and turn off. (Fan on unit cooler will continue to run.) These units are designed for application conditions 33°F and above. CAUTION: DO NOT SET A COOLER BELOW 32°F OR DAMAGE MAY OCCUR. Defrost Defrost is accomplished during refrigeration off cycle. Four defrost cycles per day are programmed at the factory (4 a.m., 10 a.m., 4 p.m., and 10:00 p.m.). It may be necessary to change the defrost cycle times to fit your work schedule. The interior temperature may rise slightly during the defrost cycle.
    [Show full text]
  • Disparities in Ammonia, Temperature, Humidity, and Airborne Particulate Matter Between the Micro-And Macroenvironments of Mice in Individually Ventilated Caging
    Journal of the American Association for Laboratory Animal Science Vol 49, No 2 Copyright 2010 March 2010 by the American Association for Laboratory Animal Science Pages 177–183 Disparities in Ammonia, Temperature, Humidity, and Airborne Particulate Matter between the Micro-and Macroenvironments of Mice in Individually Ventilated Caging Matthew D Rosenbaum,1 Susan VandeWoude,2 John Volckens,3 and Thomas E Johnson3,* Animal room environmental parameters typically are monitored with the assumption that the environment within the cage closely mirrors the room environment. This study evaluated that premise by examining macro- (room) and microenvi- ronmental (cage) parameters in individually ventilated cages housing mice with variable amounts of bedding over a period of 17 d without cage changes. Intracage ammonia levels remained within recommended human guidelines but were higher than room levels, confirming that microisolation caging is efficient at preventing ammonia generated from animal waste from escaping into the room. Humidity and temperature within cages were consistently higher than room levels. Particles in the room predominantly consisted of fine particles (diameter less than 2.5 µm), presumably from the ambient atmosphere; some of these particles were found in the cage microenvironment. In addition, mouse activity within cages produced larger particles, and these particles contributed to substantially higher aerosol mass concentrations within the cage. These findings demonstrate that, although cage and room environmental parameters differ, knowledge of room environmental conditions can be used to predict certain conditions within the cage. This association is relevant in that typical animal care standard operat- ing procedures rely on room measurements, not intracage measurements, which arguably are more important for assessing animal welfare.
    [Show full text]
  • At the Request of the District, Environmental Control Systems, Inc, the District's Environmental Risk Engineers, Visited Charl
    Environmental Control Systems, Inc. Indoor Air Quality Investigation Charles F. Patton Middle School Executive Summary At the request of the district, Environmental Control Systems, Inc, the district’s environmental risk engineers, visited Charles F. Patton Middle School to visually assess surfaces and test the air quality in various regions of the school building. This process was completed on Wednesday, November 21 during the regular school day when school was in session. Upon their professional inspection and review, Environmental Control Systems concluded that there is no evidence of mold at Charles F. Patton Middle School. Below is a summary of the report provided by Environmental Control Systems, Inc. You may view the complete report by clicking here. Indoor Air Quality Investigation Report Summary - November 21, 2018 1. Currently, there are no EPA, CDC or OSHA regulations or standards for airborne mold contaminants, therefore, there are no quantitative health-based guidelines, values, or thresholds for acceptable, tolerable, or normal concentrations for airborne fungi spores. 2. Generally speaking, indoor mold types should be similar to, and airborne concentrations should be no greater than, those found outdoors and in non-complaint areas. 3. According to the EPA, there is no practical way to eliminate all mold and mold spores in an indoor environment. Spores can be found almost anywhere and can grow on virtually any substance, providing moisture is present. 4. Mold may begin growing indoors when mold spores land on wet surfaces. There are many types of mold, but none of them will grow without water. At the time of this investigation, there was no condensation on any horizontal or vertical surfaces as all surfaces were equal to or higher than room temperature.
    [Show full text]
  • Dust and Noise Environmental Impact Assessment and Control in Serbian Mining Practice
    minerals Article Dust and Noise Environmental Impact Assessment and Control in Serbian Mining Practice Nikola Lilic *, Aleksandar Cvjetic, Dinko Knezevic, Vladimir Milisavljevic and Uros Pantelic Faculty of Mining and Geology, University of Belgrade, Djusina 7, 11000 Belgrade, Serbia; [email protected] (A.C.); [email protected] (D.K.); [email protected] (V.M.); [email protected] (U.P.) * Correspondence: [email protected]; Tel.: +381-11-321-9131 Received: 30 November 2017; Accepted: 15 January 2018; Published: 23 January 2018 Abstract: This paper presents an approach to dust and noise environmental impact assessment and control in Serbian mine planning theory and practice. Mine planning defines the model of mining operations, production and processing rates, and ore excavation and dumping scheduling, including spatial positioning for all these activities. The planning process then needs to assess the impact of these mining activities on environmental quality. This task can be successfully completed with contemporary models for assessment of suspended particles dispersion and noise propagation. In addition to that, this approach enables verification of the efficiency of suggested protection measures for reduction or elimination of identified impact. A case study of dust and noise management at the Bor copper mine is presented, including the analysis of the efficiency of planned protection measures from dust and noise, within long-term mine planning at the Veliki Krivelj and Cerovo open pits of the Bor copper mine. Keywords: dust and noise impact assessment and control; air dispersion modeling; AERMOD; noise mapping; SoundPLAN; mine planning 1.
    [Show full text]